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The Arithmetic-Geometric Mean
and Isogenies for Curves of Higher Genus

RON DONAGI - RON LIVNÉ

Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)
Vol. XXVIII (1999), pp. 323-339

Abstract. Computation of Gauss’s arithmetic-geometric mean involves iteration
of a simple step, whose algebro-geometric interpretation is the construction of an
elliptic curve isogenous to a given one, specifically one whose period is double the
original period. A higher genus analogue should involve the explicit construction
of a curve whose jacobian is isogenous to the jacobian of a given curve. The

doubling of the period matrix means that the kernel of the isogeny should be
a Lagrangian subgroup of the group of points of order 2 in the jacobian. In

genus 2 such a construction was given classically by Humbert and was studied
more recently by Bost and Mestre. In this article we give such a construction for
general curves of genus 3. We also give a similar but simpler construction for
hyperelliptic curves of genus 3. We show that for g &#x3E; 4 no similar construction
exists, and we also reinterpret the genus 2 case in our setup. Our construction of
these correspondences uses the bigonal and the trigonal constructions, familiar in
the theory of Prym varieties

Mathematics Subject Classification (1991): 14H40 (primary), 14K02 (second-
ary).

1. - Introduction

It is well-known that computation of Gauss’s arithmetic-geometric mean
involves iteration of a simple step, whose algebro-geometric interpretation is
the construction of an elliptic curve isogenous to a given one, specifically one
whose period is double the original period (for a modem survey see [Cox]).
A higher genus analogue should involve the explicit construction of a curve
whose jacobian is isogenous to the jacobian of a given curve. The doubling of
the period matrix means that the kernel of the isogeny should be a Lagrangian
subgroup of the group of points of order 2 in the jacobian. In genus 2 such
a construction was given classically by Humbert [Hum] and was studied more
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recently by Bost and Mestre [Bo-Me]. In this article we give such a construction
for general curves of genus 3. We also give a similar but simpler construction
for hyperelliptic curves of genus 3. We show that the hyperelliptic construction
is a degeneration of the general one, and we prove that the kernel of the induced
isogeny on jacobians is a Lagrangian subgroup of the points of order 2. We
show that for g &#x3E; 4 no similar construction exists, and we also reinterpret the
genus 2 case in our setup.

To construct these correspondences we use the bigonal and the trigonal
constructions, familiar in the theory of Prym varieties ([Don]). In genus 2 Bost

and Mestre note that Humbert’s construction induces on jacobians an isogeny
whose kernel is of type (Z/2Z)2. We show that Humbert’s construction is
an instance of the bigonal construction, and prove that the above kernel is
a Lagrangian subgroup of the points of order 2. In fact Bost and Mestre

use Humbert’s construction to give a variant of Richelot’s genus 2 arithmetic-
geometric mean. In light of the clear analogy, in particular the fact that a

generic principally polarized abelian threefold is a jacobian, one might hope
that our construction could be used in a similar way.

We work throughout over an algebraically closed field of characteristic 0.
However, our methods clearly extend more generally. For example, the results
of Section 4 hold if the characteristic is not 2, and those of Sections 5 and 6
if it is &#x3E; 3.

ACKNOWLEDGEMENTS. The first author thanks the Hebrew University of
Jerusalem and the Institute for Advanced Studies in Princeton for their hospitality
during the time this work was done. The second author thanks the University
of Pennsylvania for its hospitality while this article was being written.

2. - Preliminaries

POLARIZATIONS. For an abelian variety A denote by A [n] the kernel of mul-
tiplication by n. In the sequel we will need the following standard facts and
notation.

1. A polarization 6 on an abelian variety A induces by restriction a polar-
ization O B on any abelian subvariety B of A.

2. Recall that the type of a polarization 0 on a g-dimensional abelian variety
is a g-tuple of positive integers dg ~ ... We say that 6 is a principal
polarization if it is of type 1 g = ( 1, ... , 1, 1 ) (g times). In that case,

suppose that p is a prime, and that K is a subgroup of A[p] isomorphic
to (Z/pZ)’ and isotropic for the Weil pairing wp. Then 0 induces a

polarization on A / K , characterized by the property that its pull back to A
is p8. Its type is then pg-r - 1 r . In this situation we will say that K is a

Lagrangian subgroup of A [p] if r = g.
3. The type of a polarization is preserved under continuous deformations.
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DOUBLE COVERS. Given a double cover, i.e. a finite morphism 7r : C 2013~ C of
degree 2 between smooth projective curves, the Prym variety Prym ( C / C ) is
defined to be the connected component of the kernel of the norm map

It is an abelian variety, and it has a natural principal polarization when 7r is

unramified, namely one half of the polarization induced on it as an abelian

subvariety of Jac(C) ([Mum2]). This definition extends to singular curves C,
C, if we interpret Jac as the (not necessarily compact) generalized jacobian.
This was studied by Beauville [Bea]. Particularly important for us will be the
cases when 1. C, C have only ordinary double points, 2. = Csing,
and 3. for each x E Csing the inverse image ~c -1 (x ) consists of a single point,
and each branch maps to a different branch of x and is ramified
over it. (We shall then say that 7r is of Beauville type at x.) In such cases

Prym(lllc) is compact, and the following three conditions are equivalent:
1. 7T is unramified away from Csing. 

’

2. The arithmetic genera satisfy = 2g(C) - 1.
3. The cover C/ C is a flat limit of smooth unramified double covers.

We shall call a cover satisfying these conditions allowable; from the third
condition we see that the Prym is prinicipally polarized in such a case.

Let C be a curve having only ordinary double points as singularities, and
let vx : Nx ~ C be the normalization map of exactly one such singular point
x. We denote by L (x ) the line bundle of order 2 in (It is obtained
from the trivial line bundle on Nx by gluing the fibers over the two inverse
images of x with a twist of -1 relative to the natural identification.)

LEMMA 1. Let 7r : C 2013~ C be an allowable double cover, v7r : vC
its (partial) normalization at r &#x3E; 1 ordinary double points xl, ... , xr. Let g be
the (arithmetic) genus of the partial normalization vC, so the arithmetic genus
of C is g + r. Then Prym(C/C) has a principal polarization, Prym(vC/vC)
has a polarization of type the pullback map v* : Prym(C/ C)
Prym(vC /vC) is an isogeny of degree 2r-I. The kernel of v* is the subgroup
of Prym(C / C) [2] generated by the pairwise differences of the line bundles L (xl )
defined above. This subgroup is isotropic for the mod 2 Weil pairing W2.

PROOF. The generalized jacobians fit in short exact sequences

where the vertical maps are the norm maps induced by 7r and by v7r. We

compare the kernels: to begin with, the kernel of the norm map is connected
for ramified double covers (in particular for and has two components
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for unramified covers. This is shown in [Mum2] in the nonsingular case, and
so by continuity this holds also for allowable singular covers (in particular for
C/ C). The multiplicative groups parametrize extension data and the norm is
the squaring map. So the short exact sequence of kernels gives

and the first part of the lemma follows.
To prove that the subgroup of Prym(C/C)[2] is isotropic for

w2, notice that its generators are reductions modulo 2 of the vanishing cycles
for C, and vanishing cycles for distinct ordinary double points are disjoint.
Therefore these vanishing cycles have 0 intersection number in Z- (or Q-)
homology. By the definition of the polarization of Prym(C/ C) in Section 2,
and the well-known expression for the Weil pairing in terms of the intersection
(or cup product) pairing (see e.g. [Mum, theorem 1, Ch. 23]), the rest of the
lemma follows.

3. - The bigonal and the trigonal constructions

There are several elementary constructions which associate a double cover of
some special kind with another cover (or curve) with related Prym (of Jacobian).
We now review the bigonal and the trigonal constructions, following [Don].
Assume we are given smooth projective curves C, C and K and surjective
maps f : C - K and 7r : C --~ C, so that deg 7r = deg f = 2 over any
component. The bigonal construction associates new curves and maps of the

- / f’
same type C’ 03C0’---&#x3E; C’ --&#x3E; K as follows. Let U C K be the maximal open
subset over which /7T is unramified. Then C’ represents over U the sheaf of
sections, in the complex or the etale topology, of 1f : (f.7r)-’U --&#x3E;. f -1 U . It

is a 4-sheeted cover of U. We then view ellu as a locally closed subvariety
of C x C and define C’ as the closure. The projection to U extends to a

morphism C’ ~ K, and the involution i of elu which sends a section to the
complementary section extends to C’. We define C’ = and f’ and 7r’ as
the quotient maps.

We will need to extend this construction to allowable covers of curves
with ordinary double points; however in a family acquiring a singularity of
Beauville type the arithmetic genus of the resulting C’ is not locally constant.
More technically, the naive construction as the closure of C’lu in C x C is not
flat in families, which is not adequate for our purposes: for example, we want
the bigonal construction to be symmetric.

To achieve this, we define the bigonal construction for singular allowable
covers by choosing a flat family of smooth covers whose limit is our allowable
cover, and defining the construction to be the limit of the construction for the
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nonsingular fibers. Beauville’s results imply that this is well defined, and does
give a symmetric construction: this is more or less clear except at a singularity
of Beauville type. There the problem reduces to a local calculation whose

answer, which we record in 2. below, is visibly symmetric.
We will need a few properties of this construction (see [Don, Section 2.3])

1. As we said, the construction over U is symmetric: starting with 11’, ... , f’
gives back C, ... , f . --

2. Denote the type of C / C at a point k E K by
. c=/-- if C is unramified over k and C is ramified over exactly one

point in 
~ 2/c if C is ramified over k but C is unramified over the point 
~ cc~-- if C is unramified over k and C is ramified over both branches

of C over k;
~ if both C, C have ordinary double points above it, and C/ C is

of Beauville type there.

If C/ C is of type c=/--, C/C, cc~--, xix at k then C’/ C’ is respectively
of type G/G, c=/--, there.

Notice that normalization takes type xix to type cc/--.

3. The natural 2-2 correspondence between C and C’ induces an isogeny
Prym(11’/ C’), whose kernel is the same as the kernel of the

natural isogeny Prym( C I C) -* induced by the polarization
from Prym(e/C) to its dual abelian variety In other words

we get an isomorphism Prym(C/C)~ -~ Prym(11’ / C’) (cf. Pantazis [Pan],
at least when K = Pl which is all we need). As a check, let a, b, c, and
d be the numbers of points where C/ C is of type c=/--, c/c, cc/--, and
xix respectively. Then by Lemma 1 the polarization type for Prym(C/C)

a+2c 1 b+2d 1 
- 

is 1 2 -12 2 -l. . Similarly the polarization type for Prym(C’/C ) is

obtained by interchanging a with b and c with d, and this gives exactly
the type dual to the one of Prym ( C / C ) .
For Recillas’s trigonal construction start with K, C, C, yr, and f as before

except that f now has degree 3. We get a cover g : Z 2013~ ~ of degree 4 by
making over the smooth unramified part U, defined as before, a construction
analogous to what we previously did to get C’. Namely, let X/ U represent the
sheaf of sections of yr : ( f ~ ) -1 U -~ f - 1 U . and define X / U as the quotient of
X divided by i (which is defined as before). In the nonsingular case we define
X as the closure of in X x X x X, and in the general allowable case by
taking a flat limit of the construction for smooth, unramified covers. Here we
have [Don, Section 2.4]

1. Over U the construction is reversible: Cju represents the sheaf of partitions
of X|V to two pairs of sections, and C’ represents the choice of one of
these pairs.
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2. Denote the type of C / C at a point k by

~ 2=/c- for C, C if C has exactly one simple branch point over K and
7r is unramified over f -1 (k);

~ c c=/--- if f is unramified at k and 7r is branched over two of the
branches of f and unramified over the third;

~ Dc=/x - if two branches of C over K cross normally, the third is

unramified, and moreover, if C/ C is of Beauville type over the double
point and unramified over the unramified branch.

Then X has exactly one simple branch point at a point k of type
c .-

c=/c- for CIC, and we denote by c-- the type of X over k. Conversely, if

X is of type c-- at k then C/ C is of type c=/c- there. If C/ C is of type
cc=/--- at k then X has two simple branch points over k, which we denote
by type cc. Here the situation is not reversible: if X is of type cc at k then

C/ C is of type Dc=/x- there. Notice that normalization takes type :x=/x - to
type cc=/---.

3. If K rr Pl and C/ C is allowable, then X is smooth and Jac(X)
Prym(lllc). This is due to Recillas when C/ C is smooth unramified,
and again limiting arguments imply this in general.

4. - The genus 2 case

Humbert’s correspondence of curves of genus 2 was studied by Bost and
Mestre (see [Hum], [Bo-Me]). We shall show how to make this correspondence
via the bigonal construction, and use this to determine the type of the isogeny.

Humbert’s construction starts with a conic C in P2 with 6 general points
on it (see Remark 3 below), which are given as 3 unordered pairs {P/, 
i = 1, 2, 3. It associates to these 3 new unordered pairs of points, all distinct,
on C as follows. Let Pi Pi" be the 3 lines joining paired points, and let lk be
the intersection of and PiP;’ if = { 1, 2, 3 } . The new 3 unordered
pairs of points on C are then the pairs of points of tangency to C from the
lk’s.

For our purposes it is more convenient to view the new points as lying
on the conic C* dual to C in the dual plane P2*. A point of P2* is a line
in p2; it is in C* if and only if this line is tangent to C. Let 0 : P2 ~ p2*
be the isomorphism defined by C; namely, for P g C there are two tangents
to C through P, and 0 (P) is the line joining their points of tangency. For

PEe, Ø(P) is the tangent to C at P. Under the isomorphism OIC : C ~ C*,
Humbert’s new pairs go to the pairs Lk, L" of tangents to C through lk.

THEOREM 2. Let 7r : H - C and 7r* : H* - C* be double covers branched
over the old and new sets ofpoints respectively. Then there is an isogeny Jac (H) -
Jac(H*) whose kernel is a Lagrangian subgroup of Jac (H) [2].
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PROOF. Choose some k E {I, 2, 3}. The set L* = L* of lines through lk is
the line in p2* dual to lk. Let f : C ~~ L * be the "projection" sending each
point of C to the line joining it to lk. Dually, let f * : C* - L = Pk Pk’ be
the "projection" sending each tangent line of C to its intersection with L. Let

: L - L* be the isomorphism sending a line through lk to its intersection
with L. The maps f and f * have degree 2, and hence also g has degree

. 03C0 f * g 
2. Both coverings H C - L* and H * C* L* are unramified over
the complement in L * of the six points

~ The tangents Z~, L~ to C through lk ; there Hie is of type and

H*IC* is of type c=/--.
~ The lines PiPi" and whose intersection defines lk; there both

H/C and H*IC* are of type cc/--.
~ The lines Pklk and Pk’lk; there HIC is of type c=/-- and H*/C* is

of type 

It follows that if we perform the bigonal construction on H - C -* L*,
the two points Pi’ Pi" and Pj Pj’ of L* are of Beauville type for the resulting
cover H’ - C’ -~ L* and there are no other singularities (see Section 3).
The preceding analysis of the ramification of combined with the one
for the bigonal construction H’/ C’ in Section 3 shows that the normalization
of is isomorphic to It remains to determine the kernel of the
induced isogeny on jacobians; by Pantazis’s result recalled above, it factors as

To compute the kernel of v* we cannot use Lemma 1 directly, since H’/ C’
is not allowable, being ramified over two points x’ E g-’(L’), x" E 
Instead glue x’ to x" to obtain a curve with one more double point C" and
glue their inverse images in H’ to get a curve H", which is now an allowable
cover of C" (H" is obtained from H by gluing the Weierstrass points in

pairs). We have maps of covers ~*/C* 2013~ H’ / C’ ~ H"/ C" inducing maps
of Prym varieties. Applying Lemma 1 twice now gives that the kernel of

Prym(H"/C") - Prym(H/ C) is an isotropic subgroup isomorphic to (Z/2Z)2
and that Prym(H"/C") is isomorphic to Prym(H*/C*). This implies that Ker v*
is as asserted, completing the proof of the Theorem.

REMARK 3. The points are assumed general only to guarantee that
they are distinct and that the resulting new 6 points are also distinct (for which
it suffices that the tangents to C from lk in the proof do not touch C at Pk
nor at Pk’). In the case considered in [Bo-Me] this holds, because they assume
that C and the points are real and satisfy some ordering relations.
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5. - The hyperelliptic genus 3 case

In this section we will solve our problem in the hyperelliptic case: we will
construct a correspondence between the generic hyperelliptic curve of genus 3
and a certain non-generic curve of genus 3 (which is not hyperelliptic). Let H
be a hyperelliptic curve of genus 3 and let 7r, : : H ~ P 1 be the hyperelliptic
double cover. Choose a grouping in pairs of the 8 branch points u;i,..., W8 E Pl
of 7r,. We claim that there exists a map g, : Pl -~ P’, of degree 3, which
identifies paired points. This can be seen in several ways. Firstly, let T be the
curve obtained from Pl by identifying paired points to ordinary double points.
We think of T as a curve of genus 4 and take its canonical embedding to

P3. As in the nonsingular case, the canonical map is well behaved, and in

particular the canonical image of T lies on a unique, generically nonsingular
quadric by the Riemann-Roch theorem. Projecting via either of the two ruling
of this quadric will give the desired map gl. Notice that by its construction g 1
factors as Pl ~ T ~ P~, where v is a normalization map.

Another way to get g, is to embed Pl in P3 as a rational normal curve.
We look for a projection from P3 to pl which identifies paired points. The
center of this projection is a line L which must meet the 4 lines joining the
pairs. The grassmanian G ( 1, p3) of lines in P3 is naturally a quadric in p5 and
the condition to meet a line is a linear condition. We see again that there is

always at least one such L, and generically two.
We now perform the trigonal construction. This gives a map of degree 4

f : C - Pl sitting in a diagram

Let w 12, ... , w7s be the 4 images of the wi ’s under g 1, with the indices indi-
cating the grouping. By the Riemann-Hurwitz formula there are generically 4
points a 1, ... , a4 in Pl over which g 1 is branched, with a simple branch point
over each. Hence HIP’ is of type c=/c- at each ai and of type cc=/---
at each W2i-I,2i’ &#x3E;From the properties of the trigonal construction we get
2 - 2g(C) = 8 - 8 - 4, so that C has genus 3. The trigonal construction gives
a birational correspondence between

The moduli of the data (H 03C01 Pl g1 P1 ) with 4 points of type c=/c-
and 4 points of type cc=/---.

~ A component of the Hurwitz scheme parametrizing 4-sheeted covers
f : C - Pl with 4 simple branch points and 4 double branch points.

Each of these moduli spaces is 5 dimensional. (Another component of
this Hurwitz scheme parametrizes bielliptics, namely maps f : C - Pl which
factor through a double cover E -~ Pl where E is elliptic. Curves in this latter
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component are taken by the trigonal construction to towers H - 77 2013~ PI
where H = A U B is reducible, with A, B of degrees 1, 2 respectively over
Pl. We shall not need this component in what follows.)

The key point for us is that the trigonal construction induces an isogeny
Jac(C) ~ Jac(H) whose kernel is Lagrangian in Jac(C)[2]. More precisely we
have the following

PROPOSITION 4. Let Pl --~ T ~ Pl be as before, and let T be the curve
obtained by identifying the Weierstrass points in H to ordinary double points with
the same grouping as the one we chose to get T. Then

1. Diagram (1) extends to

Here V : H --+ T is the normalization map, and we view v7r := 7r, : H -
Pl as the normalization of n : t --+ T.

2. v induces an isogeny of polarized abelian varieties Prym(t/ T)
Jac(H) whose kernel is Lagrangian in Prym(T/ T) [2].

3. Let 0 : Jac(C) - Jac(H) be the isogeny obtained by composing v* with
the isomorphism Jac(C) ^_~ Prym(T/ T ). Then the kernel of ~ is La-
grangian in Jac(C)[2], and the kernel of the dual isogeny io* : Jac (H) -+
Jac(C) is the Lagrangian subgroup of Jac(H)[2] generated by the differ-
ences of identified Weierstrass points.

PROOF. Part 1. holds because tl T is allowable. The pairs of points of H
identified by v lie over points of type x=1 x - for T, T. Hence they are branch
points for 7r, namely Weierstrass points. The rest follows from Lemma 1.

6. - The generic genus 3 case

Let C be a generic curve of genus 3. In this section we shall give a
construction of a curve C’ of genus 3 and an isomorphism Jac(C’)
where L is a Lagrangian subgroup of Jac(C)[2]. Let f : C - Pl be a map
of degree 4, and let b 1, ~ b2 be points in P 1 such that f has two simple branch
points over each bi. It is easy to show such f, bl , b2 exist, and in fact we
will parametrize the space of such f ’s in the end of this section.

We perform the trigonal construction on f. This gives curves T, T and
maps g : T ---* Pl and 7r : li’ - T, with deg g = 3 and deg 7r = 2. Let

v : T and v : v T ~ T be normalization maps and let vn : vi4 --* vT
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be the map induced by Jt. The properties of the trigonal construction show the
following. Firstly, T and T have each two ordinary double points, one over
each bi, and no other singularities. Next, the map gv : v T ~ Pl has exactly
8 branch points, all simple, one over each ai. It follows that the genus g (v T )
is 2 and therefore the arithmetic genus g (T ) is 4. The map vJt has exactly 4
ramification points Pi, Qi, two over each bi for i = 1, 2, and hence = 5

and = 7.

Since v T has genus 2, it is hyperelliptic. Let h : : v T ~ Pl be the

hyperelliptic double cover, and let W6 E P 1 be the branch points of h.

The bigonal construction gives curves and maps of degree 2 v T’ i v T’ 2013~ pl.
The points in Pl over which is not etale are the 6 wi ’s, which are of

type 8/c for v T and and the 4 points h ( Pi ) , h(Qi), i = 1, 2, which are of
type c=/--. The types get reversed for v T’ and v T’, and in particular vT’ is
ramified exactly over the and the It follows that g(vT’) = 1.
We also see that v7r’ has 6 branch points, say w 1, ... , w6, one over each of
the wi ’s, and hence g(vT’) = 4. The curves v T’ and v T’ are nonsingular.

Choose a grouping of the wi’s in 3 pairs. Identify the corresponding w"’s
in vT’ to get a curve T’ with 3 ordinary double points, say w 12, W/569 the
indices indicating the groupings. T’ has arithmetic genus 4. Likewise identify
the corresponding points above the w"s on v T’ to obtain a curve T’ with 3
ordinary double points and arithmetic genus 7.

As in the nonsingular case, the canonical embedding sends T’ to P3 and
the image sits on a unique, generically smooth quadric. Choosing one of
the two rulings of this quadric gives a map g’ : T’ --~ Pl. This map is
of degree 3, because the canonical curve is a curve of type (3, 3) on the

quadric. The map g’v’ : vT’ ~ Pl is ramified over n = 6 points, since

2 - 2g(vT’) = 0 = 3(2 - 2g(P1 )) - n. Over these the pair vT’, vT’ is of

type There are also 3 points of type cc=/---, the images under g’
of the identified pairs w 12, W’56. The trigonal construction performed on

- g,v,
v T’ v03C0 v T’ Pl 1 gives a curve C’ and a map f ’ : C’ -&#x3E; P 1 of degree 4. We
readily see it has genus 3. The following diagram summarizes the procedure:

Before stating our main result we need to discuss the choices made in the
construction. Writing = 2(Pi + Qi ), we obtain a point of order 2

U’ _ ~’(.f ) = Pl ~ Q1 - 1’2 - Q2~

in Jac(C). The trigonal isomorphism Jac(C) ~ Prym(T IT) maps a to the
difference (defined in the discussion preceeding Lemma 1), which
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is the nontrivial element in Ker v*. Moreover the only choice made other than
f is the grouping of WI, ... , W6 under v’. The differences of the corresponding
paired points in v T are the nonzero elements of a Lagrangian subgroup Lo of
Jac(vT)[2].

Now observe that the pullback to v T by v7r of a line bundle of order 2 on
v T is in the kernel of the norm map to v T. This gives a symplectic embedding

The image lm(t) of t can be described in two ways. On the one hand, it is

the kernel of the polarization map (Observe
that has a polarization of type 221 by Lemma 1, whose kernel is
then isomorphic to (Z/2Z)4.) On the other hand, let denote the orthogonal
complement to (the image of) a in Prym(r/T) for the Weil pairing w2 . Then

lm(t) is also the pullback of by the normalization map. Indeed, for u E
Jac ( v T ) [2~ we have E because

and as both groups have cardinality 16 they coincide. Hence this image is

isomorphic to In particular, the inverse image L of Lo in Jac(C) is a

Lagrangian subgroup of Jac(C) [2] containing a.
Conversely, let L C Jac(C) [2] be a Lagrangian subgroup. We will say that

the choices f, v’ made in the course of the construction are compatible with
L if a = a(f) is in L and v’ corresponds to LI(a) as above. We can now
formulate our main theorem, to which we shall give two proofs:

THEOREM 5. Let C’ be the result of the construction applied to a curve C of
genus 3 compatibly with a Lagrangian subgroup L C Jac(C) [2]. Then there is an
induced isomorphism Jac(C)/L ~ Jac(C’). In particular C’ is independent of
the (compatible) choices made in the construction.

PROOF. The construction induces isogenies whose degrees are marked below:

Here the middle step 6 is identified with the polarization map from an abelian
variety of polarization type 211 to its dual. As before we identify v * with the

quotient by a, so to construct our isomorphism Jac(C’) it would

suffice to produce a natural map E : Prym(vT/vT) - whose

kernel is the subgroup of 

One way to do this is to define c as the dual map of v’*, using 6 to

identify the dual of with Prym(vt/vT), and using the principal
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polarization on to view it as its own dual. Tracing through the
definitions one verifies that Ker(e) is indeed as asserted.

An alternative, and more geometric approach, is to show that the hyper-
elliptic case treated in Section 5 is a specialization of our present general
construction. In fact the hyperelliptic case is obtained when the 4-sheeted cover
f : C - Pl happens to have 4, rather than the generic 2, double branch points.
We shall see that this determines a preferred gluing v’. In going to this special
case we have to note that the limits of the curves v T, vi (which we continue
to denote with the same symbols) are no longer non-singular: they are now
only partial normalizations of T, T, and the map v T 2013~ v T now has 2 points
of Beauville type, at the singularities which were not normalized. The full

normalizations, say v v T and v v T, now have genera 0 and 3 respectively, and
the resulting diagram

clearly coincides with diagram (1).
Reagardless of the singularities of the intermediate curves, we will see that

each of the abelian varieties in the diagram specializes to an abelian variety.
In particular, the limit of Prym(vT IvT) is, by Lemma 1, a 4-sheeted cover

of Prym(vvT/vvT) ^_· Jac(H), whose kernel is L/(a). Below we will also

identify the limit of Prym(T’/ T’) with Jac(H). This will produce the desired
map E in this special case, and hence in general.

For this, we note that the bigonal data vT -* v T -~ P 1 has 4, 2, 0 and 2

points of types c=/--, 2/c, cc/--, and xix respectively, which turn into points
of types 2/c, c=/--, Dc/x and cc/--, respectively, for vT’ -~ vT’ 2013~ Pl. To
obtain T’ - T’ we need to pair the 6 ramification points of ~ v T’. There
are 15 ways to do this, of which one is distinguished: each pair of Beauville
branches gets paired, as do the remaining two ramification points. Let Th be
the intermediate object, obtained by gluing only the Beauville branches but not
the remaining pair. It is a singular hyperelliptic curve of genus 3, and is a

partial normalization of T’ at the double point p. Let Th ’ be the corresponding
I-point partial normalization of T’, of arithmetic genus 6.

To continue our construction, we need to identify the two on T’:
these two turn out to coincide, and the unique gj 1 is in fact given by the g2
on Th plus a base point at the double point p. To see this we examine what
happens to our general construction of the in this case. The unique quadric
surface through the canonical model of T’ is now a quadric cone, with vertex
at (the image of) p, because projection from p gives the canonical image of
the hyperelliptic Th, which is the double cover of a conic. Therefore the two

rulings, hence the two gil’s, coincide and have a base point at p, as asserted.
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At this point we need to turn the g3 1 into a morphism, which requires us
to blow up the point p. This results in a reducible trigonal curve Tt := Th U P,
where P is a copy of Pl intersecting Th in the two inverse images p 1, p2 of p in

The trigonal map has degrees 2 and 1 respectively on the two components
T h 

’ and P. This curve is indeed a flat limit, in the famiiy of triple covers of
P’, of the trigonal curves encountered in the non-hyperelliptic situation. The

corresponding double cover Tt 2013~ Tt is of Beauville type at all 4 of the singular
points (the two singularities of Th plus pl, p2). Here Tt = Th U P, where P
is another copy of P 1, double cover of P branched at the points glued to p 1
and p2.

Now that we have identified the trigonal data, we can complete the con-
struction. By example 2.10(iii) of [Don], or by inspection, we see that the
result C’ of applying the trigonal construction to the reducible trigonal data

( Th U P ) ~ ( Th U P) - P 1 is the 4-sheeted cover of P 1 obtained by applying
the bigonal construction to Th 2013~ Th ~ P . But since the bigonal construction
is reversible this is nothing but the hyperelliptic curve H = v v T which resulted
from the construction of Section 5, as claimed.

The degeneration just described involves a flat family of abelian varieties,
so the polarization type and the type of the kernel of the isogeny on jacobians
remain constant. From the hyperelliptic case we now see that L is the kernel
of our isogeny in the general case. By Torelli’s theorem, C’ is determined by
its polarized jacobian, which is Jac(C)/L. Hence C’ is indeed independent of
the choices (compatible with L) made during the construction. This concludes
the proof of Theorem 5.

We now make some further comments on the choices we made in the course
of the construction. Starting on the left, we fix the curve C, the Lagrangian
subgroup L and an element a E L. Our gl ’s f : C - Pl with a = a(f) are
determined by a divisor class in the intersection

More accurately Z parametrizes the family of (with the specified a), to-

gether with a marking of the two singular points bl, b2. Interchanging these
two points gives an involution i of Z induced by the involution x H x + a of
Pic2 (C), and it is the quotient of Z by i which parametrizes the gl’s alone. Z is
also invariant under the involution j : x H Kc - x (where Kc is the canonical
class) and i and j commute. In addition, since Oc is an ample divisor, Z is
connected. Counting fixed points shows that the respective quotients of Z by
i, j, k = i j have genera 4, 1, 4, and that the common quotient Z = j)
has genus 1.

These quotients clearly have the following interpretations as parameter
spaces:
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1. Z parametrizes the f : C - Pl (equivalently, via the trigonal
construction, towers of double covers T --~ T --~ Pl of the indicated

type), with a choice of a double branch point b 1.
2. Z/ i parametrizes the gl’s f : C 2013~ Pl (equivalently, towers of double

covers li’ - T --~ Pl of the indicated type).
3. Z/j parametrizes the double covers T 2013~ T of the indicated type

together with a singular point of T.
4. Z parametrizes the double covers T - T of the indicated type, hence

it also parametrizes their normalizations, as well as the maps vJr’ :
v T’ -~ v T’ .

We will now discuss what choices we make when we perform the con-
struction in reverse order, and how the choices from the two directions are

related.

Starting with the genus 3 curve C’, we now assume given a Lagrangian
subgroup L’(= Jac(C)[2]/L) of Jac(C’)[2], and a subgroup G c L’ of order
4 (which corresponds to A marking of the three double branch points
bi of f’ is equivalent to a choice of a basis ~8’ = P2’ + Q’ - P’ - Q i and

y’ = Q i of G. Let 8’ c Pic (C’) be the theta divisor of C’,
and for a class u E Jac(C’) let Ou denote the translation of O’ by u. Consider
a line bundle L in the intersection S = o n O~~ f1 oy,. Since the canonical

bundle is the only degree 4 bundle on C’ with ho &#x3E; 2,- there are only two
possibilities: either L®2 gives a f’ : C’ 2013~ Pl with three marked double
branch points b’ E P 1, i = 1, ... , 3, or else L must be a theta characteristic on
C’. We claim the following:

( 1 ) S consists of six points
(2) S is closed under v 2013~ Kc, - v.
(3) Four of the points of S are theta characteristics, and two are not.

PROOF. (1) holds because 6 = g !. For (2), suppose that f’, f " : C’ - P,
correspond to 2v, 2K~~ - 2v respectively. Then for each double ramification

point Pi’, Q’ of f’ we get a unique double ramification point Pl", Q§’ for f "
by imposing the condition Pl" + (~ + Pi’ + Ql = Kc,..

For (3) , one checks that there is a unique coset G’ of G in the set of
odd theta characteristics on C’: indeed, in coordinates we may take the set

of theta characteristics to be V = (Z/2Z)6 with coordinates xl, ... , x6, and
we may suppose that h° (C’, Oc,(x)) mod 2 for x = (xl , ... , X6) is given by
q(x) = XIX2 + X3X4 + X5X6. Also we may simultaneously identify Jac(C’)[2]
with V, with the Weil pairing given by w2 (x , y ) - q (x + y) - q (x ) - q (y).
Without loss of generality we can also take f3’ = el and y’ = e3, with ei the

standard i th unit vector. Then G’ = { (a , 0, b, 0, 1, 1 ) { .
Part (3) is now clear: G’ is contained in S, and no other theta characteristics

appear in S. This establishes our claim.

We can now describe all the choices made when we start from the right
side. Our data C’, L’, G determines a complementary pair of maps f’, f ".
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These determine the data T’ ---&#x3E; T’ uniquely (the two resulting maps g’, g" are
the usual two gj’s on the genus 4 curve T’). The normalization ~ v T’
is therefore also uniquely determined. So the only choice made is that of h’,
given by an arbitrary point of Pic2(vT’) ~ vT’. Comparing with what we
found starting from the left, we discover that v T’ is precisely identified with
the double quotient Z.

7. - The case of genus &#x3E; 4

One might try to generalize our construction to higher genus by finding,
for a generic curve C of genus g, a correspondence with another generic curve
C’ of genus g such that Jac(C) -- Jac(C)/K, with K a Lagrangian subgroup
of Jac(C)[2]. We shall show that this is not possible.

THEOREM 6. Let K be a Lagrangian subgroup in Jac(C)[p], where C is a
generic curve of genus g &#x3E; 4 and p is a prime. Then Jac(C)1 K with its induced
principal polarization is not a jacobian.

PROOF. Let T, S, and A denote respectively the Teichmfller space, the
Siegel space, the moduli space of curves and the moduli space of principally
polarized abelian varieties, all of genus g. The mapping class group M = M(g)
acts on T with quotient fl4 and the modular group r = Sp(2g, Z) acts on S
with quotient A. Moreover r is naturally a quotient of M, because M acts on
symplectic bases for H, (C, Z) through its action on 7rI (C), and the period map
t : T 2013~ S is M-equivariant for these actions. Passing to the quotient, we get
Torelli’s map t : A4 - ,A., which is injective (Torelli’s theorem) and exhibits
M as a locally closed subvariety of A. Since T is irreducible it follows that
the Torelli space T = i (T ) is a locally closed irreducible analytic subvariety
of S. 

T _

Let W be the finite cover of S obtained by taking over each marked abelian
variety A the Lagrangian subgroups of A[p]. Since W is unramified over the
contractible space S, it is in fact a union of copies of S. Our generic isogeny
Jac(C) - Jac(C)/K translates to the following data. The curve C lives over
an open subset of J1~1, hence of T. The subgroup K corresponds to a sheet
of WIT. Therefore our isogeny extends to the quotient map by the subgroup,
still denoted K, corresponding to the "same" sheet over all of S. Now recall
that S is the space of symmetric g x g complex matrices Q with positive
imaginary part, and the abelian variety over Q is Agz = C /(Z + Since

monodromy (i.e. r) acts transitively on the Lagrangian subgroups of AQ, we
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may take K = for convenience. Then ApQ = AsQ, with

If Jac(C)IK, with its principal polarization, were a jacobian, it would
follow that the Torelli locus T was invariant under the subgroup A of Sp(2g, R)
generated by r and by s. We claim that A is dense in Sp(2g, R). Indeed,
consider the subgroup N+ of Sp(2g, R) consisting of the matrices n(x) =

Ig x g x , where x runs over the real symmetric g x g matrices. Then
L gg
A contains s’n(x)s-’ = for all integral symmetric matrices x and
integers i. These are dense in N+, and A likewise contains a dense subgroup
of N- = tN+. It is well-known (and easy) that N+ and N- generate Sp(2g, R),
so A is indeed dense in Sp(2g, R).

Therefore, under our assumption, T would be dense in S (in the complex
topology), so that would be dense in A. This is a contradiction when

g &#x3E; 3, because for dimension reasons J4 is not dense in A even for the Zariski

topology then, and the theorem follows.
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