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Multiplier Algebras, Banach Bundles,
and One-Parameter Semigroups

WOJCIECH CHOJNACKI

Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)
Vol. XXVIII (1999), pp. 287-322

Abstract. Several results are proved concerning representations of multiplier al-
gebras that arise as extensions of representations of underlying Banach algebras.
These results are then used to rederive Kisynski’s generalisation of the Hille-
Yosida theorem and to establish two generalisations of the Trotter-Kato theorem,
one of which, involving Banach bundles, is abstract and the other is classical in
character.

Mathematics Subject Classification (1991): 46H15 (primary), 43A 10, 43A20,
47A 10, 47D06 (secondary).

1. - Introduction

Throughout the paper vector spaces are assumed to be over a fixed field F of
scalars, which is either the field R of real numbers or the field C of complex
numbers. The results will be valid for each particular choice of the ground
field F.

Let R+ be the set of all non-negative numbers and let Rj be the set of

all positive numbers. For each ), E R, denote by E~, the function

Given w E R+, let Lw (R+) be the space of equivalence classes (under equality
almost everywhere) of Lebesgue measurable functions f on R+ for which 
is Lebesgue integrable. With addition and scalar multiplication derived from
the pointwise addition and scalar multiplication of functions, and with the norm
given by
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(where the same symbol f is used to denote both a function and its equivalence
class), is a Banach space. With the convolution

as product, it becomes a Banach algebra; here we adopt the standard convention
according to which "almost all" with no further qualification is synonymous with
"almost all with respect to Lebesgue measure".

Let A be a Banach algebra. An indexed family of elements of A,
where U is a subset of F, is called a pseudo-resolvent in ,,4 if the following
Hilbert equation is satisfied:

Given w E R+ and a pseudo-resolvent r = in A, let

It is directly verified that, for any w E 11~+, pw == is pseudo-
resolvent in such that cpw = 1. The pseudo-resolvents pw play a
fundamental role in the following result of J. Kisynski [27] (see also [3], [5]):

THEOREM (Kisynski). Let A be a Banach algebra, let w E R+, let
r = be a pseudo-resolvent in A. Then the following conditions are
equivalent:
(i) cr  +00;

(ii) -~ A such 

rÀfor each À E ( w , +00).
Furthermore, if a continuous homomorphism ~: Lw (II~+) ~ A satisfying 
= E (w, +00) exists, then it is unique and = cr.

In [27] the above theorem is used to establish a generalisation of the
Hille-Yosida theorem on the generation of one-parameter semigroups of op-
erators and a generalisation of the Trotter-Kato theorem on the convergence
of sequences of one-parameter semigroups. Both these generalisations operate
with pseudo-resolvents rather than with resolvents of closed, densely-defined
operators. Pseudo-resolvents give rise, via Theorem 1.1, to representations of
Lw (I1~+), and these in turn engender semigroups. In the process an intimate
connection is revealed between semigroup theory and the representation theory
of Banach algebras.

The main purpose of the present paper is to investigate further this con-
nection. In [27] a one-parameter semigroup is developed from a continuous
representation of by differentiating, in the sense of the strong operator
topology, a certain integrated semigroup formed with the use of the represen-
tation, this semigroup being restricted to the space where the representation is
non-degenerate. Here we take a different approach: first, by invoking a general
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principle, the non-degenerate part of a continuous representation of is
extended to a continuous representation of the multiplier algebra of 
next, using the fact that the multiplier algebra of Lw (R+) is identifiable with a
convolution algebra of measures, an appropriate semigroup is obtained as part
of a canonical form for the extended representation obtained in the first step.
The latter technique of semigroup generation is analogous to a familiar method
of evolving a unitary representation of a locally compact group from a non-
degenerate Hilbert space *-representation of the corresponding group algebra
(cf. [37, Chap. 10.1 ]).

Use of representations of multiplier algebras arising as extensions of rep-
resentations of underlying Banach algebras, advocated in this paper, does not
lead to any new result in the case of the generalised Hille-Yosida theorem. The
situation is different, however, as far as the generalised Trotter-Kato theorem is
concerned. Consideration of extended Banach algebra representations acting on
special spaces, namely on spaces of cross-sections of some Banach bundles, per-
mits establishing a fairly general, abstract version of the Trotter-Kato theorem.
Applying this result to and certain Banach bundles leads immediately
to a generalisation of the Trotter-Kato theorem, not involving Banach bundles
explicitly, of which the classical statement of the Trotter-Kato theorem and that
due to Kisynski are special cases.

The approach taken here emphasises the presence of a bounded metric
approximate identity in the algebra Lw (R+). The abstract results underpinning
the use of representations of apply to any Banach algebra possessing
a bounded metric approximate identity. One implication of this is that once an
analogue of Theorem 1.1 is established in which Lw (R+) is replaced by another
Banach algebra with a bounded metric approximate identity and cr is replaced
by another entity characterising pseudo-resolvents, appropriate versions of the
Hille-Yosida and Trotter-Kato theorems can readily be obtained. Therefore not
only can our treatment serve to clarify the role of the algebra but it
can also play some role in developing new results.

The rest of the paper is organised as follows. Section 2 contains prereq-
uisites concerning multiplier algebras and representations, including a crucial
theorem on the extension of representations. Section 3 focuses on 

describing a characterisation of the multiplier algebra of Lw (I1~+) along with a
canonical form of the representations of this algebra derived from representa-
tions of L w 1 (R+). In Section 4 the material of Sections 2 and 3 is applied to
rederive Kisynski’s generalisation of the Hille-Yosida theorem. Section 5 dis-
cusses Banach bundles and establishes an abstract version of the Trotter-Kato
theorem. Finally, in Section 6 the main result of the previous section is used
to establish a theorem that simultaneously generalises the classical version and
Kisynski’s version of the Trotter-Kato theorem.
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2. - Multiplier algebras and representations

In this section, we review certain notions and results from the representation
theory of Banach algebras. After introducing preliminary material concerning
multiplier algebras and representations, we present a fundamental result con-
cerning the extension of representations of Banach algebras to representations
of the corresponding multiplier algebras.

2.1. - Multiplier algebras

Given vector spaces E and F, let L(E, F) be the space of all linear operators
from E into F. For topological vector spaces E and F, denote by F)
the space of all continuous linear operators from E into F. Occasionally, given
a vector space E and a complete locally convex topological vector space F,
we shall regard L(E, F) as being endowed with the strong operator topology,
under which L(E, F) is a complete locally convex topological vector space. For
normed spaces E and F, F) will always be viewed as a normed space,
equipped with the norm

When E is a normed space and F is a Banach space, £(E, F) is a Banach

space. If E = F, we abbreviate, as is customary, L(E, E) to L(E), and £(E, E)
to £(E) (in the latter case we tacitly assume that E is a topological vector
space). L(E) and are unital algebras, the identity operator idE on E being
the common identity of both algebras. When E is a Banach space, .C(E) is a
Banach algebra.

Let A be a Banach algebra. For each a E A, let La and Ra be the linear
maps in £(A) defined by

The map A 3 a 1--+ La E £(A) is called the left regular representation of A
and the map A D a 1--+ Ra E £(A) is called the right regular representation of
A. Denote by LA and RA the respective images of these maps. An operator
S E £(A) is said to be a left (right) multiplier, or left (right) centraliser, of A
if, for all a, b E A,

Equivalently, S E (A) is a left (right) multiplier of A if, for all a E A,

Denote by Mull (A) (Mul, (A)) the collection of all left (right) multipliers of A.
It is easily verified that Mull(A) and Mul,.(A) are unital Banach subalgebras of
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,C(A). These are called the left multiplier algebra of A and the right multiplier
algebra of A, respectively. From (2.1) it is clear that LA (RA) is a left
ideal of Mull (A) (MuIr (A) ). If A is commutative, then Mull (A) = Mulr (A) ;
accordingly, we can abbreviate Mull(A) and Mulr (A) to Mul(A), and call the
latter the multiplier algebra of A.

From this point on we shall consider "left-handed" objects only, leaving
the reader to make the minor modifications necessary in the alternative case.

A net in A, where A is a directed set, is a left (two-sided) approx-
imate identity for A if limaEA eaa = a (liM,,,A eaa = liIllaEA aea = a) for each
a E A. A left approximate identity is bounded if SUPaEA Ilea II  and is

metric if limaEA Ilea II = 1. Given a bounded left approximate identity 
let

We have the following elementary result:

PROPOSITION 2. l. Let A be a Banach algebra with a bounded left approximate
identity Then, for each S E Mull (A), there is an A-indexed net in

A, such that

and

PROOF. For each a E A, set aa = Sea. We check that the net has

the required properties. For each b E A,

and so (2.2) is established. Inequalities (2.3) are obvious. 0

The following is now immediate.

PROPOSITION 2.2. If A is a Banach algebra with a bounded left approximate
identity then Muh (A) coincides with the closure of LA in £(A) in the strong
operator topology. If in addition A is commutative, then so too is Mul(A).

2.2. - Representations of Banach algebras

Let A be a Banach algebra and let E be a Banach space. A homomorphism
from A into L(E) is called a representation of A on E. A representation is

continuous if it is continuous as a homomorphism of Banach algebras.
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Suppose that A has a bounded left approximate identity Let 0 be
a continuous representation of A on E. Define the regularity space 7Z~ of q5 to
be the closed linear span of a E A, x E E}. It is readily seen that

This equality can obviously serve as justification for the qualification "regularity
space". We say that 0 is non-degenerate if 7Zp is all of E. It is evident that

7Z,p is an invariant subspace for all the 0(a) (a E A). Restricting 
to Ro defines a representation of A on Ro which we term the non-degenerate
part of q5 and denote ~ [ 7Zp. Observe that the non-degenerate part of 0 fully
determines 0 itself. Indeed, for each a E A and each x E E,

If is a two-sided approximate identity for A, the above relation can be
rewritten in an even more suggestive form as follows:

Much of the subsequent development will rest on the following generali-
sation of the so-called factorisation theorem of P. J. Cohen [7], that was found
independently by E. Hewitt [20], P. C. Curtis, Jr. and A. Figá- Talamanca [8],
and S. L. Gulick, T. S. Liu and A. C. M. van Rooij [19]:

THEOREM 2. 3 (Hewitt et al. ) . Let A be a Banach algebra possessing a bounded
left approximate identity, let E be a Banach space, and let 0 be a continuous repre-
sentation of A on E. Then

An extensive literature is devoted to this and related theorems: relevant
references include [1], [2], [4, Chap. 1, Sec. 11, Corol. 11 ], [ 11 ], [16, Chap. V,
Sec. 9.2], [28], [31, Thm. 5.2.2], [32, Chap. 8], and [33], [34], [35], [38], [39],
[40], [41 ] .

2.3. - Extension of representations

A direct adaptation of a result of B. E. Johnson [25, Thm. 21] ] gives the
following:



293

THEOREM 2.4. Let A be a Banach algebra possessing a bounded left approxi-
mate identity, let E be a Banach space, and let 0 be a continuous representation of
A on E. Then there is a unique representation ~ of Mull (A) on 7Z~ such that

The mapping ~ : Mull (A) - is continuous under the strong operator topolo-
gies on Mull (A) and the topology on Mull (A) being the strong operator
topology of £(A) relativised to Mull (A). Furthermore, ø: Mulz(A) -* C (Ro) is
continuous in the norm topologies of Mull (A) andc and

PROOF. Use (2.5) to define a linear mapping ~ : LA ~ That the

definition is correct is seen as follows. Suppose that La = 0 for some a E A.
If x E then, by Theorem 2.3, there exist b E A and y E E such that

x = 0(b)y. Since ab = Lab = 0, we have q5(a)x = = 0, showing that
q5 is indeed well defined.

For x E R~ written as x = by, where b E A and y E E, and for a E A,
we have

This estimate implies immediately the continuity of ~ under the strong operator
topologies on LA and 

Endow the space with the strong operator topology. Since 7Z~ is

complete, so too is L(Rp). Now, in accordance with Proposition 2.2, LA is dense
in Mull (A) under the strong operator topology, so we can extend (p by continuity
to a mapping from Mull(A) into L (R~ ) . Denote the corresponding extension

again as ~. Clearly, q-5 is continuous under the strong operator topologies on
Mull(A) and 

We proceed to show that the range of $ is a subset of Given
S E Mull (A), select a net in A for which (2.2) and (2.3) hold. Then,
for each x E 7~,

and further

This estimate clearly implies that Ø(S) is a member of and
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Note that the last inequality shows that 0 is continuous in the norm topolo-
gies on Mull(A) and and that 114&#x3E;11 S Ko !!~~. In view of (2.5),

whence Thus (2.6) is established.

It is apparent that $ is linear. Applying (2.8) to x written as x = ~ (b) y,
where b E A and y E E, and taking into account that Sb = lilI1aEA aab and that
the mapping a H ~ (a ) y is continuous, we see that

or equivalently

Using the last equality repeatedly, we obtain, for any S, T E Mull (A) and any
bEA,

Bearing in mind that

we conclude = ~(S)~(T). Substituting idA for S in (2.10) and
again resorting to (2.11) yields ~(idA) = Thus ~ is a homomorphism of
unital algebras. 

°

It remains to prove that 0 is the only representation of Mub(A) on 7Zp
satisfying (2.5). Suppose that 1/1 is a representation of Mull(A) on 7zo such
that = 0(a)x for a E A and x E E. Let S E Mull (A) and let x E R*
be written as x = ~(~)y, where b E A and y E E. Taking into account (2.1),
we find that

whence

Combining this with (2.9), we obtain 1/1 = ~.
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3. - L ~ (Il~+), its multiplier algebra, and its extended representations

We wish to apply the material from the previous section to algebras of
the form This requires some preparation that we now undertake.

Throughout this section w will be a fixed non-negative number. We begin by
indicating a family of bounded metric approximate identities for Z~(R+). Next
we address the problem of characterising the multiplier algebra 
Finally/we determine a canonical form of the representations of 
arising as extensions of the non-degenerate parts of representations of 

3.1. - Some approximate units for 

For each À e (w, +00), set

PROPOSITION 3. l. For each w’ E (w, +o), is a bounded metric

approximate identity for Lw (R+).
PROOF. Fix w’ E (w, -f-oo). Direct verification shows that, for each k E

(w, +oo),

Hence, for each k E (w’, +00),

and

To complete the proof, it remains to show that

In view of ( 1.1 ), for each p E (w, +(0) and each ), E (w, +00) 

Hence, taking into account (3.2),

for all It E (w, and so (3.3) holds for f being a finite linear com-

bination of the e-, E (w, +(0)). A standard argument using, say, the

Stone-Weierstrass theorem shows that the set g E (w, is linearly
dense in Combining this with the fact that the net is

bounded, we conclude that (3.3) holds for all f E L w (11~+ ) . D
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3.2. - A characterisation 

Let ~(I1~+) be the a-algebra of Borel subsets of R+. For a non-negative
Borel function f on R+ and a non-negative Borel measure on R+, let f M be
the Borel measure on R+ given by

Let Mw (R+) be the collection of all Borel measures 11 on R+ for which I
is bounded, where 1111 denotes the total variation of ft. Given t E R+, denote
by 6t the Dirac measure concentrated at t. With set-wise linear operations, with
the convolution multiplication defined by

where = Is E = a - t for some a E A}, with 80 as an multiplicative
identity element, and with the norm given by

is a unital Banach algebra. The linear combinations of Dirac measures
on R+ form a subalgebra of Mw (II~+ ) that we denote by M:n (IR+).

For each f E let v f be the measure in defined as

The mapping f H v f is a Banach algebra isomorphism of onto the

algebra formed by all measures in that are absolutely continuous with
respect to Lebesgue measure. We identify with its image via f H vf.
Under this identification, becomes an ideal of Mw (R+) . If f E 
and It E Mw (R+), then f * p is a member of Lw (R+) determined by 
vf*JJ- and given by

Furthermore, s 11 f I Iwhich implies that, given It E 
setting

defines a multiplier of satisfying We shall soon see that

I = It is straightforwardly verified that the mapping 
JL 1--* 7~ e is a contractive homomorphism. In fact, more is true:
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THEOREM 3.2. The mapping T is an isometric homomorphism onto

This theorem is a natural adaptation of a result of J. G. Wendel [43] on
the form of the multiplier algebras of group algebras (see also [16, Chap. VIII,
Sec. 1.25] and [31, Sec. 1.9.13] for Wendel’s theorem and [10], [17], [18], [44]
for related results). Before giving the proof of Theorem 3.2, we make a few
remarks about notation.

For a vector space E, let E’ be the algebraic dual of E. Denote by
E x (x , x’ ) H (X, X’) E F the duality relation between E and E’. For a

topological vector space E, let E* represent the topological dual space of E.
Let be the space of all continuous functions f on R+ for

which e-wf is bounded, and let be the space of all continuous
functions f on R+ for which vanishes at infinity. Under the norm

1I/IIoo,-w = , Cb,-w(R+) and are Banach spaces.
Every function in Cb,-w(R+) is integrable with respect to every measure in,
Mw(R+), and setting 

~

defines a duality relation between and This duality can
be used to obtain the following characterisation of the topological dual of

Co, - w (~+ ) : The mapping that assigns to each measure p e the linear
functional f H (f, JL) e F is a linear isometry from 
onto M~(R+)*.

Let L° w (I1~+) be the space of all equivalence classes of essentially bounded
measurable functions f on I1~+ for which E_w f is bounded, equipped with the
norm = ess . Setting

defines a duality relation between L w (R+) and This duality permits
determining the topological dual of as follows: The mapping that

assigns to each k E the linear functional ( f, k) E IF
is a linear isometry from onto 

PROOF OF THEOREM 3.2. It suffices to show that each S E 
can be represented as T IL for some p E Mw(R+) satisfying II S II . Let

S E By Propositions 2.1 and 3.1, there exists a net 
such that
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where the limit is taken in the || "1, w norm, and

By the relative weak* compactness of bounded sets in there exists
a subnet and a measure p E Mw(R+) with such that

= (g, It) for each g E Co,-w(JR+). Fix f E and 1/1 E
Co,-w(R+) arbitrarily. Define a function h by

A standard argument shows that h is continuous and belongs to L w (II~+) . More-
over,

which shows that e-wh vanishes at infinity. Consequently,

Using Fubini’s theorem, one verifies at once that, for each f3 E B,

and

With these identities, (3.6) can rewritten as

But, in view of (3.5), we have

Therefore

Since 1/1 was an arbitrary member of we see that Sf = f * ,u, as
was to be proved. D
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Multipliers associated with Dirac measures have a particularly simple form.
For each t E R+, Tst is the forward shift operator by t, given by

where, as usual, the symbol 1 A denotes the characteristic function of the set A.
Clearly, = ewt holds for each t E R+, therefore

For any s, t e we have 3s * 8t = 8S+t, and so = T8s+t. From (3.8) we
conclude that the mapping t H T8t is continuous under the strong operator topol-
ogy on Thus is a strongly continuous one-parameter
semigroup on L£(R+).

3.3. - A canonical form of the extended representations of L~ (R+)

Representations arising as extensions of the non-degenerate
parts of representations of can always be expressed in a certain canon-
ical form. The theorem describing this form is an analogue of a theorem
describing the form of non-degenerate Hilbert space *-representations of group
algebras (cf. [37, Thm. 10. F]). The proof given below parallels Johnson’s proof
of the latter result (see [24, pp. 606-607]).

THEOREM 3.3. Let E be a Banach space, and let ~ be a continuous represen-
tation E. For each t e set

Then IS, hEJR+ is a strongly continuous one-parameter group on IZp such that

and, for each fL E and each x E IZO,

where the integral is to be interpreted as a Bochner integral.

PROOF. is a strongly continuous one-parameter semigroup on
so, by Theorem 2.4, is a strongly continuous one-parameter

semigroup on The estimate (3.11) follows immediately from (3.9).
For each x E Rp, the Rø-valued function t H Stx is continuous and hence

strongly |03BC|-measurable whatever A E Moreover, in view of (3.11),
the function t H is a member of Cb,-w(R+) and as such is III I-integrable.
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It follows that the function t « Stx is Ittl-integrable in the sense of Bochner.
In particular, the integral on the right-hand side of (3.12) is well defined.

Equation (3.12) is evident for measures in Let 

Cb,-w(R+)) be the coarsest locally convex topology on Mw(R+) for which all
the mappings /~ H ~ , f ( , f ’ E are continuous; clearly, a(Mw(R+),
Cb,-w(R+)) is generated by the family of seminorms

where f l , ... , fn E Cb,-w (II~+ ) and n E N. To prove (3.12) for arbitrary mea-
sures in let p E M w (R+) and suppose for a moment that there is a net
Ift-l-EA in converging to it in 
and such that converges to Tjl in the strong topology of 
Then, by Theorem 2.4, converges to 4)(Tjl) in the strong topology
of Given x E IZO and x* E the function t 1--* belongs to
Cb,-w(R+), and so

which immediately implies (3.12).
To end the proof, we need to establish the existence of the approximating net

Equip Mw (R+) with the coarsest locally convex topology T for which
all the mappings it H T, f ( f E L w (II~+ ) ) and J.L r-+ (g, p) (g E are

continuous; this topology is, of course, determined by the family of seminorms

where E L w (I~+ ), E Cb, -w (R+) and n E N. We have
to prove that Mfin(R+) is dense in Mw(R+) in the r-topology. By the Hahn-
Banach theorem, it suffices to show that any linear functional on Mw(R+) which
is continuous in the z-topology and vanishes on Mfin(R+) is null.

Let Z E be a linear functional continuous in the r-topology,
vanishing on The z-continuity of Z means that, for some n E ~,
there exist 1 in in Cb,-w(R+), and C E R+ such that,
for each v E Mw (R+),
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Let X = ~ L w (11~~. ) ~ n Endow X with the norm

where 1 and 1 are arbitrary sequences in and IF, respectively.
Let Xo be the subspace of X composed of the elements of the form

Define F E Xo’ by

It follows from (3.13) that F is well defined and that it is continuous in the
norm topology inherited from X. By the Hahn-Banach theorem, F can be
extended to a continuous linear functional F defined on the whole of X. It is
clear that F takes the form

for some 1 in and some 1 in IF. Hence, for each v E

Mw(R+)

In particular, taking into account (3.8), we find that, for each t E R+,

But Z vanishes on so

for all t E R+. Fix v E M w (1R+) arbitrarily. Integrating both sides of the last
equation with respect to v, we obtain

By Fubini’s theorem, for each i E f 1, ... , n },

Combining this relation with (3.14) and (3.15), we see that (v, Z) = 0, and
further, in view of the arbitrariness of v, that Z is null, as was to be proved. 0
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4. - Kisyriski’s generalisation of the Hille-Yosida theorem

In this section, we apply the results from the previous sections to rederive
Kisynski’s generalisation of the Hille-Yosida theorem (cf. [27]).

4.1. - The generalised Hille-Yosida theorem

Let E be a Banach space, let w E R+, and let R = be a

pseudo-resolvent in L(E) such that cR  +00. Define the regularity space of R
as

According to Theorem 1.1, there exists a unique bounded representation ~ of
on E such that R~, = for each À E (w, it will be termed

the representation associated with R. Keeping the e~, as in (3.1), we clearly
have hRx - for each h E (w, Since is a bounded

metric approximate identity for if only w’ &#x3E; w, it follows from (2.4)
and (4.1 ) that

In particular, RR is invariant for all ( f E (I~+) ), and any element
of 7ZR can be represented as 0(f)x for some f E and x E E.

We are now ready to state Kisynski’s result:

THEOREM 4.1 (Generalised Hille-Yosida Theorem). Let E be a Banach space,
let W E R+, let R = be a pseudo-resolvent in L(E) with CR  +00,
and let q5 be the representation of associated with R. Then there exists a

unique one-parameter semigroup {St on RR such that

The semigroup {St is strongly continuous and satisfies

and

PROOF. We first prove the existence statement. Extend 0 to a corresponding
representation ~ of on E. For each t E R+, let St E be
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given as in (3.10). From Theorem 3.3 and (4.2), we see that is a

strongly continuous semigroup on RR. By (2.5) and (2.10),

for each t E and each f E L w (II~+) . Now (2.6) together with the fact 
has a bounded metric approximate identity yields I = . Combining
this equality with I = CR (which is part of Theorem 1.1) and (3.11), we
obtain (4.5). 

°

If f E L w (R+), then

In particular, for each h E (w, +00),

But, by (3.12), for each x E R~,

Thus (4.4) is established.

Finally, the uniqueness of follows from (4.3) and the fact that

every member of ~ZR can be represented as 0(f)x for some f E and
somexEE. D

4.2. - A link with the classical Hille-Yosida theorem

The main, sufficiency part of the Hille-Yosida theorem, concerns the gener-
ation of a one-parameter semigroup of operators given a pseudo-resolvent whose
range space is dense in an ambient Banach space. As we shall see now, this

part of the Hille-Yosida theorem can easily be deduced from Theorem 4.1.
Let E be a Banach space, let w E and let R = be a

pseudo-resolvent in such that cR  +00. It immediately follows from
the Hilbert equation ( 1.1 ) that all the Rx (h E (w, +(0)) have a common null
space Ker R and a common range Im R . Another consequence of (1.1) is that
Im R C TZR . Since 7ZR is closed in E (being identified with 7Zp), the closure
of Im R in E, ImR, is contained in RR . On the other hand, (4.1 ) implies that
7ZR c ImR. Therefore

A quick glance at (4.1 ) reveals that
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We note also that if Ker R is null, then R is a resolvent of a closed operator
whose domain coincides with Im R.

To derive the sufficiency part of the classical Hille-Yosida theorem, suppose
that ImR = E. Then, by (4.6), RR = E, and further, by (4.7), Ker R is zero.

Consequently, R is a resolvent of a closed operator A whose domain coincides
with Im R. Resorting to Theorem 4.1, we conclude that there exists a strongly
continuous semigroup [Stlt,R+ on E satisfying (4.4) for all x E E and (4.5).
Note that (4.4) immediately implies that A is the (infinitesimal) generator of
the semigroup. Now the existence of a strongly continuous semigroup iStlt,R+
satisfying (4.4) and (4.5), and linked to R via A, is precisely what the sufficiency
part of the standard Hille-Yosida theorem asserts.

4.3. - Additional comments

Theorem 4.1 affirms the existence of a strongly continuous one-parameter
semigroup of operators on a closed subspace of a Banach space E, given a
pseudo-resolvent in ,C(E). This assertion is standard fare (cf. [9, Chap. XIII,
Sec. 1, Subsec. 4, Thm., p. 311] and [36, pp. 44 and 53]). It can easily be
derived from the classical Hille-Yosida theorem. A novel supplement to the
assertion, due to Kisynski, is the expression for the engendered semigroup in
terms of a representation of an appropriate space and the semigroup of
forward shifts in In view of this essential addition, Theorem 4.1 has
been termed by Kisynski the algebraic version of the Hille-Yosida theorem. One
consequence of this strengthened form of the Hille-Yosida theorem is a version
of Trotter-Kato theorem given below. Other consequences include: (i) a theorem
concerning the generation of a one-parameter semigroup, acting on the bidual
E** of a Banach space E, such that the semigroup trajectories passing through
elements of the *-weak sequential closure of E in E** are *-weakly Borel
measurable [26]; (ii) a result on the Favard classes of semigroups associated
with pseudo-resolvents [6].

5. - Banach bundles and an abstract Trotter-Kato theorem

The classical Trotter-Kato theorem operates with a sequence of possibly
distinct Banach spaces converging, in a certain sense, to a Banach space which
may be different from all the spaces forming the sequence. Converging se-

quences of Banach spaces are special instances of so-called continuous fields
of Banach spaces. The key concept for studying such fields is that of a Ba-

nach bundle. Objects of fundamental significance for representation theory are
various spaces of cross-sections of Banach bundles (cf. [13], [16]).

Here we first discuss Banach bundles, various spaces of cross-sections of
Banach bundles, and Banach algebra representations on both Banach bundles
and spaces of cross-sections. Following this, we establish a bundle-theoretic
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version of the Trotter-Kato theorem. When applied to suitably chosen Banach
bundles, this version will yield a generalisation of the classical Trotter-Kato
theorem.

5.1. - Basic definitions

Let B be a fixed topological Hausdorff space. A bundle over B is a triple
~ = (E, B, 7r), in which E is a Hausdorff topological space and 1T: E 2013~ B is
a continuous open surjection. E is said to be the bundle or total space of ~,
B the base space of ~, and 7r the bundle projection. For each b E B, (b),
also denoted Eb, is the fibre over b.

A cross-section of ~ is a function f: B - E such that f (b) E Eb for each
b E B. We say that f passes through x if x E f(B). If for each x E E there
exists a continuous cross-section of ~ passing through x, we say that ~ has
enough continuous cross-sections or is full.

A Banach bundle over B is a bundle (E, B, 1T) over B, together with
operations of addition and scalar multiplication, and norms making each fibre Eb
into a Banach space, and satisfying the following conditions:

(Al) the function E :3 E R+ is continuous;
(A2) the operation + is continuous as a function on ((x, y) E E 2 1 n (x) -

to E;
(A3) for each ~, E F, the mapping is continuous;
(A4) if b E B and is any net in E such that || xa || I --&#x3E; 0 and - b

in B, then Xa --~ Ob in E.

Here +,., and 11 . II are the operations of addition, scalar multiplication, and
norm in each fibre Eb, and Ob denotes the origin of Eb.

A related concept is that of a loose Banach bundle. A loose Banach bundle
differs from an ordinary Banach bundle in that it satisfies a less constraining
postulate than (Al), namely the condition that function E :3 x E R+ be
upper semi-continuous (that is to say, lb E B I I  31 should be open in B
for every 3 E Banach bundles and loose Banach bundles are also known as
Banach bundles in the sense of Fell and in the sense of Hofmann, respectively,
after J. M. G. Fell and K. H. Hofmann who introduced and extensively studied
the respective types of Banach bundle (see [14], [21], [22], [23]). In this paper,
no use of loose Banach bundles will be made.

For a detailed exposition of the theory of Banach bundles the reader is

referred to [16].

5.2. - A class of Banach bundles

It seems instructive to begin a discussion of Banach bundles with an ex-
ample. We shall construct a class of Banach bundles having enough continuous
cross-sections. Some members of this class will intervene in the derivation of a

generalisation of the Trotter-Kato theorem to be presented in the next section.
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EXAMPLE 5.1. Let E be a topological Hausdorff space. For each cr E E,
let Ea be a Banach space, and, for each pair (or, T) E  E2, let p~ be an operator
in E~ ) such that the following conditions hold:

(Bl) p03C303C3 = idEa for each cr E E ;
(B2) p§x [] = 0 for each pair (~, r) E ~2 and each x E Er ;
(B3) lima_r I = llxll I for each r E E and each x E E~ .

Here the norms involved are understood to be the norms associated with the

appropriate Banach spaces. Let E be the disjoint union UaEL and let
n: E -* E be the mapping defined by the requirement that x E for all
x E E. We shall convert E into a total space of a Banach bundle over E by
introducing on E a suitable topology.

For each x E E, let be the family of all subsets of E of the form

where U c E runs over all open neighbourhoods of and E runs over all

positive numbers. Let T be the family of all unions of elements of 
We claim that is a topology of E such that, for each x E E, ~(x) is a base
for T at x.

Indeed, in view of (B 1 ), if x E E, U c E is an open neighbour-
hood of 7r (x), and E E Rj, then X E B (x , U, e). Furthermore, if x E E
and B(x, U, E), B(x, V, 3) E then B(x, W, q) C B(x, U, E) n B(x, V, 8)
provided W c E is an open neighbourhood of with W c U n V,
and 17 E Rj satisfies 17  min(e, 8}. It remains to show that if x E E,
B(x, U, 6) E and y E B(x, U, E), then there exists B(y, V, 8) E ~(y) such
that B(y, V, 3) C B(x, U, E). Let x E E, B(x, U, E) E ~(x) and y E B(x, U, E).
Choose E’ E Rj so that

and set 6 = 2 (E - c’). By (B2) and (B3), there is an open neighbourhood
V C U of 7r(y) such that

and

showing that B(y, V, 8) C B(x, U, E). The claim is established.
It is easily seen that 7r is continuous and open with respect to ~, and

that all the postulates defining a Banach bundle are met. Thus (E, E, 7r) is a
Banach bundle over E. Hereafter it will be denoted q.
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A moment’s reflection reveals that a function f : X 2013~ E is a continuous
cross-section of 77 if f (o-) E Ea and lim,,, = 0 for all
Or It is easily seen that, for each x E E, the function px given by

is a continuous section of 1] passing through x. Therefore 17 has enough con-
tinuous cross-sections.

We remark that, in accordance with a fundamental result of A. Douady
and L. dal Soglio-Herault [12], any Banach bundle over a space that is either
locally compact or paracompact has enough continuous cross-sections.

5.3. - Bounded Banach bundle maps

Let § = (E, B, 7r) a Banach bundle over B. Given a subset M c B and
a cross-section f of ~, let

Abbreviate to II 1 II. Let r (~ ) be the set of all continuous cross-sections
of ~ . Evidently, r (~ ) is a vector space when addition and scalar multiplication
are carried out pointwise on B. The zero element of r (03BE ) is the zero cross-
section b « Ob. A cross-section f of 03BE is said to be bounded if 

+oo. Let rb (~ ) be the space of all bounded continuous cross-sections of ~ .
Clearly, f H I I f I I E R+ is a norm under which rb(~) is complete
(cf. [15, Chap. II, Sec. 13.13]). If for each x E E there exists a bounded
continuous cross-section of ~ passing through x, we say that ~ has enough
bounded continuous cross-sections.

PROPOSITION 5.2. If § = (E, B, 7r) is a full Banach bundle over a regular
topological space B, then ~ has enough bounded continuous cross-sections.

PROOF. Let ~ = (E, B, be a full Banach bundle over a regular topological
space B. Given x E E, let f be a continuous cross-section of ~ passing
through x. By the continuity of the norm, which is guaranteed by postulate (Al),
there is an open neighbourhood U C B of Jt(x) such that Ilfllu  +00. By
the regularity of B, there is a continuous function *: B --&#x3E;. [0, 1] such that

= 1 U) = It is now clear that is a bounded
continuous cross-section of ~ passing through x. D

A continuous mapping S: E --* E is a bounded Banach bundle map over B
if the following conditions are fulfilled:

(i) for each b E B, S(Eb) C Eb and the restriction Sb of S to Eb is a

continuous linear operator;
(ii) ] ] 
Let /~) be the set of all bounded Banach bundle maps over B. With addition,
multiplication, and scalar multiplication carried out pointwise on each fibre Eb,
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with the mapping b « Ob as the zero element (here Ob denotes the zero operator
in £(Eb)), and with the norm £(~) :3 [[ I E R+, £(~) is a Banach algebra.

Bounded Banach bundle maps are most often constructed by applying the
following simple result (cf. [16, Chap. II, Sec. 13.16]):

PROPOSITION 5. 3. Let ~ _ (E, B, 7r) be a Banach bundle over B. Let B :3 b «
Sb E £(Eb) be a mapping satisfying the following conditions:

(i) SUPbEB II Sb ~~ I  + 00;

(ii) there exists a set T C r (~ ) such that:

(a) for each b E B, { f (b) ~ f E Fl has a dense linear span in Eb;
(b) for each f E .~’, the mapping b 1--+ Sb , f ’ (b) is a continuous cross-section

of ~ .
Then the mapping S: E - E defined by

is a bounded Banach bundle map over B and IISII - supbEB -

Let S E £(~). Since S 0 f E rb (~ ) whenever f E rb (~ ), setting

defines a linear operator S* in ,C ( rb (~ ) ) . IISII. 

PROPOSITION 5.4. If § = (E, B, 7r) is a full Banach bundle over a regular
topological space B, then ~~ S* ~~ I = II S II for all S E ,C(~).

PROOF. Let ~ = (E, be a full Banach bundle over a regular topological
space B and let S E /~(~). We have to show that, for each b E B,

Fixing b E B arbitrarily, let x E Eb. By Proposition 5.2, there is a bounded
continuous cross-section f passing through x. By the continuity of the norm
ensured by (A 1 ), for each c E Rj there is an open neighbourhood U C B of
x such that I I x I I I  e. By the regularity of B, there is a continuous

[0, 1] ] such = 1 and * (B B U ) = {0}. Clearly,
1/1 f is a bounded continuous cross-section of ~ passing through x, and

The arbitrariness of c implies that , which in turn estab-
lishes (5.2). 0
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5.4. - Banach sub-bundles

Given two Banach bundles § = (E, B, Jr) and ~ =~(F, B, or) over B, ~ is
said to be a Banach sub-bundle of if the following conditions hold:

(i) Fb C Eb for each b E B (so that F C E);
F, where n í F denotes the restriction of 7r to F;

(iii) F has the relativised topology of E.

Let ~ = (E, B, 7r) be a Banach bundle over B, and, for each b E B,
let Fb be a closed linear subspace of the fibre Eb. Let F = UbEB Fb carry the
relativised topology of E. Then ~ = (F, B, Tl F) satisfies all the postulates
defining a Banach bundle except possibly the condition that 7r í F be open. If

7r F is open, then ~ is a Banach bundle over B and also a Banach sub-bundle

of ~ .
The following result often proves useful in establishing the openness of

7T F :

PROPOSITION 5.5. be a subset of r (~ ) such that:

(a) f (b) E Fb for each f E F and each b E B;
(b) { f (b) : f E Tl is norm dense in Fb for each b E B.

F is open.

PROOF. Let U be an open subset of F. It suffices to show that, for each
x E U, there exists an open neighbourhood V C B of Jt(x) such that 7r(U) D V.
Fix x E U arbitrarily. Since If (7r(x)) I f E .F} is dense in F,(x) and the
topology of E relativised to coincides with the norm topology of E,(x),
there exists f E .F such that E U. By the continuity of f, there
exists an open neighbourhood V C B of 7r (x) such that f (V) C U . Since

7r (f (V)) = V, we have V c and so V turns out to be the desired

neighbourhood. D

5.5. - Representations on Banach bundles and on spaces of cross-sections

Let A be a Banach algebra and let ) = (E, B, 7r) be a Banach bundle
over B. A bounded representation of A on ~ is a mapping 0: A ---&#x3E;. £(~) satisfying
the following conditions:

(i) for each b E B, the mapping Ob defined by

is a bounded representation of A on Eb;
(ii) ((§5b ))  

Any bounded representation ~ of A on 03BE gives rise to a bounded representa-
tion ~* of A on rb (~ ) defined by

Clearly, the inequality holds. The following result can be immedi-
ately deduced from Proposition 5.4:
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PROPOSITION 5.6. If ~ - (E, B,1T) is a full Banach bundle over a regular
topological space B, then II = 11011 for any bounded representation 0 of a
Banach algebra on ~.

Suppose now that A is a Banach algebra with a left bounded approximate
identity. Let ~ = (E, B, 7r) be a Banach bundle over B, and let 0 be a bounded
representation of A on ~ . Let S = UbE B RØb carry the relativised topology of E.
When 1T S is open, S is a total space of a Banach bundle (S, B, 1T over B,
which we shall denote ~0-

In many cases arising in applications, 1T S is open because of the following
result:

PROPOSITION 5.7. If ~ has enough bounded continuous cross-sections, then
1T S is open.

PROOF. Let

It suffices to show that X satisfies conditions (a) and (b) from Proposition 5.5.
Clearly, if f E X, then f (b) E RØb for all b E B, so (a) is satisfied.
Let x E Rø7r(x) and let f be a bounded continuous cross-section passing

through x. For each a E A, 0,, (e,,,) f is a member of .~’ and, moreover,
= x. Therefore (b) is satisfied too. D

Let the notation rb (~,p) apply irrespectively of whether or not 1f r S is

open. Set
for all

When 7r I S is open is a genuine Banach bundle, the new definition
coincides with the old one.

The study of will occupy us for the rest of this subsection.

THEOREM 5.8. With A, ~, and 0 as above, we have

and, for each S E Mull (A), each f E and each b E B,

PROOF. Inclusion (5.3) is obvious.
To prove (5.4), fix f E Rø* and b E B arbitrarily. First take La with

a E A as S. Since $*(La) = and likewise ~b (La ) = LØb(a), we have

Next consider an arbitrary S E Mull (A). Let be a net in A such
that converges to S in the strong operator topology of Mull (A).
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- - -

Theorem 2.4 ensures that * (S) f - limaEA and $b(S) f(b) =
liIIlaEA Øb(Laa)f(b). Now, using (5.4) in the special case just considered and
taking into account the continuity of the mapping r~) 3 ~ ~ g (b) E E, we
conclude that

Thus (5.4) is proved in full generality. D

The following example shows that inclusion (5.3) can be proper.
EXAMPLE 5.9. Equip N and C with their usual topologies. Let E =

N x C, and let 111 and 7r2 be the canonical projections from E onto N and C,
respectively. Clearly, ~ = (E, N, Jrl) is a Banach bundle over N with constant
fibre C. Any cross-section f of E is automatically continuous and can be
written as

Let l°° be the space of all bounded complex-valued sequences, and let co be
the space of all complex-valued sequences converging to zero. It is plain that

Let L 1 (T) be the algebra of all (classes of) Lebesgue integrable functions on
the circle group with convolution as product. For each
n E N, define a representation On of L 1 (T) on C by

where is the nth Fourier coefficient of a given by

It is clear that II Øn II I s 1 for all n E N. Given a ELI (1r), define a mapping
0 (a): ~ -+ ~ by

Applying Proposition 5.3 with X equal to rb(~), we find that each q5(a) is
a Banach bundle map over N. Thus the mapping q5: a H q5(a) is a bounded

representation of Z~(T) on ~ . It induces a bounded representation ø* of L 1 (1r)
on rb (~ ) . A moment’s consideration reveals that
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We next show that the converse inclusion

also holds true. Let M(T) be the algebra of all bounded Borel measures on T
with convolution as multiplication. For each A E M (1r), let T, be the operator
in /:(Z~(T)) given by

By Wendel’s theorem mentioned earlier, coincides with the set

I JL E It is easily verified that, for each n E N and each t E lP,

whence

Now, by the analogue of Theorem 3.3 for the algebra (see [24, pp. 606-
607]), the mapping t « Ø*(T8t) is a strongly continuous representation of 1r on
R~* , and so, if f E 7~~, then

This together with (5.8) yields

In particular

But, if n = m, then 1 ~ = 2, and so 7r2 o f E Co, proving (5.7).
In view of (5.6) and (5.7),

Comparing this equality with (5.5), we see that in the present setting contain-
ment (5.3) is proper.

With future applications in mind, we now indicate one instance when in-
clusion (5.3) becomes equality. To this end, we first prepare the following:
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PROPOSITION 5.10. Let be a subnet of the approximate identity 
of A and be an I -indexed net in E converging to an element x -

Then

PROOF. Fix E E Rj arbitrarily. Since x E Røn(x)’ it follows from (2.4) that
there exists a E A such that

Since the mapping E :3 y 1--+ o(a)y E E is continuous, it follows from (A2)
and (A3) that also the mapping E :3 y 1--+ y E E is continuous. In
view of (5.9) and (Al), there exists c 1 such that, for each t with i 1 « 1,

Hence, for each t with ll I « 1,

where, of course, K = SUP,,,A II ea II . Let l2 be such that, for each t with 12 « 1,

In view of (Al), there exists t3 such that, for each t with t3 « 1,

Let t4 be a common successor of t2 and t3. Clearly, if t is such that ~4 ~ ~
then

Let t5 be a common successor of c 1 and t4- Combining (5.10), (5.11) and (5.12),
we see that, for each t with t5 « 1,

whence the result.
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THEOREM 5.11. If B is compact, then

PROOF. In view of Theorem 5.8, we need only to show that rb(§~5) C 7B~.
Suppose on the contrary that there is f E rb(§~5) ) R~S~. Then there exists a

positive number e, a subset A’ C A cofinal in A, and a net in B such
that

for each a e A’. Since B is compact, the net has a subnet converging
to a point b E B. More specifically, there exists a directed set I and a mapping
k : I --~ A’ such that k is non-decreasing (i. e. c 1 - 12 implies - ~(~2)).
k(I) is cofinal in A’, and the net converges to b. For each c E 1, put
XL = = f (b), and e, = Since f is continuous, [XIIIEI converges
to x. Moreover, by (5.14), we have II ~ (e~ )x~ - &#x3E; E for each t E I. But this
is impossible in view of Proposition 5.10. The result follows. 0

5.6. - An abstract Trotter-Kato theorem

Let ~ = be a Banach bundle over B. A family of
continuous cross-sections of ~ is termed admissible if the following condition is
satisfied: for every x E E and every e E Rj there exists an open neighbourhood
V C B of 7r(x) and a positive number 8 such that if y E E¡r(x) satisfies

I I x - y I I  s ~ then I I px - py I I v  e. Note that any Banach bundle with an
admissible family of cross-sections is full.

EXAMPLE 5.12. Let E be a locally compact space, and left 17 = (E, E,.7r) be
the Banach bundle over E from the class constructed in Example 5.1. For each
x E E, let px be the continuous cross-section of 17 given by (5.1 ). We contend
that the family is admissible. Indeed, for each x E E, the function
a « I is continuous and hence bounded on every compact subset of E .
In particular, for every or E b and every open relatively compact neighbourhood
V c E of 03C3, we have SUPTEV  +00 whatever x E Ea. By the
Banach-Steinhaus theorem, := SUPIEV ]]pq]] is finite. Accordingly, for

every E E Rj, every and every relatively compact open neighbourhood
V C E if we let 8 then, for all x, y E Ea with y I I  8,

This establishes the contention.

PROPOSITION 5.13. Let $ = (E, B, 7r) be a Banach bundle, and let 
be an admissible family of continuous cross-sections of ç. Then, for each compact
subset JC of rb (~ ) and each b E B,
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PROOF. If f E r (~ ), then

and so

Fix 6 E Rj arbitrarily. Let f E IC. In view of (5.16), there exists an open
neighbourhood U C B of b such that

Since is admissible, there exists an open neighbourhood V C B of b
and a positive number 8 such that if y E Eb satisfies II f (b) - y II I  8, then

 E/3. Let 17 = E/3), and let

Clearly, U (f ) is an open neighbourhood of f in K. If g E U (f ), then 
g(b)11  17  8, and so  E/3. Thus, letting W = U n V, we
have

Since /C is compact, we can cover K with a finite number of the U(f), say
U ( f 1 ) , ... , U ( fk ) . For each i E { 1, ... , k }, let Wi be an open neighbourhood
of b such that

for all g c Let Z = n7=I Obviously,

for all g E IC, which completes the proof. 0

We are now in a position to state the main result of this section.

THEOREM 5.14 (Abstract Trotter-Kato Theorem). Let A be a Banach algebra
with a left bounded approximate identity, let ~ = (E, B, n) be a Banach bundle,
and let { px be an admissible family of continuous cross-sections of ~. Then, for
each f E rb (~ ), each subset S C Mull (A) that is compact in the strong operator
topology, and each b E B,
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PROOF. Endow lVtull (A) with the strong operator topology. Let f E rb (~~ ),
let S be a compact subset Muh (A), and let c E B. According to Theorem 2.4,
the mapping Mull(A) 3 S H 4&#x3E;*(5)/ E rb(§~5) is continuous. Therefore q5,, (S) f
is compact.

In view of Proposition 5.13,

Now, to complete the proof, it suffices to note that, in view of Theorem 5.8,

for each S E S and each d E B . 0

6. - A generalisation of the Trotter-Kato theorem

In this section, we establish a result that generalises simultaneously the
classical version and Kisynski’s version of the Trotter-Kato theorem. While this
generalisation will draw on the abstract Trotter-Kato theorem from the foregoing
section, it will be formulated in a bundle-free way.

6.1. - Classical and bundle-theoretic set-ups

We start by describing the set-up within which the Trotter-Kato theorem
was originally developed. This set-up was first adopted by H. P. Trotter [42]
and was later exploited by T. G. Kurtz [29], [30] and other authors.

Let fool be a singleton set disjoint from N, and let N = N U { oo } . An

approximation system is a pair of sequences where, for each
n E N, En is a Banach space, and, for each n E N, Pn is an operator in

En ) such that

The norms involved here are, of course, the norms associated with the appro-
priate Banach spaces. The spaces En (n E N) can be viewed as successive
approximations of the space Eoo. The approximation process is then governed
by the operators Pn (n e N). Note that, in view of the Banach-Steinhaus

theorem, condition (6.1) entails the finiteness of sUPnEN II Pn II . We say that a
sequence E IlnEN En converges to x E Eoo and write x = Xn if
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Denote by the space of convergent sequences in TInEN En appended
by their respective limits; that is,

Equipped with the norm = sup,,,, lix, 11, is a Banach

space.
We now reformulate the above definitions in the language of Banach bun-

dles. We first note that N can be converted into a compact space by enriching
it with the topology uniquely determined by the following conditions: 1 ° all

singleton sets contained in N are open; 2° the subsets of N whose complements
are finite subsets of N form a neighbourhood basis of oo. From now on we

shall assume that N is endowed with this topology. When N is equipped with
the discrete topology making it a locally compact space, N is the Alexandroff
(one-point) compactification of N.

Let be an approximation system. For each pair (m, n) E

N , define an operator pn in En ) by

A straightforward verification shows that the family satisfies con-
n (m,n)EN

ditions (B1-B3) from Example 5.1, the fulfillment of condition (B3) being a
consequence of (6.1). As shown in Example 5.1, associated with ipml n -2 is(m,n)EN-2

a Banach bundle q = (E, N, 7r) over N. The compactness of the base N implies
that every continuous cross-section of q is bounded. In view of the characteri-
sation of continuous cross-sections of q given in Example 5.1, any continuous
cross-sections of il can be identified with a sequence in and vice

versa. It is also immediately seen that the norms of rb(q) and 
coincide, and so the Banach spaces rb(i7) and are isometric. From

now on we shall simply identify rb(r¡) with 

6.2. - Representations on 

Throughout the rest of the paper will be a fixed ap-

proximation system.
Let A be a Banach algebra with a left bounded approximate identity. Sup-

pose that, for each n E N, On is a continuous representation of A on En such
that the following conditions are satisfied:

(i) := SUPnew ||~n||   
(ii) 0,,, (a) x = for each a E A and each x E Eoo.
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Given a E A and x E 17, set

We claim that, for each a e A, $(a): q -* 1] is a bounded Banach bundle map
over N. To establish the claim, we apply Proposition 5.3 taking for ~" the set

e E }, where the px are given by (5.1 ). All that we need to check is
that is in for every x e E. Note that, given x e E,
if 1l’ (x) e N, then 

,. r / "·r i v

and if 7r (x) = oo, then

Thus, if Jt (x) e N, then ~n (a) px (n) = 0 for all n and so 
is in and if 7r (x) = 00, then the sequence converges
to 0,,,,(a)x, and so again is in as was to be verified.

It is clear that the mapping ~: a « 0(a) is a bounded representation of A
on 1}. In view of the identification of with the corresponding
representation 4&#x3E;* can be written as

for all a E A and all E Since q is full and N is compact,
it follows from Proposition 5.6 that

Another consequence of 77 being full and N being compact is, in view of

Proposition 5.2, that 17 has enough bounded continuous sections. Furthermore,
by Proposition 5.7, qp. is a genuine Banach bundle and a sub-bundle of 77.

Finally, Theorem 5.11 guarantees that = or equivalently

6.3. - A generalised Trotter-Kato theorem

Suppose that, for each n E N, Rn = is a pseudo-resolvent
in such that the following conditions are fulfilled:

(Rl) CR := +00;
(R2) for each ~. E (w, +oo) and each x E Eoo. the sequence is

convergent.
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For each ~, E (w, and each x E Eoo. set

It is easily verified that R. = is a pseudo-resolvent in 
with C Roo :::: CR . 

_

In view of Theorem 1.1, corresponding to each Rn (n E N) there is a

continuous representation On of such that = On for all k E
(w, +(0) and = CR,,- · Continuing to denote by II ø II, we
clearly have

Now (6.5) can be rewritten as

for all X E Eoo and all h E (w, +(0). Since, on account of (6.6), the mappings
0, (n E N) are equibounded and the set E (w, +cxJ)) is linearly dense
in (R+), the last equality extends to

for all x e Eoo and all f e L w (Il~+) .
Applying the material from the previous subsection, we can now construct

a bounded representation ~: f H ~(/) of and can subsequently
form the associated bounded representation ø* of on defined

by

for all f E and all E In view of (6.3) and (6.6),
we have = Taking into account (6.4) and the fact that izo"
for each n E N, we can represent as

In accordance with Theorem 4.1, corresponding to each ~n (n E N) there
is a strongly continuous semigroup on RRn enjoying the following
properties:

Recall that St,n = (Pn (T8t) for each n E N and each t E R+. As we already
know, the mapping t H T8t is continuous under the strong operator topology on
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Therefore, for each í E R+, I Ts,: s E [0, -r ] I is a compact subset
of From Example 5.12 we know that is an admissible

family of cross-sections of q. Combining these observations with Theorem 5.14,
we finally conclude that, for each 7ZO. and each r E R+,

We have thus proved the following result:

THEOREM 6.1 (Generalised Trotter-Kato Theorem). Let 
be an approximation system. Suppose that, for each n E N, Rn = 
is a pseudo-resolvent in £(En) such that conditions (R 1 ) and (R2) hold. Let RÀ,oo
be a pseudo-resolvent in C(E,,,,,) defined by (6.5). For each n E 1N, let q5n be the
representation (R+) associated with and let be the semigroup
associated with On . Then, for each t E R+ and each E where is
as in (6.7),

We bring the paper to an end by pointing out the relation between The-
orem 6.1 and the classical version and Kisynski’s version of the Trotter-Kato
theorem. The classical statement is a special instance of Theorem 6.1 concern-
ing the case in which, for each n E N, the pseudo-resolvent Rn has a dense
image in the respective Banach space En, and hence is a resolvent of the gen-
erator of (recall the discussion following the proof of Theorem 4.1).
Kisynski’s result is in turn a special instance of Theorem 6.1 treating the case
in which all the spaces En (n E N) coincide.
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