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Asymptotic Behaviour of the Porous Media
Equation in an Exterior Domain

FERNANDO QUIRÓS - JUAN LUIS VAZQUEZ

Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)
Vol. XXVIII (1999), pp. 183-227

Abstract. We study the asymptotic behaviour of weak solutions u (x, t) to the
porous media equation in exterior domains with nontrivial boundary data which
are constant in time. We prove that, when the space dimension is greater than
one, this behaviour is given in the interior of the positivity set by a function, P (x),
which has the same value as u in the fixed boundary and such that its m -th power,
P’ (x), is harmonic in the exterior domain. We also prove that near the free
boundary the asymptotic behaviour is given by a radial, self-similar solution of
the porous media equation which is singular at the origin for all times. There is
a whole family of such singular self-similar solutions. The precise one giving the
asymptotic behaviour is determined through a process of matched asymptotics.
We also show that the free boundary approaches a sphere as t ~ oo, and give
the asymptotic growth rate for the radius. While it is well-known that for n = 1the interface location is given by the classical 1 /2-law, Ix (t) [ -- C t  / , this is no
more true for n &#x3E; 1: we prove that in dimensions &#x3E; 3 x (t ) |~ 
and for n = 2.
The self-similar solutions giving the asymptotic behaviour close to the free bound-
ary are a particular instance of a larger class of compactly supported, singular,
self-similar solutions of the porous media equation. We study such solutions and
classify them in terms of their singular behaviour at the origin. Finally, we show
that as m - oo there is convergence to the Hele-Shaw and Stefan values.

Mathematics Subject Classification (1991): 35B40 (primary), 35R35, 76S05,
35K65 (secondary).

1. - Introduction

The aim of this paper is to study the large-time behaviour of the solution
to the initial-and-boundary-value problem for the porous media equation in an
exterior domain. More precisely, we consider the problem

Pervenuto alla Redazione il 30 maggio 1998 e in forma definitiva il 29 marzo 1999.
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where m &#x3E; 1 and S2 is the complement of a compact set with smooth boundary.
The initial data u(x, 0) = uo(x) are assumed to be measurable, bounded, non-
negative and compactly supported in Q, the closure of S2. It is well known that
for any m &#x3E; 1 equation (1.1) has the finite propagation property (more precisely,
finite speed of propagation of disturbances with respect to the zero level), so
that the support of the solution u(., t) at time t &#x3E; 0 is also bounded and an

interface or free boundary appears to separate the regions {u &#x3E; 01 (positivity
set) and { u = 0} (zero-level set), cf. [Ar]. More important for the problem at
hand is the specification of the boundary data. We consider Dirichlet data g(x)
which are assumed to be continuous, non-negative, non-trivial (g (x ) ~ 0) and
constant in time. We can also solve the problem with variable boundary data
1/1 (x, t) &#x3E; 0 which converge as t ~ oo to a constant state, g (x ) ~ 0, without
changing the asymptotic results.

The porous media equation,(PME for short) arises in a number of physical
applications. Thus, the present problem can be used to describe the infiltration
of water from a cylindrical reservoir into a surrounding porous medium. After
the usual approximations, cf. [Be], [G4], the height of the saturated zone z =
u (x, y, t) obeys Boussinesq’s equation, which is ( 1.1 ) with m = 2 in space
dimension n = 2. We can also consider in three dimensions the laminar flow

of a gas through a porous medium that surrounds a body. Then the density
obeys equation (1.1) with different m &#x3E; 2 depending on the law of state, [M].
In our work we consider arbitrary exponents m &#x3E; 1 and dimensions n &#x3E; 1 and

omit the usual assumption of radial symmetry on the domain and solutions.
Problem ( 1.1 )-( 1.3) is well understood in one space dimension, where it

reduces to the evolution of the PME posed in the half line Q = {x &#x3E; 0} with
constant and positive boundary data at x = 0 and initial data uo(x) as prescribed
above. As t ~ oo the solution of this problem converges to a stationary state in
the standard a phenomenon that also happens for the heat equation
and the Stefan problem (the scale is the same but the profiles are different, of
course). The main results are as follows:

(i) For every constant A &#x3E; 0 there exists a unique solution of the problem with
boundary data u (0, t) = A and initial data u (x, 0) = 0. This solution takes the
form

Proofs of the result are due to Barenblatt [Ba] and Atkinson and Peletier [AtP].
Early analysis of such a solution goes back to Polubarinova-Kochina [PK].
(ii) Convergence result for general solutions: for every solution u (x , t ) of prob-
lem ( 1.1 )-( 1.3 ) with boundary data A &#x3E; 0 and continuous, nonnegative and
compactly supported initial function uo(x), Peletier [P] proved that as t -~ o

(1.5) u(y tI/2, t) --~ f (y) uniformly in y E [0, 00).
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Outline of results. We describe here the asymptotic behaviour of the solu-
tions of problem ( 1.1 )-( 1.3) in several dimensions n &#x3E; 1, which is quite different
from the case n = 1. Indeed, the is not correct. Moreover, for
general non-symmetric data there is no self-similar solution which explains si-

multaneously the large-time behaviour of the solution and the interface of our
problem. The actual behaviour can be described using the idea of matched
asymptotic expansions. The positivity set 0 (t) = {x : u (x, t) &#x3E; 01 expands to
cover any compact subset of Q in a finite time, and we prove that in the usual
(x, t) coordinates the solution stabilizes to P (x ), where Q(x) = is the
solution of the exterior Dirichlet problem for the Laplacian with boundary data
gm . This is what we call the near-field or inner limit.

THREE OR MORE DIMENSIONS. In order to study what we call the far-field
limit we introduce in dimensions n &#x3E; 3 a scaling of the form

and prove that the scaled solution, v (y, t), converges as t - oo to a radially
symmetric and self-similar solution of the porous media equation, which turns
out to be singular at x = 0, cf. Theorem 7.1. This expansion, the far-field
or outer limit, is valid close to the free boundary, in the far-field region. The
singular self-similar solution is completely determined up to a constant, and this
free constant is adjusted through suitable matching with the solution P which
gives the behaviour in the interior of the positivity set. Observe that the scaling
exponents in (1.6) cannot be extrapolated to n = 1, since they do not agree
with (1.4).

The free boundary is one of the main features of the solution of problem
( 1.1 )-( 1.3). In the applications mentioned above it denotes the boundary of the
infiltrated region or the boundary of the gas domain. Our analysis gives the
asymptotic position of the free boundary as

where we use the notation a (t ) ^~ bet) to mean --~ 1 as t -~ oo and
C = C (g, Q) is given in Theorem 7.2. We remark that C is independent of the
initial data. We observe in particular a symmetrization effect for large times in
the support of the solution and also in the solution profile far away from the
fixed boundary. In the physical dimension n = 3 we get an interface exponent

1), which becomes 2/5 for m = 2. In all cases the exponent is less
than 1/2, the one-dimensional exponent. Let us also inform the reader that the
overlapping of both expansions happens in a wide region of the form

In fact, the self-similar solution which gives the outer expansion is a solution
of equation (1.1) with variable boundary data on 8 Q that converge to a constant



186

when the hole is circular. Hence, in this case and if the boundary data g(x)
are constant, the outer expansion is a global expansion.

DIMENSION TWO. This case offers some special features which make it
more interesting and mathematically difficult. In fact, it is the border line case
between the types of results described above for n = 1 and n &#x3E; 3. The previous
approach does not apply directly and has to be suitably corrected. This happens
because the inner analysis predicts a constant behaviour for u for I » 1 as

t --~ oo and there is no self-similar solution which adapts to this behaviour; the
closest self-similar solution has logarithmic growth in the near-field limit. It

happens to be the good candidate and, as is usual in critical cases, logarithmic
factors are needed to produce the desired matching. The result is that u behaves
in the outer limit like

for a certain profile U which is nonnegative, decreasing and compactly sup-
ported. The free boundary moves then like

where C = C(g, Q) is given in Theorem 8.5.

PRECEDENTS. HELE-SHAW PROBLEM. Previous work on the asymptotic prob-
lem is due to Okrasinski and Goncerzewicz who obtained estimates on the

growth of the interface by the method of subsolutions. Thus, for n &#x3E; 2 the ar-
ticle [GO] shows a bound of the form C In view of (1.7) this rate is
not exact. For n = 2 Okrasinski [0] shows the estimate 10glx(t)11"..I ( 1 /2) log t,
a weak version of (1.9).

We establish the exact asymptotic rates by means of matched asymptotics,
following the recent study of the large-time behaviour of the Hele-Shaw and
Stefan problems in exterior domains done by the authors in [QV]. Indeed, the
similarity goes beyond the technical approach. We prove that our problem
converges to the Hele-Shaw problem as m --~ oo, and in particular the free
boundary estimates (1.7) and (1.9) become in the limit for

n &#x3E; 3, (t / log t) 1~2 for n = 2, which agree with the results of [QV].
Let us remark that a complete rigorous justification of the asymptotic expansions
is provided in the paper.

STUDY OF SIMILARITY. Let us now take a closer look at the self-similar
solutions used in the asymptotic description, because the study of self-similarity
has an independent interest. The existence and properties of radially symmetric
and self-similar solutions of the PME of the form

is a widely researched subject. The main point is that there exists a way, or
better several ways, of transforming the problem into a phase-plane analysis, cf.
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[Ba], [J], [LOT], [AG]. For another approach see [AtP], [GPI,2], [Gi]. Solutions
in these papers are nonnegative; solutions with sign changes appear in [H],
[BHV] and [HV]. There are two typical ways in the literature for reducing
the study of self-similar solutions of the PME to a phase-plane analysis. We
present here an analysis based on the simultaneous use of both of them, and we
contend that this results in a clearer understanding of the construction. Most
of the solutions studied and then used in different contexts have nonsingular
profiles, i.e., U is a continuous function. In our case however the compactly
supported, singular, self-similar solutions which give the outer expansion of the
asymptotic behaviour (after a logarithmic correction if n = 2) have the form
(1.10) with f3 having the precise value

which becomes 1/2 for n = 2 or as m - 1. These solutions have a singularity
at the origin that does not depend on t,

They are a particular instance of a larger class of compactly supported, singular,
self-similar solutions of the form (1.10). We also investigate the existence of
such solutions for f3 ~ /30 and show that they exist for all f3 &#x3E; f3o/m. The
behaviour at the origin of these solutions is given by

This confirms that the singularity at the origin is independent of t if and only
if f3 = f3o. We remark that the limit value 0 = /3o/m corresponds to the well-
known Barenblatt solutions, which are not singular at x = 0 for t &#x3E; 0. As

precedents, let us mention that examples of self-similar solutions of the porous
media equation with a standing singularity at x = 0 are mentioned in [HV].
In [VV] a classification is proposed for the solutions of nonlinear parabolic
equations which appear as limits of fundamental solutions. Solutions with a

standing singularity appear then as one of the four possible types; they are

called razor blades, because of their shape in the (x, t, u) representation.
ORGANIZATION OF THE PAPER. After giving some preliminary results in

Section 2, we study the near-field limit in Section 3. Next we construct in
Section 4 the family of self-similar solutions giving the asymptotic behaviour
in the region close to the free boundary in the case n &#x3E; 3. The bidimensional
case is postponed to Section 5. In Section 6 we give an alternative construction
and characterization of the singular solutions produced in the preceding sections,
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in terms of a Cauchy problem with singular second member. The far-field limit
is considered in Sections 7 (n &#x3E; 3) and 8 (n = 2). In Section 9 we study
the existence of singular self-similar solutions for f3 ~ In Section 10 we
discuss the limit case m -~ oo. We end the paper with a section devoted to

reviewing the main conclusions and listing a number of natural extensions of
the methods and results of this paper.
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PB94-0153. The first author also supported by a postdoctoral fellowship of the
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Netherlands). This paper was finished while the first author was a postdoc-
toral student at the Univ. of Leiden to which he is grateful for its hospitality.
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2. - Preliminaries

We are given a bounded, simply connected domain G C We will
assume without loss of generality that 0 E G. We denote Q = JRn B G and

= r. We consider the problem

where 1/1 E C(S), Uo E and 1/1 and uo are nonnegative functions. Let

Q T = Q x (0, T] and ST = r x (0, T].

DEFINITION 2.1. A function u defined in Q T is said to be a weak solution
of problem (2.1 ) on [0, T ] if:

(i) U E C([o, T] : n 

(ii) for any test function q5 E compactly supported in
QT, with ~ &#x3E; 0 in QT and 0 = 0 on ST, u satisfies the integral identity

for any 0  t  T. Here v (x ) is the outward-directed normal vector at
x E 0393
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A solution on [0,00) means a solution on each [0, T]. If in (2.2) equality
is replaced by  (&#x3E;) then we call u a weak subsolution (supersolution) of
problem (2.2) on [0, T].

The existence of solutions for problem (2.1 ) is proved by using a standard
approximation process based on the results for the same problem in bounded
domains given, for example, in [Br].

PROPOSITION 2.2. If u is a weak subsolution of problem (2.1) with data uo and
1/1, is a weak supersolution with data uo, ~, and if 1/1’  1/r~ on ST, then for
each 0  t  T,

where lrl+ = max(r, OJ.

The proof is analogous to the one for one-dimensional bounded domains
given in [ACP], and we omit it here. Uniqueness and comparison results follow
easily from this proposition. It also gives a contraction principle in 

COROLLARY 2.3. Let u be weak solutions of problem (2.1 ) with initial
functions uo and ûo respectively and both of them with boundary data 1/1. Then

We have an estimate from below for the time derivative of u which we
will use when studying the near-field limit.

LEMMA 2.4. Let u be a weak solution to problem (2.1 ) with initial data uo and
boundary data 1/1 (x, t) = g (x) independent of time. Then

The proof consists in applying the Maximum Principle to the PDE satisfied
by z = (m - Since it is essentially the same as for the case in
which the spatial domain is the whole space R", we refer for the details to
[V2]. Let us remark that the proof does not work if 1/1 depends on t unless
(m - + 1/1 ~ 0.

LEMMA 2.5. If uo = 0 and 1/1 does not depend on time, then ut &#x3E; 0.

PROOF. Consider v (x , t ) = u (x, t + i ) . Then, v (x , 0) = u (x, t ) &#x3E; 0 = u o (x ) ,
and vex, t ) = g(x) = u (x , t), for x E r. Comparison produces the result. 0
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3. - Near-field limit

We have the following convergence result, which describes the asymptotic
behaviour as t - oo for fixed x E S2.

THEOREM_3. 1. Let n &#x3E; 2 and g(x) E C(r), let uo be bounded and compactly
supported in Q and let g &#x3E; 0, uo &#x3E; 0. Then the weak solution, u, ofproblem ( 1.1 )-
( 1.3) converges as t tends to infinity to a stationary state P (x) which is characterized
as follows : Q = Pm is the unique solution of the exterior Dirichlet problem for the
Laplacian

The convergence is uniform on compact subsets of Q for n = 2, uniform in Q for
n &#x3E; 3.

We need the following a priori estimate.

LEMMA 3.2. Let u be as in Theorem 3.1. Then there is a constant C &#x3E; 0 such
that

PROOF. The function u (x, t) = is a stationary solution of the
porous media equation. Taking C &#x3E; 0 big enough we g (x )
on r and u (x , 0) &#x3E; uo(x). The result follows by comparison using sub- and
super-solutions. D

PROOF OF THEOREM 3.1. We may assume that the boundary data g are

smooth. In case they are not, the result is proved by approximation.
We define us(x, t ) = u (x , t + s). It is obvious from Lemma 3.2 that

This estimate, combined with local regularity results (cf. [dB]), provides us
with interior uniform (in s ) local Holder estimates for the family of functions

Moreover, these estimates are valid up to the fixed boundary S, as this
surface and the boundary data are smooth [Z]. Thus, Ascoli-Arzela’s theorem
guarantees the existence of a sequence {sn } and a function such that

usn -~ uniformly on compact subsets of S2 x [0, oo).
The next step is to identify the limit um. It is straightforward that 

satisfies the PME in the sense of distributions and that t) = g(x) at the
fixed boundary. First we consider the case uo n 0. By Lemma 2.5 0,
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and the limit does not depend on t. Moreover, 0  C I xi (2-n)/mI
which means that

Therefore, u~ is the unique solution of (3.1). The uniqueness of the limit

implies that convergence is not restricted to a sequence.
For general data where uo # 0, we use the previous results to obtain

bounds from above and below. Firstly, we consider the solution u of problem
( 1.1 )-( 1.3) with the same boundary data as u, and initial data uo = 0. Then

û(x, u (x , t). The convergence of u to P implies that on any compact set
KCS2 and0tT

if j is large enough, hence the desired lower bound, P (x ) . The

upper bound is simpler. Passing to the limit in estimate (2.4) we see that for
every sequence limit um

Though the initial data are not identically zero, the monotonicity is

enough to apply the previous arguments to show that converges to

P (x) as t - oo . Therefore, t)  P (x ) for all x and t in the domain. D

Next lemma describes the asymptotic behaviour of P (x ) as Ixl ~ oo .
LEMMA 3.3. Let n &#x3E; 2. If I is the inversion mapping I : x H 

S2* = I (Q) U {0}, the Green’s function for the Laplacian in the domain Q*
and

then

This is a classical result for elliptic equations. A proof is given, for

example, in [QV].
REMARKS. 1) If SZ is the complement of a ball and g is a constant,

g = A, then P is explicitly given by

When g = A &#x3E; 0, but S2 is not a ball, we still have P - A 

2) There can be no uniform convergence for large Ix I in dimension 2 since
there is a limit which is bounded away from 0 coexisting with a moving free
boundary located at some large lxl, a consequence of the finite propagation
property. The same happens of course for n = 1.

Finally, we can consider the problem with variable boundary data. The

following result can be easily proved by approximation.
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THEOREM 3.4. The results of this section hold for all large times if we take
boundary data 1/1 (x, t) E c(S), 1/1 ~ 0 which converge uniformly to g (x) as t --+ oo.

4. - A new family of self-similar solutions

In this section we construct a special one-parameter family of self-similar
solutions of the porous media equation in R n B f 0}, which will be used later to
describe the asymptotic behaviour near the free boundary of general solutions
to the PME in an exterior domain. We consider first the case n &#x3E; 2. The case
n = 2 is slightly different, and we deal with it in Section 5. The solutions we
are looking for are self-similar:

where, in order to satisfy equation ( 1.1 ), the similarity exponents are related by
the formula

which allows to express a in terms of /3. This latter exponent is in principle free
and must be appropriately determined in order to obtain the class of solutions
that describes the outer behaviour of the solutions of the general problem we
are considering.

THEOREM 4.1. Let n &#x3E; 2. Precisely for the value of ~B,

there exists a one-parameter family of radial self-similar solutions of equation ( 1.1 )
defined for ~ ~ 0 which are compactly supported in the space variable for all t &#x3E; 0
and such that near the origin they behave like

The convergence Ixl(n-2)lmuc(x, t) --&#x3E;. c is uniform in sets of the form Ixl I  
s - 0.

- 

Behaviour (4.4) is the precise behaviour that allows to match the solutions
uc with the outer limit of the near-field of a solution of ( 1.1 )-( 1.3) derived in
the previous section. In fact, if Q is the complement of a ball BR (o) then Me is
an approximate solution of problem (1.1)-(1.3) with boundary data c 
or in other words a solution of the problem with variable boundary data which
converge to that constant. Let us note that since the solution is self-similar the
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singularity at the origin stands for all t &#x3E; 0, i.e., it is a razor blade singularity
in the terminology used in [VV]. We recall that /30  1 /2 for n &#x3E; 2 and m &#x3E; 1.

We will see in the next section that in dimension n = 2 there is no self-
similar solution satisfying the expected behaviour u - constant, so that the

analysis of the outer behaviour becomes more involved.

Phase plane. We are looking for a function u which is radial, compactly
supported in x for all t &#x3E; 0 and satisfies

It will be convenient to work with the pressure variable v = 1).
This variable satisfies the equation

We will write the self-similar solutions in the form

Comparing with (4.1 ) we see For the moment
we take f3 &#x3E; 0 and review the general properties of the associated evolution for
the variable 4S and fix the notations. The correct choice of /3 will be discussed
later. We observe that the factor has the same dimensions as the pressure
(length squared over time). Thus, 4$ is adimensional. The ordinary differential
equation satisfied by 4S is

This equation can be made autonomous by introducing the new independent
variable

Written as a first-order system the resulting equations are

where the dot denotes differentiation with respect to q. This is our first repre-
sentation of the self-similar solutions. System (4.8) is singular at (D = 0. To
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remove the singularity we make the nonlinear change of variable given implicitly
by

and T (T) satisfy

Observe that this change of variable reverses the flow in the  01 region.
We are looking for positive solutions. Thus, we will only consider the

(D &#x3E; 0 part of the There are two critical points there, A = (0, 0)
and B = (0, -(3).

PROPOSITION 4.2. The critical point A = (0, 0) is a saddle-node o,f’system (4.9).
The linearization of (4.9) around A has matrix

with and k2 - -~8/ (m - 1) and corresponding eigenvectors
-1 /~ ) and e2 = ( 0 1 ).

PROOF. Center manifolds are tangent to el. Thus, we only have to consider
the second and the fourth quadrants. Take a sufficiently small square [0, 3] x
[0, -8]. It is invariant. Thus, the orbits entering it must approach A. This
means that on the (D &#x3E; 0 half-plane A is a node.

To see that A is a saddle on 0 half-plane we will check that the
intersection of all center manifolds with this half-plane coincide. Indeed, center
manifolds can be locally expressed as B11 = h (~) . Assume that there are two
of them in (D  0, given locally by the graphs of the functions h I and h2, with

 h 2 ( ~ ) . A simple computation shows that

if (D ~ 0. Thus, it is impossible that both h (0) and h2(0) equal 0, a contra-
diction. D
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PROPOSITION 4.3. The critical point B = (0, -{3) is a saddle. The linearization
of (4.9) around B has matrix

with eigenvalues 03BB 1 = - f3 and X2 = p / (m -1 ) and corresponding eigenvectors e 1 =
(1 [1 - f3((m - 1 ) (n -E- 2) -~- 4) ] /m~8 ) and e2 = (0 1). The stable manifold
corresponds to solutions with compact support (0  I  

PROOF. The local analysis is straightforward. The value qo is finite and the
solution has compact support. ll

We are looking for solutions with compact support for t &#x3E; 0, that is,
= 0 for a finite i7o. As is well-known, this means that the orbit enters

the critical point ((D, B11) = (o, -~8). The argument is as follows: the velocity
of the free boundary in the normal direction, sn, satisfies

at points of the free boundary where it is smooth. For solutions of the form

(4.1), (4.6) the free boundary is given by

Hence (4.10) implies that T(i7o) = -{3.
Choice of P. The precise value of {3 which fits the asymptotic behaviour

of the class of solutions studied in this paper is derived from the near-field
limit of the preceding section. Thus, we assume that the solution u (x, t) of
problem ( 1.1 )-( 1.3) resembles a self-similar solution on compact sets of S2 far
away from the fixed boundary, with oo but ~ --~ 0 as t -* oo (i.e., in the
outer limit of the inner layer in the terminology of the boundary-layer theory).
Thus, for t » 1 and 1 we want

Since u (x, t) ^- P (x) ^~ C* we need

which means that {3 must be equal to {30 given by (4.3), and then (D must
behave like
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We will prove below that such a self-similar solution exists. In later sections

we prove that it gives the desired asymptotic result.
When f3 = ~8o system (4.8) has an explicit orbit, the straight line T =

-~/~Bo. It corresponds to the stationary solutions of the porous media equation

As the explicit is a barrier that cannot be crossed by any other
orbit, and as the origin is an attractor (remember that we are just considering
the &#x3E; 01 region), the unique orbit entering the critical point B must come
from B11 = - oo. The phase plane is shown in figure 1.

Fig. 1. B11 4)-plane for n = 3, m = 2 and p = po.

New representation. Inversion. In order to have a more precise idea about
where it comes from we perform an inversion change of variables. We now set

This kind of transformation goes back to [Ba] and [J], and is used in [H].
Observe that
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The resulting system is

with a = (l20132~)/(m2013l). We are looking for positive solutions. Thus, we will
. only consider the Y &#x3E; 0 part of the X Y-plane. There are two critical points in
that region, given in these variables by C = (0, 0) and D = ( 2-n , 0). Both of
them coincide when n = 2. The local analysis of these points is straightforward.

PROPOSITION 4.4. The linearization of (4.17) around C = (o, 0) has matrix

with eigenvalues Ål = 2 - n and ~,2 = 2 and corresponding eigenvectors el =
( 1 0 ) and e2 = ( -a/n 1 ). Thus, C is a saddle when n &#x3E; 2, a repeller when
n  2, and a saddle-node for the bifurcation value n = 2.

PROPOSITION 4.5. The linearization o, f (4.17) around D = ( 2mn , 0) has matrix

with eigenvalues ~,1 = n - 2 and ~,2 = and corresponding eigenvectors
e 1 = ( 1 0 ) and e2 = ( ~8 - ~o (m - 1)((2 - + 1 ) ). Thus, D is a repeller
when n &#x3E; 2, a saddle when n  2, and a saddle-node for the bifurcation value
n = 2.

Existence of the orbit for fl = 2. In the new variables the explicit
is written as X = (2 - n)/m, which exits D. The orbit we

are looking for approaches the free boundary singularity B, which in the new
variables is (X, Y) - (- oo, oo). Thus, it must always lie to the left of the

explicit orbit X = (2 - n) I m and above the explicit orbit Y = 0. In this region
Y &#x3E; 0. Hence, the orbit approaching B goes downwards as n ---&#x3E;- 00. The
null-cline X = 0 is given by the pair of straight lines

Thus, the orbit approaching B cannot go to X = - oo as z7 2013~ 2013 oo. As

(2 - 0 2, it comes necessarily from D. The fact that it starts at
(X, Y) = ( 2-n , 0) implies, when n &#x3E; 2, that the corresponding solution behaves
as predicted in (4.4), (4.14). Summarizing, we have the following existence and
uniqueness result:
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Fig. 2. X Y-plane for n = 3, m = 2 and 0 = po.

THEOREM 4.6 (Existence of a connection). Let n &#x3E; 2 and let {3 Then
there exists a unique orbit of system (4.8) which joins the singular point B with the
singularity D of the X Y-plane.

We recall that B represents the free boundary, and D the behaviour as
~ ~ 0. These behaviours are given by (4.11) and (4.14) respectively when
n &#x3E; 2. We show a typical X Y-plane for n &#x3E; 2 in figure 2.

Family of solutions. By reparametrization the unique orbit gives rise to a
one-parameter family of different self-similar solutions of equation (1.1) which
can be obtained from one of them by just shifting 77, i.e., scaling ~ . Thus,
given a self-similar solution u the family of solutions

represents all the solutions contained in the same orbit. Cf. the explicit solution
(4.15). We may normalize so that = Ixl(2-n)lm(1 + o ( 1 )) as I -* 0.
It follows that the interface reads

Properties. We state now two properties of u which will be useful when
studying the far-field limit.
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PROPOSITION 4.7. 
at 
x t) &#x3E; 0.

PROOF. A direct computation shows that

 2013C(~)/~o. from where the result is immediate. 0

PROPOSITION 4.8. If n &#x3E; 2, then t)  ca (2-n)lm iflxl = a.

PROOF. This is an immediate consequence of the monotonicity in time plus
the fact that -~ c as t ~ oo if Ix = a. 0

In figure 3 we represent the profile of the self-similar solution uc for differ-
ent times. It can be seen that it approaches P (x) = clxl(2-n)lm monotonically
as t - oo.

Fig. 3. Self-similar solution for n = 3, m = 2 and c = 0.1394 at different times.

5. - Self-similar solutions in dimension two

The phase plane analysis of the preceding section is valid for n = 2, but
the conclusion is slightly different. Namely, the behaviour of 4S is not given
by (4.14). In this section we shall determine the actual behaviour.
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We take the value of {30 corresponding to n = 2, which is {30 = 1/2. This
leads to solutions of the self-similar form

or in pressure variable

We can make the analysis of the connection but now system (4.17) becomes

The corresponding phase plane for m = 2 is shown in figure 4.

Fig. 4. X Y-plane for n = 2, m = 2 and 0 = /30 = 1/2.

The critical point D is not a repeller any more: when it joins the point C
it changes its topological character and becomes a saddle-node. Let us perform
a more detailed analysis of this point. There is a centre manifold Y = h(X)
entering the critical point. It follows from center-manifold theory (cf. [C]) that
near (0, 0) Y must be exponentially small compared with X, and thus that
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This implies that X ~ 1/(~). If we introduce this in the equation for Y we
obtain

Integration gives that

which produces the behaviour

According to this formula there is a logarithmic correction with respect to
the constant behaviour formally predicted by (4.14), in disagreement with the
behaviour derived in formula (3.4) for the near field expansion. This difficulty
is not to be solved by changing the parameter: any other value of f3 would
have produced power differences, not just logarithmic ones. This means that

{30 is the correct value and the solution of the difficulty lies elsewhere. We
summarize our result as follows.

THEOREM 5. l. In space dimension n = 2 and for {3 = ~Bo = 1 /2 there exists
a one-parameter family of radial self-similar solutions of equation (1.1) defined

0, compactly supported in ~, and such that near the origin they have a
logarithmic singularity of the form

as ) = x t-11, -~ o.

The convergence t) -~ c(- log I x I)Ilm is not uniform for large t since
from (5.4) the precise expansion reads

It is clear that the self-similar solutions in both cases n &#x3E; 3 and n = 2
share the property that the singular behaviour of um coincides with the behaviour
of the fundamental solution of the Laplacian. We will explore this connection
next.
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6. - Alternative construction of the self-similar solutions

The self-similar solutions we have constructed in the preceding sections
can also be characterized in terms of a Cauchy problem with singular second
member as follows.

THEOREM 6.1. Let n &#x3E; 2. For each constant C &#x3E; 0 there exists a radial,
self similar function Ll (x, t; C) &#x3E; 0, which is compactly supported in x for all t &#x3E; 0
and satisfies

Such a solution is unique. In particular, the mass grows linearly with t:

PROOF. We only have to put U(x, t ; C) = t), the self-similar solution
constructed in the preceding sections for n &#x3E; 3 and n = 2 respectively, to obtain
the result. The constants C and c are related by the flux calculation

which implies that

REMARK. The linear law (6.2) determines the correct value of {3, (4.3).

Alternative construction. The solutions U of problem (6.1) can also be
constructed using the theory of the Cauchy problem for the PME with second
member posed in Thus, the problem

has a unique mild solution for every f E T] : Moreover, if f is
continuous and nonnegative so is the solution, which becomes a solution in the
usual weak sense. There is also boundedness and continuity in the L 1 sense.

Thus, 
-*
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valid for all 0  s  t. The usual comparison principle applies, cf. [Bn], [BC].
In order to construct the solution U we use as approximate second members

a family of smooth functions of the form

where f 1 (x ) is a smooth and nonnegative function supported in the ball of radius
1 and having integral C. We may also assume that f, is radially symmetric
and decreasing. The corresponding solutions uk (x, t) of problem (6.4) exist, are
unique and have the following properties:
9 They are nonnegative, continuous, compactly supported and non-increasing as
functions of lxl.
9 They are bounded in Z~(R") for finite time, Indeed,

~ We have the scaling law

which is proved by checking that the right-hand side satisfies the same equation
and initial conditions as Uk-
~ Pointwise bound. There is a constant K &#x3E; 0 such that

In order to prove this we regularize the harmonic function g = by
replacing it inside the ball of radius 2 by a smooth concave function so that
the new function g  g satisfies

while 0 outside. It is then clear that for some large constant I~ we have
+ 0, hence is a supersolution to the evolution equation

satisfied by u 1. In view of the initial data we get the estimate for u 1. The

same inequality is true for the whole family uk because of the scaling formula.
The calculations for n = 2 are similar with instead of 12-n.

By standard compactness arguments [dB] we may pass to the limit to find
a function

In principle we must pass to the limit along sequences kj -~ oo but the con-
centration comparison of [VI] gives us the necessary monotonicity to pass to
the limit in the whole family Uk- It is not difficult to see that this function
solves problem (6.1): it is a weak solution of equation (1.1) away from the
origin; due to the mass estimate it must have a Dirac mass at the origin as
forcing term; the initial data are also taken; it is self-similar as a consequence
of formula (6.6). Hence, it coincides with the solution u.
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7. - Far-field limit

We are now ready to establish the behaviour of the solutions of the original
problem in the outer region.

THEOREM 7. l. Let n &#x3E; 2. Let u be the weak solution to the porous media equa-
tion in the exterior domain S2 with initial and boundary data as in Theorem 3.1, and
let C* = C* (g, S2) be the constant of the near-field asymptotics given by Lemma 3.3.
Then

uniformly on sets of the form {x E R n : 8 &#x3E; 0, where u (x, t; c) =
uc(x, t) is the self-similar solution to the PME constructed in Section 4 (cf. Theo-
rem 4.1 ).

PROOF. First step: Scaling and compactness. We define

where ao is given by the relation (4.2), that is,

Using (3.2) we get that, if E Q, then

for some large constant C. Using well-known results on compactness for the
porous media equation (see [dB]) we have that there are a subsequence (£k)
and a function Moo such that

uniformly on compact subsets of (Rn B {OJ) x (0, o).

Second step: Identification of the limit. We take a » 1 such that P (x) &#x3E;-
(C. - for all (Lemma 3.3). Then we take T such that

u(x, t) &#x3E; P(x) -£a(2-n)lm for Ixl = a, t &#x3E; T (Theorem 3.1). Thus we get that
u (x, t) &#x3E; (C, - 2£)a(2-n)lm if Ixl = a, t ~ T. Now, u (x, t - T ; C* - 2c) 
(C* - 2£)a(2-n)lm if Ixl I = a, t &#x3E; T (Proposition 4.8), and hence we finally
obtain that u(x, t) &#x3E; T ; C* - 2£) if x ~ I = a, t &#x3E; T. Moreover,
u (x , T ) &#x3E; 0 = u (x , 0; C* - 2e ) if a. Hence, comparing u (x , t ) and

U-(x, t - T ; C* - 2~ ) for a, t &#x3E; T we conclude that
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We now obtain a similar upper bound when the initial data are zero. In

this case ut &#x3E; 0 (Lemma 2.5), and therefore P(x) for all x E Q,
t &#x3E; 0. Taking a big enough we have

Now, M(~,~;C) -~ as t 2013~ oo uniformly on compact subsets of
a }, and thus, there is a big enough value T such that u (x , t; C, + 2E) &#x3E;

(C,, + 8) a(2-n)/m &#x3E; u (x, t) for Ixl = a, t &#x3E; T. Moreover, as u (x, T ) has compact
support, it is possible to take r big enough so that u (x, T)  u (x, T+r; C*+28)
for a. Observe that we are using here (7.5), which is a consequence
of uo being equal to zero. Thus, we can apply comparison to u (x, t) and

u (x , t + t ; C* + 2~ ) in Ix I &#x3E; a, t &#x3E; T (remember that Me increases with time)
to obtain

Using (7.4) and (7.6) we obtain that

Thus, letting X ~ o we get u (x , t ; C* - 2~ )  t)  u (x , t ; C,, + 2E). As
E is arbitrary, we finally obtain that

The uniqueness of the limit implies that convergence is not restricted to a sub-
sequence. Moreover, as the supports of the functions (ux) and u are uniformly
bounded for fixed t (cf. formula (7.7)), convergence is uniform on sets of the
form x {t}, t &#x3E; 0.

We consider now general initial data uo bounded and compactly supported
in Q. Let u and v be the solutions to problem ( 1.1 )-( 1. 3) corresponding to
the same boundary data, g (x ) , and initial data u (x, 0) = u o (x ) and = 0

respectively. It is clear that u (x , t ) &#x3E; vex, t). Let K = 8}. Then, for ~
large enough

Thus, letting £ ~ oo we obtain ~)2013M(’, t ; = 0, and hence
that
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The fact that the convergence is uniform in exterior sets (and not only locally)
depends on a uniform upper bound of the supports of the ux, which is obtained
by comparison with a large self-similar solution. Indeed, there exist T &#x3E; 0 and
C &#x3E; 0 large enough such that

holds. From this the required upper bound follows.

Third step: Convergence. From here on the proof is standard. A simple calcu-
lation shows that

C,,)I,

where we have used the notation x = Thus, the uniform convergence of
UÀ (ç, 1) to ii(~, 1) as £ - o0 on sets of the form I &#x3E; 5} is equivalent to the
stated convergence (7.1). D

We also prove that the free boundary approaches a sphere with a precise
radius growth. This sphere coincides with the free boundary of u(x, t; C*).

THEOREM 7.2. Let m+(t) = maxxert&#x3E; I x and m_ (t) = minxEr(t) where

r (t) is the free boundary at time t of the solution ofproblem ( 1.1 )-( 1.3) with initial
and boundary data as in Theorem 3.1. Then

where ~o is the radius at time t = 1 of the free boundary of the function u (x, t; 1).

PROOF. The lower bound is immediate from the convergence statement.

Indeed, writing formula (7.4) in terms of supports, and using formula (4.19) to
relate the support of Me with the support of u 1, we get

The upper bound requires more effort. Let Uc be the profile of the
self-similar solution Me. Given s &#x3E; 0 we take 03B4 small enough such that

C* + §. We know that M(.~;C~)  and
that the functions 1) have a uniformly bounded support. Thus, using the
uniform convergence on compact sets of the functions UÀ to we have that

1)  for 3. This implies that

In particular, we have that
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if we take i &#x3E; 0 big enough.
On the other hand, if x A, then u (x , (cf.

formula (7.9)), and

where we have used the monotonicity in time of u(x, t; C* + E). Thus,

Therefore, we can apply comparison to u(x, t) and u (x , t -~ t ; C* -~- ~ ) for

Ix to obtain

This implies that

which is the required upper estimate. D

REMARK. Numerical computations show that ~o = 2.1994 when n = 3,
m = 2.

THEOREM 7.3. The results of Theorems 7.1, 7.2 hold true when we replace
the boundary data g (x ) by a continuous and nonnegative function 1/1 E C ( S) such
that 1/1 (x, t) --* g(x) uniformly as t ---&#x3E;. oo. The asymptotic constant C* is still the
c*(g, S2) defined in (3.3).

PROOF. We by + (respectively g2 (x ) =
max{g(x) - s, 01), thus obtaining solutions ul (respectively U2) to which the
above results apply after replacing C* by a small perturbation. We then apply
comparison to u and ul 1 (respectively u and u2) for t &#x3E; T, T large enough, to
conclude. D

8. - Far-field limit in dimension two

Using the ideas developed in [GV] we perform the change of variables that
allows to follow the evolution of the self-similar solution as a fixed profile with
respect to the rescaled variable:
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Then the equation reads

The self-similar solutions constructed in Section 5 are, in the new variables,
just stationary solutions of (8.2). Indeed, they are given by

Now, the different behaviour of the near-field limit of equation ( 1.1 ) and the
self-similar solutions (8.3) means that the above scaling is incorrect in order to
normalize the solutions of our Cauchy-Dirichlet problem for n = 2. Following
[GV] we introduce a new rescaling

with logarithmic corrections in the w and t variables. Moreover, we will choose

a selection that is justified below in terms of the near-field analysis of our
solutions. In any case, if u is a solution of ( 1.1 ) and we apply (8.4) then w
satisfies the equation

In order to stress the fact that this equation is an asymptotically small per-
turbation of (8.2) in the sense of [GV] we can write equation (8.6) in the
form 

-

We still have to select the convenient value of or. This is done on the basis that
we want the rescaled solutions w to converge towards the self-similar solution

(8.3). For this we take a fixed x = ~ and t large and use the inner behaviour
of u to assert that

where C* is the asymptotic constant of the inner expansion of u, cf. Section 3.
On the other hand, the behaviour near zero of the self-similar solution in the
new variables is wc(s, T) rv s 1"..1 0. Both behaviours agree along
the curve s = if and only if o~ = and also c = 211m C*. The

precise convergence result is the following:
THEOREM 8.1. Let n = 2 and let w be the rescaling given by (8.4) of the solution

of problem ( 1.1 )-( 1.3). Then w (~ , T) converges to -Oc (~, T) = as T --+ 00

uniformly on sets of the form I 2: 8 &#x3E; 0, where c = 2Ilmc*.
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In order to justify that the rescaled orbit of our solution, which is a solution
of (8.6), converges towards a stationary solution of (8.2), more precisely, a self-
similar solution of the form (8.3), we have to follow a plan consisting of three
steps: (i) first, we show that the orbit w(~, r) is bounded above and below, and
from this it follows that it is compact in a suitable space, (ii) we pass to the
limit along a sequence of delays to obtain in the limit a solution of equation
(8.2), (iii) we show that such a limit is the desired self-similar solution.

I. BOUNDEDNESS. In this step we make sure that the logarithmic corrections
in the scaling produce the desired effect of getting locally compact orbits. The
control of the orbit is done by means of the construction of suitable upper and
lower bounds for w in terms of the self-similar solutions (8.3).

LEMMA 8.2. Let n = 2 and 0  c  2Ilmc*. There are values R and T » 1,
such that the rescaled solution, w, ofproblem ( 1.1 )-( 1.3) satisfies

where Uc is the profile of the self-similar solution (8.3), and the correction factor
4JI (t) is given by

PROOF. It is based on comparison of w (~, t) with w~ (~, r) = 101 (t)),
which will be shown to be a suitable subsolution for the problem solved by w.
Let = 3~. We take R big enough such that P (x ) &#x3E; c* -8 for all

&#x3E; R (Lemma 3.3). Then we take T big enough so that u (x , t ) &#x3E; P(x) - 8
for Ix I = R, t &#x3E; T (Theorem 3.1). Thus, u(x, t) &#x3E; C. - 2E = c2-I/m + 8 if

I x = R, t &#x3E; T. This implies that

On the other hand we have

where we have taken into account the asymptotic behaviour of the profile U~
near the origin. Thus, we have that

for T big enough.
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Next, let us check that 1J2c is a subsolution for equation (8.6). As 1,
and due to the monotonicity of (/c we have that

Let q5 be any smooth correction factor and W~ (~, z ) = A

simple computation yields

where G(r) = -rU~(r). Observe that G(I~I4» ~ 0. 4&#x3E;1, i.e., if We =~,
then 

.11, -

and thus

Hence w is a subsolution of equation (8.6).
Finally we consider the initial conditions at r(T) = log T. Obviously

Thus, we can apply comparison to w (~, i) and w~ (~, i) in I &#x3E; Rt-1/2,
t &#x3E; T, to obtain the desired estimate (8.7). D

LEMMA 8.3. Let n = 2, c &#x3E; 2Ilmc* and uo(x) - 0. There are values
0  E  1 /2, T » 1 and 0  a  ,,/I --2E such that the rescaled solution, w, of
problem ( 1.1 )-( 1.3) satisfies

where Uc is the profile of the self-similar solution (8.3), and the correction factor
02 (t) is given by

REMARK 8.3.1. If uo # 0 we still have an estimate of the form (8.10),
though not for c arbitrarily close to but only for c big enough. However,
this will be enough to obtain the required compactness.

PROOF. We take 8 such that ( L.- ) 
m 

 E  1 and then any a such that
a  V’1 - 2£. We now check that We is a supersolution of equation (8.6) if t
is large enough and [) I &#x3E; t-’. In order to do this we take Wc = We in formula
(8.9), that is, 0 = ~2. An easy computation shows that
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where X has the same meaning as in Sections 4 and 5. Thus,

The first term in brackets, tO’/02 tends to zero, the second one tends to ( 1 -
a2)/2. There is a problem with the third one since vanishes like I/q
as - -oo, precisely X (17) - 1 * But we may observe that this term

becomes smaller than s, as we are restricting ourselves to the set I &#x3E; t -e .
As a  .!1 - 28, we conclude that becomes positive

T , if we take T big enough. A careful inspection shows that we can
choose T independently of a in the specified range.

Let us now consider the boundary conditions. We recall that, as uo n 0,
then u  P(x). We take 6 = C* ) /2, and then R big enough such that
P(~) ~ C~ + 5 for Ixl [ &#x3E; R. Hence w(~, z)  (C* + for I~I 2: Rt-1/2.
Observe that [) I = &#x3E; if t is big enough. Now, as 4&#x3E;2  a  1, we
have that tbc a On the other hand, U~(I~ I ) ^_r 
for |03BE| I = t-e as t Hence, lim03C4--&#x3E;00Um = cEllm. Thus, there is
a value T &#x3E; T, which does not depend on a, such that

To obtain the desired estimate (8.10) we apply comparison to w(~, r)
and in ~~ ~ &#x3E; t-£, t &#x3E; T. In order to have ordered initial data,
w (~, r (T))  t (T )), we take a small enough. 0

II. CONVERGENCE. We displace the orbits w(~, r) in time to construct a family
of orbits

and use the boundedness and standard regularity results to show that this family
is compact in 1011 x (0, oo)). Therefore, along a subsequence sn we
get convergence to a solution wm of the limit equation Aw, which is a
standard scaling of the PME. The a priori bounds show that

and, if uo == 0, that for all c &#x3E; 2Ilmc* there exists a constant a = a(c) such
that
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Combining (8.11) and (8.12) and the fact that for

I ~ 2~ 0 it is easy to prove that

Thus, i ) ^_- U2i/,,C.(I~1) I ~ 0. Summarizing: if uo n 0, then wm is
a solution of (8.2) such that: (i) and (ii) Woo (~, t) ^_’ U21/mc* (I~ I)
for [) [ = 0. Let us recall the key point of the limit dynamics: E and T disappear.
111.1. IDENTIFICATION OF THE LIMIT (uo n 0). We may now apply the method
of [GV] to describe the co-limit of the orbits w(~, i). The appropriate metric
is L 1 (Iaen) and stability is given by the L 1- contraction property, Corollary 2.3.
Then Theorem 3 in [GV] asserts that the w-limit set for solutions of (8.6)
corresponding to initial data uo w 0 is contained in the a)-limit set for the
solutions of (8.2) greater or equal than U21/mc* behaving as U21/mc* for ~ ~ 0.
Thus, if uo n 0, Theorem 8.1 is an immediate consequence of the following
convergence result for the reduced equation (8.2).

THEOREM 8.4. Let n = 2 and c &#x3E; 0. The (o-limit in 1011 x (0, (0))
of the orbits w (~, r) of equation (8.2) such that (i) w (~, T) &#x3E; and (ii)
w (~, T) ~ ~ 0, is the single point U~.

PROOF. First we observe that there is a constant C &#x3E; 0 such that

We can now define for t the optimal upper bound

It is clear C. It is a simple consequence of the Maximum
Principle that C(r) is non-increasing. Therefore, there exists the limit

and this limit is positive and finite.
Now we consider the family of orbits ws (~, r) = w (~, r + s). By known

compactness of the solutions of (8.2), there is a subsequence converging in
(0)) x (0, oo)). Let W be the limit of a subsequence. We have

We shall now prove that C = c. Indeed, if C &#x3E; c, then using the Strong
Maximum Principle it is easy to prove that for any T &#x3E; 0,
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Using the behaviour of W for )) [ = 0, we obtain that there is a value 8 &#x3E; 0
small enough such that

Thanks to the uniform convergence on compact sets of JR2 B {0}, the behaviour
at the origin and the control that we have on the free boundary we can assure
that 

I I

for sj large enough and some fixed r. Thus,

This means that

By the monotonicity of C r) we get

By the very definition of C this conclusion is impossible. Hence, C = c and,
therefore, W = Ua. 0

111.2. IDENTIFICATION OF THE LIMIT (general initial data). We consider now

general initial data uo E Let u be the solution to problem (1.1) corre-
sponding to the same boundary data, g(x), and initial data 0) = 0, and let
w be the corresponding rescaled solution. It is clear that w (~, t ) &#x3E; W (ç, 1:).

_ _ _ 
m-1

Let K = { I~ t = eT+s and t’ = t (log t) m . Then, for s large enough
1:) - ws(v 

Letting s - oo we get r) - U2, /,, c. (I - = 0, and hence that

Free boundary. Let m + ( i ) = I m - ( t ) = )) ) , ~ where
17(-r) is the free boundary of the rescaled solution, w, of problem ( 1.1 )-( 1. 3) at
time T:. Then, following the lines of Theorem 7.2, it is easy to see that

lim in-±(T) = ~~(2l~mC’*)~m-1)/2~
03C4---&#x3E;00

which in the original variables reads

Thus, we arrive to the following asymptotic result:
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THEOREM 8.5.Let n = 2, and let m±(t) and ço have the same meaning as in
Theorem 7.2. Then

REMARK 8.5.1. The results of Theorems 8.1, 8.5 hold true for variable
continuous boundary data 1/1 &#x3E; 0 such that ~/r (x , t ) -~ g (x ) uniformly as t -~ oo.

9. - Connections for other values of P

In Sections 4 and 5 we constructed a family of compactly supported, sin-
gular, self-similar solutions of ( 1.1 ) of the form (4.1 ) for the specific value
f3 = In this section we study the existence of such solutions for other
values of f3 &#x3E; 0. More precisely, we consider the existence of orbits connecting
the critical point B of the representing the free boundary, and the
critical point D of the X Y-plane, representing a behaviour

For the sake of completeness we also consider connections between the critical
point B and the critical point C. If n # 2, C represents the boundary behaviour

which is not singular. If n = 2 then C = D. In this case the orbits coming
out from C along a center manifold correspond to the behaviour

The exceptional orbit coming out from C along the unstable manifold shows
the behaviour (9.2).

Let us remark that the behaviours (9.1) and (9.3) are independent of t if
and only if f3 = f30.

In order to make more clear the critical character of n = 2 we also consider
values 0  n  2. The phase plane analysis can be extended to non-integer
dimensions and n = 2 is a bifurcation value. For n &#x3E; 2 we prove that there
are orbits connecting B and D, i.e., compactly supported, singular self-similar
solutions, if and only if f3 &#x3E; Polm. The limit value f3 = f3o/m produces the
well-known Barenblatt-Pattle solution. For 0  n  2 there is such a connection

only for {3 = 1 / (2m ) . It corresponds to the dipole solution. Observe that in this
case the behaviour (9.1) is not singular. For 1 / (2m ), there is a connection
between B and C.
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We remark that n = 2 is the critical value that separates the interface
behaviours of the form Ix - valid for n &#x3E; 2, from I rv 

valid for n  2. Observe that 1/2 &#x3E; if n &#x3E; 2. Thus, the natural scaling
1/2 does not produce a compactly supported, self-similar solution behaving
as a constant for x = 0. This is completely different for 0  n  2. As

1 /2 &#x3E; 1 / (2m), in this case we have an orbit connecting B and C. Therefore,
the behaviour at the origin is given by (9.2), and it is constant.

First of all, we consider the case n &#x3E; 2.

THEOREM 9.1. Let n &#x3E; 2. Let y be the unique orbit of system (4.8) approaching
the singular point B from (D &#x3E; 0 as r~ --* oo.

(a) If f3 &#x3E; f3o/m, (k = alp  n), then y comes out from the singularity D of the
X Y plane.
(b) If f3 = f3o/m, (k = n), then y comes out from the singularity C of the X Y plane.
(c) If f3  f3o/m, (k &#x3E; n), then y does not come out either from C or from D.

PROOF. (a) Along the half-line X = -f3Y, Y &#x3E; 0, we have Y &#x3E; 0 and

Moreover, the line Y = 0 is an orbit. Therefore, the region 0 - 
is invariant. On the other hand, the orbit going out of C into the half-

plane Y &#x3E; 0 does so along the direction ( -a/n 1 ). Thus, it goes into
.~’ if a  now remember that y approaches B along the direction
( 1 ’~«m~ &#x3E; &#x3E; ), that is,

Thus, if the straight line

is below the line Y = - X / f3, as is the case for f3 &#x3E; then y cannot come
from C.

Hence, in order to have the result proved we just need to discard the

possibility that the orbit goes as 17 -* - oo. The null-cline
X = 0 is given by

This curve is a hyperbola, maybe degenerate, with asymptotes given by
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As m &#x3E; 1, both asymptotes, and hence also the hyperbola, are above the line
Y = -X/fl for X  0, with I big enough, and hence orbits which are below
that line cannot approach oo.

(b) In this case y is explicit. It corresponds to the well-known Barenblatt-
Pattle solutions to the PME and it comes out from the singular point C of the
X Y-plane.

(c) In this case we have that Y &#x3E; 0 and  -~8 along the half-line
Y &#x3E; 0. Therefore the region ?-l - { Y &#x3E; 0 } n is

invariant. Moreover, the outgoing direction of the orbit coming out of C points
towards 7~. Now, the straight line (9.4), to which y approaches, is above the
line Y = - X / f3. Thus, y cannot come either from C or from D, as this latter
point is below the line Y = - X / f3. 0

When n = 2, C = D. The border case {3 = corresponds to a

connection between the free boundary point B and the exceptional unstable fast
manifold.

THEOREM 9.2. Let n = 2. Let y be the unique orbit of system (4.8) approaching
the singular point B 0 as q -* 00.

(a) &#x3E; (k  n), then y comes out from the singularity C of the X Y-plane
along the direction ( -1 0 ) corresponding to a slow center manifold.
(b) = (k = n), then y comes out from the singularity C of the X Y plane
along the direction ( -1 2m ) corresponding to the unstable fast manifold.
(c) If f3  (k &#x3E; n), then y does not come out from the singularity C of the
XY-plane.

PROOF. (a) The region ,~’ is invariant (see the proof of Theorem 9.1). On
the other hand, we know that the unstable manifold goes out of C along the
direction ( -a/2 1). Thus, for {3 &#x3E; it goes into ,~’. We now remember
that y approaches B along the straight line (9.4), which is below Y 
for {3 &#x3E; Thus, y cannot come out from C along the unstable manifold.
To prove the result we have to discard the possibility that the orbit goes to

17 --* - oo. This is done as in Theorem 9.1.

(b) If f3 = then y is explicit. It corresponds to the well-known Barenblatt-
Pattle solutions to the PME and comes out of C along ( -1 2m ) .

(c) In this case the region ?~ is invariant (cf. proof of Theorem 9.1 ). Moreover,
the unstable manifold going out of C into Y &#x3E; 0 is contained in x, and this is
also the case for center manifolds. On the other hand, the straight line (9.4),
to which y approaches, is above the line Y = -X /,8 . Thus, y cannot come
from C. D

If 0  n  2 the critical point D does not represent a singular behaviour
any more. After meeting the point C at the bifurcation value n = 2, D lies
now to the right of C.
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THEOREM 9.3. Let 0  n  2. Let y be the unique orbit of system (4.8)
approaching the singular point B from (D &#x3E; 0 as r~ -* oo.

(a) &#x3E; 1 / (2m), (k  2), then y comes out from the singularity C of the X Y -plane.
(b) = 1 / (2m), (k = 2), then y comes out from the singularity D of the X Y -plane.
(c) If {3  11(2m), (k &#x3E; 2), then y does not come out either from C or from D.

and 
PROOF. (a) Along the half-line X = + 2mn , Y &#x3E; 0, we have Y &#x3E; 0

and 
. 

’m

Hence, the region V = (Y &#x3E; 0} n + 2mn } is invariant.

Moreover, the orbit going out of D into Y &#x3E; 0 does so along the direction
(m-1)((2-no+l)). Thus, if {3 &#x3E; 1 / (2m ), it goes into J.

Now, the straight line (9.4), to which y approaches, does not intersect ,7.
Thus, y cannot come from D. The possibility that y goes to X - - oo as
~ - oo is discarded as in Theorem 9.1.

(b) In this case y is explicit. It corresponds to the well-known dipole solutions
to the PME. It comes out from the singular point D on the X Y-plane. In fact
it is given by Y = -2mX + 2(2 - n).

(c) In this case we have that Y &#x3E; 0 and X /Y  -f3 on the half-line X =
- fl Y + 2-n, Y &#x3E; 0. Therefore, the region ic n {Y &#x3E; ol f1 {X  -~BY + 2mn } is
invariant. Moreover, the outgoing direction of the orbit coming out of D into
Y &#x3E; 0 points towards J’C. Now, the straight line (9.4), to which y approaches,
does not intersect Thus, y cannot come either from D or from C, as this
latter point lies in IC. D

10. - The limit m -~ oo : Hele-Shaw

If we take the limit m -~ oo in the asymptotic rates for the growth of the
free boundary, (1.7) and (1.9), we obtain precisely the rates for the growth of
the free boundary for the exterior Hele-Shaw problem (cf. [QV]), that is,

This is a hint that there may be a connection between this limit and the Hele-
Shaw problem. We devote this section to investigate this connection for the
self-similar solutions that we constructed in sections 4 and 5, and to study the
limit case This limit case is much simpler. In fact its solutions are

explicit, and it throws light over the m  oo case.
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The limit m ~ oo for the PME has already been considered, for the case
of focusing self-similar solutions, in [AGV]. If we divide by (m - 1) in the

pressure equation (4.5) and formally take the limit m - oo we obtain

while on the free boundary we still have the condition

where sn is velocity of the interface in the normal direction Ii. This is the well
known Hele-Shaw problem. If we look for solutions of the self-similar form

(4.6) for this problem we obtain that the profile I&#x3E; must satisfy

an equation which can be made autonomous through the change of independent
variable ?7 = For n # 2 the solutions of this equation are given by

and correspond to harmonic functions of the form

Obvious changes apply to n = 2. Here we want to stress the similarity with
the analysis of previous sections in order to see how the limit m - oo takes
place. Therefore, we write the equation as the first-order system

where the dot means This linear system coincides exactly with what
is obtained doing formally m - oo in system (4.8). However, the phase
portrait is a bit different. System (10.6) is not singular at 4$ = 0, and hence
(4$, W) = (0, -(3) is not a critical point any more. The only critical point is

given by ((D, xP) = (0, 0).

PROPOSITION 10.1. (0, 0) is an attractor. It has matrix

with eigenvalues ~,1 = -2 and X2 = -n and corresponding eigenvectors el =
( 1 -2 ) and e2 = ( 1 -n ).
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The condition at the free boundary, (10.2), implies that

for a certain We are thus looking for orbits passing through (I&#x3E;, ’11) =
(0, 2013~6). As we have already mentioned, this point is not critical any more.

As we are interested in solutions which are singular at the origin, we would
also like to perform in this case an inversion change of variables. However,
system (4.17) degenerates as m ~ oo, and (4.16) is not the correct change of
variables for this limit. Instead we take as new variables

which are just a scaled version of X and Y of Section 4, X = (m - I)X,
Y = (m - 1 ) Y. In the new variables (4.17) reads

Observe that X = (I ç 11&#x3E;’ (I ç I) / I&#x3E; (I ç I)) + 2. Then (10.6) is transformed into

which is precisely the formal limit of (10.7) as m - oo. System (10.8) has two
critical points, Coo, located at (X, Y) = (0, 0) and Doo = (2 - n, 0). Comparing
them with the critical points of system (10.7), C = (0, 0), D = (~(2 - n), 0)
and E = (2, -2mlpo), we observe that Coo = C, and that Doo comes from D
through letting m - oo. The point E, which we had not considered before, as
it does not lie on the region Y &#x3E; 0, goes to infinity as m - oo. If n = 2, Coo
and Doo coincide.

PROPOSITION 10.2. The linearization of ( 10.8) around the critical point Coo =
(0, 0) has matrix 

~ 

with eigenvalues ~,1 = 2 - n and ~,2 = 2 and corresponding eigenvectors el =
( 1 0 ) and e2 = ( 0 1 ). Thus, if n &#x3E; 2, Coo is a saddle, while for n  2 it is a

repeller. If n = 2 it is a saddle-node.

PROPOSITION 10. 3. The linearization of ( 10.8) around the critical point 
(2 - n, 0) has matrix " ,..

with eigenvalues ~,1 = n - 2 andX2 = 2 and corresponding eigenvectors el =
( 1 0 ) and e2 = ( 0 1 ). Thus, if n &#x3E; 2, Doo is a repeller, while it is a saddle for
n  2. If n = 2 it is a saddle-node.
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REMARK. If n # 2, then Coo corresponds to the behaviour

while Doo represents the behaviour

If n = 2, then Coo = Doo. Orbits approaching this point along a center manifold
correspond to solutions with a behaviour

We are looking for orbits approaching the free boundary point, Boo, given
by ((D, B11) = (0, -(3), which in our variables is (X, Y) = (- 00,00). In fact,
system (10.6) can be explicitly integrated as we pointed out above, hence our
work is done. Let us summarize the results.

THEOREM 10.4. Letn &#x3E; &#x3E; 0. The unique orbit ofsystem (10.6) passing
through the free boundary point Boo = (0, -~B) comes from the critical point Doo of
the if -plane. The solutions of the Hele-Shaw problem corresponding to this orbit
are given by

THEOREM 10.5. Let n = 2 and f3 &#x3E; 0. The unique orbit of system ( 10.6)
passing through the free boundary point Boo = (0~ ~~) comes out from the critical
point Coo of the X Y plane along a center manifold. The solutions of the Hele-Shaw
problem corresponding to this orbit are given by

REMARK. As in the PME case, these solutions do not give the asymptotic
behaviour in an exterior domain for any {3. In the Hele-Shaw problem there is
also a logarithmic correction (cf. [QV]).

THEOREM 10.6. Let n  2 and f3 &#x3E; 0. The unique orbit of system (10.6)
passing through the free boundary point Boo = (0, -P) comes from the critical
point Coo of the X Y -plane. The solutions of the Hele-Shaw problem corresponding
to this orbit are given by

REMARK. In this case the solutions are not singular at the origin. Indeed,
they show a behaviour v = 
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11. - Conclusions and extensions

We have shown that the asymptotic behaviour of the solutions of the ex-
terior problem for the porous media equation in dimensions n &#x3E; 2 with fixed
nonnegative and nontrivial boundary data is described by two matched expan-
sions. The inner expansion is given by a stationary state P (x) with harmonic
m-power, which takes into account the details of the geometry of the domain
and the form of the boundary data. On the other hand, the outer expansion,
which allows to precisely locate the free boundary, is given in dimensions n &#x3E; 2

by a radial self-similar solution of the PME which has a standing singularity at
the origin, x = 0, t &#x3E; 0. There are a number of variations of the above results
that can be addressed by the methods of the paper. We discuss some of them
and indicate the corresponding results.

NONINTEGER DIMENSIONS. We remark that, when we restrict ourselves to

classes of radially symmetric functions, all the above assertions hold for non-

integer dimensions and the analysis done for n an integer larger or equal than
3 extends to real n &#x3E; 2. In dimension n = 2 the outer expansion is of the same
type but for the presence of logarithmic corrections in the scaling factors, which
account for the fact that there is no self-similar solution which approximately
solves the problem even with radially symmetric domain and radial boundary
data. Dimension n = 2 marks in this respect the change of behaviour. It can

easily be shown that for radial solutions and 0  n  2 the analysis produces
an asymptotic behaviour similar to the one-dimensional case. Let us sketch
the simple arguments: the self-similar solutions with P = 1/2 constructed in
Theorem 9.3 play a special role in the proof. These solutions have the form

t) = Uc(rt-I/2), with = c. We start by considering solutions with
initial data uo m 0. Then, given an arbitrary 8 &#x3E; 0 there is a value t &#x3E; 0 big
enough such that

where c is the value of u at the fixed boundary. Convergence follows easily.
In order to prove convergence for general initial data we need the following
radial version of the contraction property (2.3):

The proof continues as , in Theorem 7.1. We leave the details to the interested
reader.

INITIAL DATA: we have made the assumption of compactly supported initial
data and shown that they have no influence at the asymptotic level. If the data
have fast decay at infinity the result is still true. Even for data in L 1 we have



222

convergence in L 
1 
norm, thanks to the property of L 1- continuity of solutions.

This will not be true if larger classes of data are chosen, a question that we
leave for future research. Let us point out that there are classes of singular
self-similar solutions with a different behaviour at infinity. They correspond to
orbits joining the critical point D = ( 2mn , 0) of the X Y-plane with the critical
point A = (0, 0) of the 4$W-plane (in the notation of Section 4). In other words,
instead of entering the point B and having a free boundary, they enter A and
decay as ~ ~ ~ tends to infinity. More precisely, they enter A along the eigenvector
( 1 - 1 hence 4$ rv C|03BE|-1/03B2 , which means a behaviour at infinity given
by 

~.

Such solutions exist for all f3 &#x3E; f30/ m, that is, for 8 &#x3E; -n. Hence these solutions
are not integrable in x, as expected. For the boundary data we consider here,
the correct exponent choice is f3 = An easy comparison argument shows
that we may replace the condition of compact support on the initial data of our
problem by the condition uo(x) = and the asymptotic rate is the same

given in the Introduction. Of course, we lose the free boundary, which makes
the observation less interesting.

LIMIT m ~ oo: we have shown that the asymptotic picture converges
towards the asymptotics of the Hele-Shaw problem studied by the authors in
[QV], where it is also proved that Hele-Shaw gives the asymptotic behaviour of
the Stefan problem in dimensions n &#x3E; 1 (but not for n = 1). In other words, the
solutions of both the Stefan and the Hele-Shaw problem in an exterior domain
have the same asymptotic behaviour, namely they converge to the solution of the
Dirichlet exterior problem for the Laplacian in the interior of the positivity set,
and to a singular, radial, self-similar solution of the Hele-Shaw problem close
to the free boundary. Thus, in the Stefan problem we observe a phenomenon
of asymptotic simplification, something that does not occur for the PME. Let us
point out that the relative simplicity of the Hele-Shaw model allowed in [QV]
for the explicit computation of the actual solutions of the exterior problem under
radial symmetry. This was not possible in the present situation and it implied
the need of a further development of the asymptotic tools, which makes the
theory developed here more amenable to application in other contexts.

BOUNDARY DATA: the initial assumption of constancy in time was easily
relaxed into uniform convergence into a stationary state g (x ) by approximation.
Weaker convergences will pose problems which are worth studying.

More interesting is the consideration of decaying boundary data. The ideas
presented in this paper have a natural application to problem ( 1.1 )-( 1.3) with
variable data

under conditions of the type
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using the classes of singular self-similar solutions with f3 ~ f30 constructed in
Section 9. Let us sketch some of the main developments in this case and
announce the basic asymptotic result. We assume for simplicity n &#x3E; 2 and

radially symmetric data. The self-similar solutions exist for every f3 
f3o/m, and provide us with a solution of the PME taking boundary data

so that they cover the range cr E (- oo, 1/m). However, for f3 the
behaviour of the self-similar solution is different since it corresponds to a change
in the type of connection, that now starts from the origin in the X Y-plane,
instead of starting at the point D. Accordingly, the boundary behaviour jumps
to Barenblatt’s exponent, or = n / (n (m - 1) + 2), which is larger than the limit
of ( 11.3), 1 / m . Moreover, when we go down below f3B we find self-similar
solutions which change sign near x = 0, and can thus serve as subsolutions.
After a careful analysis we can state the following result.

THEOREM. For data of the form ( 11.3) with a E R we get an interface growth
of the form

When we take 1/1 (x, t) - 0, i.e. in the o, we still find Barenblatt’s
source-type solutions with exponent P = f3B.

Detailed proofs of the asymptotic behaviour of this problem will be given
elsewhere, [QV2]. For n = 1 this problem was studied in [Ba2], [GP 1,2] . A
new model problem applicable to infiltration in porous strata is developed in
[BV] and presents new challenges in several dimensions.

OTHER EQUATIONS AND PROBLEMS: a very natural extension concerns the
Neumann problem for the PME. The technique can also be extended to other
geometries, thus joining this problem with the standard Dirichlet and Cauchy
problems. It can also be extended to the PME in the range m  1, the so-
called fast diffusion equation, but in this case no free boundary appears and
the problem seems less interesting. The limit situation m - 1 offers quite
interesting limit problems in the so-called Hamilton-Jacobi scale. Several other

degenerate diffusion problems are next in the line, like for example the p-
Laplacian equation

where the p-Laplacian operator is defined as
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and p &#x3E; 2 is a constant. We can also consider a more general equation, the
so-called doubly nonlinear equation

from which both the porous media and the p-Laplacian equations are particular
cases. We can prove for this equation analogous asymptotic results and only
careful attention should be paid to the special properties of the p-Laplacian
operator. Let us give the results, which might interest the reader. The near-
field limit is given by the stationary state P (x) solving the following Dirichlet
Exterior problem:

The behaviour of P at infinity is given by

Thus, we see that for this problem the critical dimension is n = p. We introduce
a scaling of the form

The scaled solution v(y, t) converges as t ~ oo to a radially symmetric, self-
similar solution of the doubly nonlinear equation (11.7), which turns out to be
singular at the origin if n &#x3E; p and that has a constant behaviour at that point
if n  p. In both cases there is a constant to be adjusted through suitable

matching. The free boundary is given by

For the limit case n = p we have, as usual, logarithmic corrections. Thus, u
behaves in the outer limit like
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for a certain profile U which is nonnegative, decreasing, compactly supported
and singular at the origin. The free boundary moves like

Finally, problems with reaction, absorption or convection terms can be
treated. The interested reader can find extensive preliminary information on
asymptotic behaviour and self-similarity for many of such equations in [S4].
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