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. 1-

On the Schauder Estimates of Solutions to

Parabolic Equations

QING HAN

Abstract. In this paper we give a priori estimates on asymptotic polynomials of
solutions to parabolic differential equations at any points. This leads to a pointwise
version of Schauder estimates. The result in this paper improves the classical
Schauder estimates in a way that the estimates of solutions and their derivatives at
one point depend on the coefficient and nonhomogeneous terms at this particular
point.

Mathematics Subject Classification (1991): 35B05, 35B45.

Schauder estimates play an important role in the theory of parabolic equa-
tions, on which are based the existence and regularity of solutions. It was first

proved, for the constant coefficient equations, by writing solutions explicitly in
terms of fundamental solutions and analyzing the corresponding singular inte-
grals. The general case can be recovered by a technique of freezing coefficients.
For Holder norm estimates on higher order derivatives we need to differenti-
ate equations to get equations for the derivatives. Basically a priori estimates,
or regularities, of solutions in a set depend on properties of coefficients and
nonhomogeneous terms in the same set.

In this paper we will use the idea of comparing solutions with polynomials
to obtain Schauder estimates, especially on higher order derivatives. We do
not need to differentiate the equations to get equations for derivatives. Hence
we need very weak assumptions on coefficients. Specifically in order to obtain
regularity and a priori estimates on derivatives of solutions at one point, we only
need assumptions on coefficients and nonhomogeneous terms at this particular
point. We will carry out our discussion for parabolic equations of arbitrary
order.

The idea of comparing solutions with polynomials was used by Caffarelli
in [4] to discuss fully nonlinear elliptic equations. It was generalized to the
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parabolic case by Wang in [18]. They derived Schauder estimates for viscosity
solutions to equations of the second order by comparing solutions with quadratic
polynomials. Such a comparison was made in a neighborhood of a point by the
maximum principle. Hence regularities of solutions at one point is determined
basically by properties of coefficients and nonhomogeneous terms at the same
point. They proved, among others, that the second order derivatives of solutions
are Holder continuous at one point if coefficients and nonhomogeneous terms
are Holder continuous only at that point. Their arguments are mainly for the
second order equations since the maximum principle is essentially employed.

In order to generalize this idea to higher order equations we need to con-
struct polynomials by other methods. In [3], Bers proved that solutions to

homogeneous linear elliptic equations, which vanish at 0 with the order d, are
asymptotic to nonzero homogeneous polynomials of degree d. Such a result
was generalized in [2] to solutions to parabolic equations of the second order.
It is reasonable to think that derivatives of solution at 0 of the order not ex-

ceeding d are zero, that derivatives of the order d are given by coefficients of
such polynomials and that whether the derivatives of the order d are Holder
continuous are determined by the error terms. In order to obtain Schauder esti-
mates on solutions at this particular point we need to derive a priori estimates
on asymptotic polynomials and error terms.

As a crucial step we need to obtain a priori estimates on solutions them-
selves with respect to their vanishing order. Such a result, in its simplest form,
states as follows. Suppose u is a solution to some homogeneous linear parabolic
equation of general order. If for some integer d,

then there holds

where C is a constant depending only on coefficients of equations and the
integer d. We should emphasize that in our discussion we are interested only
in a priori estimates. We do not assume solutions satisfy the unique continuation.
However it is the best case, from the point of view of a priori estimates, that
solutions vanish at infinite order at some point, since all "derivatives"vanish at
this point. Due to the similar reason, our Schauder estimates on higher order
derivatives of solutions at a particular point begin with the order equal to the
vanishing order, since "derivatives" of the order less than the vanishing order
equal to zero.

The method is based on singular integral estimates. With the help of the
fundamental solutions we express solutions, including derivatives of solutions of
arbitrary order, by singular integrals. There is no need to differentiate equations.
Hence it is only needed the behavior of coefficients and nonhomogeneous terms
at a particular point. For precise statements see Theorem 3.1 and Theorem 3.2.
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Not only do we have a priori estimates on higher order derivatives, we may
also prove the continuity of these derivatives. Since "derivatives" of solutions
are given by coefficients of polynomials, we just need to prove the convergence
of such polynomials.

The method in this paper, based on fundamental solutions and singular
integral estimates, is general in nature. It can be applied to more general
setting. In this paper we will confine ourselves in the discussion of a single
linear equation of the parabolic type.

The motivation for results in the current paper originates from the discussion
of nodal sets of nonsmooth solutions. We would like to obtain results on the

geometric structure and measure estimates of the nodal sets, where solutions

vanish, and the singular nodal sets, where solutions and their derivatives of any
orders not exceeding the order of equations vanish. For equations of the second
order the singular nodal sets are just critical nodal sets. In order to do this we

need to blow up solutions at nodal points. If solutions do not vanish at infinite

order the blow-up limits are homogeneous polynomials, which are called the
leading polynomials of solutions and whose degrees are called the vanishing
orders of solutions. Hence locally solutions can be viewed as perturbations of
polynomials, although no analyticity or smoothness is required. Since nodal sets
of polynomials are easy to analyze, we want to argue that locally the nodal sets
of solutions, in both geometric structure and measure estimates, do not change
significantly compared with nodal sets of the leading polynomials, at least for
almost all nodal points with respect to some appropriate Hausdorff dimension.
In other words the nodal sets of leading polynomials represent locally the nodal
sets of solutions. We also want to get similar conclusions for singular nodal
sets, although situation there is more complicated. In order to achieve these we
need the a priori estimates on the leading polynomials and the error terms. Such
a priori estimates, stated as Theorem 2.2, are the simplest forms of Schauder
estimates. General forms are given in Theorems 3.1 and 3.2. In this paper
we only discuss such estimates. We will pursue the applications on nodal sets
elsewhere.

The paper is written as follows. In Section 1, we will discuss solutions to

parabolic equations with constant coefficients. The a priori estimates for such
solutions play an important role in the following section. In Section 2 we will

prove the a priori estimates on the asymptotic polynomials and error terms. In

fact it gives the simplest form of the Schauder estimates. In Section 3 we will

prove general pointwise Schauder estimates by induction.

1. - Solutions to constant coefficient equations

Throughout this paper we fix m as an even integer.
A function f (x, t) is p-homogeneous of p-degree d if for any h &#x3E; 0 and
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there holds

A polynomial P(x, t) is of p-degree at most d, nonnegative integer, if it
can be decomposed into a sum of p-homogeneous polynomials, whose p-degree
of p-homogeneity is at most d.

For any (xo, to) E Rn x R and any r &#x3E; 0 we define the p-ball

Correspondingly we define the p-norm for (x, t) E Rn x R as

We may check easily that

We define as the Sobolev space of functions whose x-derivatives

up to m-th order and t-derivative of first order belong to 
Suppose is a collection of constants for any multi-index v E 7~+ with
= m. The equation

is parabolic if

for some positive constant À. We also assume

for some positive constant K.
Then there exists a fundamental solution r (x , t ) for t &#x3E; 0 such that

In fact, by Fourier transformation, we have the explicit expression
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We also have the following estimates

where C, and c are constants depending only on n, m, À, K and lit z. For
a proof see [8]. We always define r (x, t) n 0 for t  0.

For f E for some p &#x3E; 1, define

Then u E and satisfies Lu = f. Moreover by Calderon-Zygmund
decomposition for parabolic equations and Marcinkiewicz interpolation there
holds the following estimate

where C is a positive constant depending only on n, m, h and K. For detailed
analysis see [7] or [13].

Based on this estimate, with the following Lemma 1.1, there exists inte-
rior WPM, I estimates for solution u of the equation

We first discuss some basic properties of solutions to homogeneous equa-
tions.

LEMMA 1.1. Suppose u is a solution of (1. 1). Thenforanymulti-indexJL E 7+
and any nonnegative integer 1 there holds

where C is a constant depending only on n, m, À, K and -E- ml.

PROOF. The proof is standard, based on induction. 0

LEMMA 1. 2. Suppose u is a solution of (1. 1). Then for any nonnegative integer
d there exist p-homogeneous polynomials Pi with p-degree i, i = 0, 1, ... , d, such
that
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where the polynomial Pi satisfies L Pi = 0, f ’or i = 0, 1, ... , d. In fact Pi is given by

PROOF. The proof is straightforward. By Taylor expansion, we have

with

where ~ (x , t ) , are positive numbers less than 1. By Lemma 1.1 we

have the desired estimate on Rd.
Direct calculation yields that each Pi is a solution of equation ( 1.1 ). In

fact, we have

and for any v e 7~+ with Ivl = m

Therefore

since DIL,1 u is also a solution.
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REMARK. In both Lemma 1.1 and Lemma 1.2 the sup-norm at the right
side may be replace by LP-norm for p &#x3E; 1 + n/m.

The following result plays an important role in the subsequent discussion.

LEMMA 1.3. Suppose f E L p ( Q 1 ), p &#x3E; 1 + n / m, satisfies

for some positive constants y, a E (0, 1), and some integer d &#x3E; m. Then there
exists a function u E such that

and

where C &#x3E; 0 is constant depending only on n, m, p, d, À, a and K.

REMARK. In general Lemma 1.3 does not hold if a = 0 or a = 1.

PROOF. Without loss of generality we assume f (x, t) = 0 for I (x, t) I &#x3E; 1.
Let r be the fundamental solution of L. We set

Then w satisfies

and

For each (y, s) # 0, consider the Taylor expansion of y, t - s) at

(x, t) = 0. For each nonnegative integer k, let rk denote the p-homogeneous
k-th order terms, i.e.,

Lemma 1.2 implies

By (1.4) we also have
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where C depends only on and + me. Set

Then v is a polynomial of p-degree  d and satisfies L v = 0. We may show
by (1.5) that

The proof is based on the direct calculation. In fact, by setting
we have for (x , t ) E 6i(0)

Now we set

Obviously L u = , f. We will show that u vanishes with the order at least I
at (0, 0). In fact we will prove that
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Fix 0  (x , ~)! I  4. Split the integral ( 1.12) into three parts:

Again denote Then by Holder inequality

provided p &#x3E; 1 + -1. For /2 we use similar method as that for ( 1.11 ). By (1.9)
we have

Last, for (x, t) and (y, s) satisfying 21 (x, t)  I (y, s) ~, by the proof of Lemma 1.2,
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we have

where ~ - ~ (x, t; y, s) and q = q(x, t; y, s) are positive numbers less than 1.

By (1.9) it is bounded by

Note since Therefore we get

For any (x, t) E Q 1/2 there exists an integer M such that
I. . Then we have
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This finishes the proof of (1.13). Since L u = f in Ql (0), interior estimates

imply

By (1.8) and (1.11), the estimate (1.14) can be extended to Q 1.

COROLLARY 1.4. Suppose f E L p ( Q 1 ), p &#x3E; 1 + n / m, satisfies

for some positive constants y &#x3E; 0, a E (0, 1 ), and some integer d &#x3E; m. For any
solution u E Wm (Q 1) of Lu = f there exists a polynomial Pd of p-degree  d

with L Pd = 0 such that

where C &#x3E; 0 is constant depending only on n, m, p, d, À, a and K.

PROOF. By Lemma 1.3 there exists a v E with L v = f such that

and

Note L(u - v) = 0. By Lemma 1.2, we may write

where Pd is a polynomial of p-degree  d and Rd satisfies

for any (x, t ) E Q 1. Now we have u = Pd + v + Rd and u - Pd has the required2

estimate. 11

REMARK. Both Lemma 1.3 and Corollary 1.4 hold for any integer d with
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2. - A priori estimates on leading polynomials and error terms

Now we may control the leading polynomials and error terms for solutions
of general parabolic equations in a uniform way. Roughly speaking if solution u
vanishes with order d at 0, then "derivatives" of order up to d - 1 vanish at 0
and "derivatives" of order d and error term can be estimated uniformly.

Suppose that L is an m-th order homogeneous parabolic linear operator in
Ci(0) c R’ x R given by

where the coefficients verify the following assumptions:

and

for some positive constants À, K and some continuous and increasing function
w : R+ with w (r) ~ 0 as r ~ 0+.

We should emphasize that our assumptions (2.2) and (2.4) are made only
at the origin.

We first prove an interior estimate with balls centered only at origin.

LEMMA 2.1. Let L be an m-th order parabolic operator in Q (0) with the
form (2.1 ) satisfying (2.2) - (2.4) and u a 1 solution of L u = , f in Q 1 (o) for
some f E Lp ( Q 1 ) with p &#x3E; 1 + -~-. Then there holds the following estimate for any

where C and R are positive constants depending only on ~,, K and w.

PROOF. Set Then we may write the equa-
tion as
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By introducing cut-off functions we have for any I

where E is an arbitrary positive number and the constant C depends only on ~,, K
and c~. Choose E such that CE = 1/4. Then for any R such that 1/4,
we get for any 0  r  R

By a standard iteration we get for any

Hence for any r &#x3E; 0 with Cw (2r)  1/4 we obtain

Lemma 2.1 follows from the interpolation. D

For subsequent results we need more assumptions on leading coefficients.
We assume, in addition,

for some positive constants K and a  1.

THEOREM 2.2. Let L be an m-th order parabolic operator in Q 1 (o) with the
form (2.1) satisfying (2.2)-(2.5) and u a Wpm, 1 solution of Lu = f in Q 1 (o) for
some f E LP ( Q 1) with p &#x3E; 1 ~- m . Suppose, for some p-homogeneous polynomial
Q of p-degree d - m, f satisfies

for some integer d &#x3E; m and y &#x3E; 0. Then if
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for some p E (0, 1 ] there holds

where C is a constant depending only on n, p, m, d, À, K, a and K. Moreover there
exists a p-homogeneous polynomial P of p-degree d such that

and

where C and R are constants depending only on n, p, m, d, À, a, K, K and w.

PROOF. We prove Theorem 2.2 in two steps.

STEP 1. Existence of the p-homogeneous polynomial P.
We set for nonnegative integer k

for some 0  a 1  a. We will prove ck  oo as long as ,8 1. By (2.7)
we know co  oo.

Lemma 2.1 implies that for any r  R

Set and We write the

equation as
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By taking the LP-norm in Qr (o) and combining (2.14) we get

for any r  R.
Take a p-homogeneous polynomial PI of p-degree d such that L(0)Pi = Q.

Then we have

By assumption (2.5), we get for any r  1

where C depends only on n, d, m, p and K. Therefore u - PI satisfies

with

for any r  R. It is obvious that (2.16) also holds for any q to replace p with
1  q  p. By (2.14) we get for any r  R

We may write the equation as

For any q with we have
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If we take Hence we have

If ~ we may take any q with . Then

Hence

This implies

In both cases we conclude for some a 1  a and some q with

for any r  R.

If a + p  1, we apply Corollary 1.4 to u - Pi with p replaced by q.
By (2.16)-(2.18) there exists a polynomial Po with p-degree  d - 1 such that

or

for any (x, t) E QR. By (2.7) this implies that Po --_ 0 and
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Hence cl  oo. This is an improvement, compared with (2.7). We may repeat
the above argument. We may assume, by choosing a smaller fl if necessary,
that

for some nonnegative integer k. By repeating the above argument k times we
obtain 

1

Then we get instead of (2.18)

for any r  R. By Corollary 1.4 again, there exists a polynomial P2 of p-degree
 d with L(0)P2 = 0 such that

for any (x, t) E QR. Set P = PI + P2. Then L(0)P = Q and (2.7) implies
that P is p-homogeneous of p-degree d. In particular we have

Now set

By essentially the same argument we obtain

for any Q R .

STEP 2. Estimates of P and u - P.
We will prove the required estimates under the additional assumption

for some small 17 &#x3E; 0, depending only on n, p, m, d, À, K, a, K and w. The

general case can be recovered by a simple transformation (x, t) ~ (Rx, Rmt)
for an appropriate R E (0, 1 ) .
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Set 1/1 = u - P and

This is finite by (2.20). Then we may write equation as

since L(0)P = Q. By Lemma 2.1 we have for any

We write the equation as

Then we have by (2.21) for any r  R

Now we may apply Corollary 1.4 to obtain a polynomial P of p-degree
such that

Condition (2.22) implies P - 0. Hence we have

It is obviously true for R  r  1. By taking the supremum over
we get

If q is small such that 1/2, we have

or
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By (2.24) we get

Hence Corollary 1.4 implies

By definition of 1/1 we have

Again interior estimates imply that

We then obtain

Suppose P restricted in et) E et) = 1 } attains its maximum

at (ex , et ) . Choose x = and t = Then we get by p-
homogeneity of P

Choose (x, t ) small we obtain

or

This is (2.10). With (2.25) we get (2.11). (2.12) follows from interior esti-

mates. 0

REMARK. We can prove a similar result for integer d  m. Except f E
we do not need any extra assumptions on f. Then (2.9) holds with

Q - 0 and (2.10)-(2.12) hold with y = 

REMARK. Theorem 2.2 still holds if instead of (2.3) av satisfies some

appropriate integral condition for 1.

REMARK We can also compare leading polynomials of two solutions. In

the following we take i = 1, 2. Suppose Li is an m-th order parabolic operator
as in Theorem 2.2 and ui i is a W’,’ 1 solution of Liui = fi in Q 1 (0) for some
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fi E with p &#x3E; I + L. Suppose, for some p-homogeneous polynomial Qi i
of p-degree d - m, fi satisfies

for some positive constants yi &#x3E; 0. We assume

and Pi is the p-homogeneous polynomial of p-degree d given by Theorem 2.2.
We subtract two equations to get

We write By (2.10)-(2.12) we have

and

The function F begin with p-homogeneous polynomial of p-degree d - m

and the error term has the estimate

where L21 denotes the maximal difference of corresponding coefficients
of Li 1 and L2. Set y such that

Hence we have
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We may apply Theorem 2.2 to the equation (2.26) to obtain

and

where C* satisfies

where C is a constant depending only on n, p, m, d, À, a, K, K and w.

Hence we have the following result.

COROLLARY 2.3. Let be a sequence of m-th order parabolic operators
in Q 1 (o) with the form (2.1) satisfying (2.2)-(2.5) and I u0 a sequence I

functions such that each ui is a solution of L i u i = fi in Q 1 (o) for some fi E L P (Q 1)
with p &#x3E; 1 + f!¡. Suppose that Li ~ Lo as i - oo in the sense that the corresponding
coefficients converge in the sup-norm and that, for a sequence of p-homogeneous
polynomial of p-degree d - m, fi satisfies

and

for some integer d &#x3E; m. If

and

then there holds

Moreover if { Pi is the sequence of p-homogeneous polynomials of p-degree d
for {u~ }°°_o as in Theorem 2.2 then
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3. - Schauder estimates

Before we state our main estimates we first introduce some terminology.
DEFINITION. Let u be an LP function in Q i for 1  p  oo. For a E (0, 1)

U is p Cd+o, , dma
and nonnegative integer d, u is C m at 0 in L sense, u E LP 1
if for some polynomial P of p-degree not exceeding d,

Note in the above definition, the polynomial P is unique if they exist. We may
also define the corresponding semi-norms as follows:

We may also define the following norm

For brevity we use the notation Cd+« instead of 
Now we may state the pointwise Schauder estimates. The operators are as

discussed in Section 2. Suppose that L is an m-th order homogeneous parabolic
linear operator in Q (0) c x R given by

where the coefficients verify the following assumptions:

for some positive constants h, K and some increasing continuous function N :
/~+ -~ R+ with w(0) = 0.

We state a special case first.
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THEOREM 3. l. Let L be an m-th order parabolic operator in Q 1 (0) with the
form (3.1 ) satis, fying (3.2)-(3.4) and u a W;,I 1 solution of Lu = f in Q 1 (0) for
some f E Lp ( Q 1 ) with p &#x3E; 1 -f- f!¡. Suppose that d &#x3E; m is a nonnegative integer
such that 

I

If, for some a e (0, 1 ) and some integer 1 &#x3E; 0, f e and av e

any v ~ &#x3E; 1, OJ, then u e CL~I+a (~). Moreover there
holds the following estimate

where C depends only on n, m, p, d, l , ~, , K, a, wand

L ~’

PROOF. We will prove Theorem 3.1 by induction on 1. For 1 = 0, it is

TheoremA2.2. Note that (2.5) is equivalent to av E for v ~ I = m. For

illustration we prove for I = 1. By assumptions there exist p-homogeneous
polynomials Qd-m and Qd-m+l of p-degrees d - m and d - m + 1 respectively,
p-homogeneous polynomials a(i) of p-degree i for lvl I &#x3E; m - i, i = 0, 1, such
that

for any r  1. Write 0 = f - Qd-m - By Theorem 2.2, there exists a
homogeneous polynomial Pd satisfying (2.9) to (2.12). Set 1/1 = u - Pd. Then
1/1 satisfies the equation

It is easy to see that the polynomial
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is p-homogeneous with p-degree d - m + 1 and that

for any r  1. By (2.12) we have

We may apply Theorem 2.2 to 1/1 with d replaced by d + 1. Hence there exists
a p-homogeneous polynomial Pd+l of p-degree d + 1 satisfying

and

where

By expression for Q and estimates on 1/1 and Pd there holds

This finishes the proof for 1 = 1. 1:1

THEOREM 3.2. Let L be an m-th order parabolic operator in Q 1 (o) with the
form (3.1 ) satisfying (3.2)-(3.4) and u a 

1 solution of Lu = f in Q 1 (o) for
some f E L p ( Q 1 ) with p &#x3E; 1 + f!¡. If, for some a E (0, 1) and some integer
d &#x3E; m, f E and av E for any I v I = 0, 1, ~ ~ ~ , m, then
u E (0). Moreover there holds the following estimate

where C depends only on n, m, p, d, À, K, a, wand I 1) for I
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PROOF. It is similar to that of Theorem 3.1. 0

REMARK. Both Theorem 3.1 and Theorem 3.2 hold for integer d with
1 1. No extra assumptions are needed for coefficients av and

nonhomogeneous term f. Only &#x3E; appears in the right side of the
estimates.
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