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Rate of Approach to a Singular Steady State in
Quasilinear Reaction-Diffusion Equations

JAMES W. DOLD - VICTOR A. GALAKTIONOV -

ANDREW A. LACEY - JUAN LUIS VÁZQUEZ

Abstract. We study the asymptotic behaviour of global-in-time sQlutions to a
quasilinear reaction-diffusion equation in the case when it admits a unique stable
stationary solution which is not a bounded function (a singular steady state). We
investigate the convergence from below of global solutions to the singular state
and discover that such a stabilization is not of a self-similar nature. Actually, it
is given by a certain matching of different asymptotic developments in the large
outer region closer to the boundary and the thin inner region near the singularity.
Let BR =  R) be a ball in of the radius R &#x3E; 0. The matching procedure
is worked out in full detail for the following well known examples of semilinear
heat equations in BR x R+:

and

Both problems are posed in Q = BR x R+ with initial data u0(x) less than the
singular steady state Us. The growth rate at the singular point (the origin) is proved
to be of the order O(t) for (EE) and of an exponential type for (PE).

Mathematics Subject Classification (1991): 35K55 (primary), 35K65 (sec-
ondary).

Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)
Vol. XXVI ( 1998).

1. - Introduction, preliminaries and main results

Let [  R} c JRN be a ball of the radius R &#x3E; 0 with boundary
SR = IIXI = R } . We consider semilinear diffusion problems such as

KEY WORDS: Semilinear and quasilinear heat equations, Singular stationary solution, Stabilization,
Matched expansion, Linearized eigenvalue problem.
Pervenuto alla Redazione il 14 gennaio 1997.
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with a given nonnegative source term f (u) of a superlinear growth as u -~ oo;
h &#x3E; 0 is a parameter. Such equations model, among other problems, the

temperature for an exothermic chemical reaction, and are well known to exhibit
the phenomenon of blow-up, namely the solution becomes unbounded after a
finite time if the initial temperature uo(x) is too big. On the other hand, if
there is a minimal stationary solution then for small initial data, say less
than US, the solution to the semilinear parabolic problem ( 1.1 )-( 1.3) is global
and, as is well known from the literature, tends as t -~ oo to the minimal

steady state Us . Moreover, if the equation does not admit any stationary state
then all the solutions are expected to blow up in finite time for any data uo.
Thus, the general structure of stationary states to the parabolic problem under
consideration plays a fundamental role in understanding the behaviour of a wide
class of nonstationary solutions.

1.1. - Closed and open stationary spectra

For many problems of interest the response diagram for steady states of
the stationary problem

in

corresponds to the case of a closed spectrum. In this case, there is a bounded
classical steady state for all h s h* and no steady state for A &#x3E; À*. Then
the corresponding nonstationary problem is quite well understood and has been
carefully studied. If h &#x3E; k,, then any solution u (x, t) blows up after a finite
time provided f satisfies some conditions which are true for instance for the
most typical reaction terms or f (u) ^~ uP, p &#x3E; 1. If h s k,, and the
initial function uo is sufficiently small then u(., t) -~ Us, the minimal stationary
solution of (1.4), as t -~ oo. Moreover for h  k,,, due to the classical stability
theory the stabilization is exponentially fast, of the order where the

exponent ~,1 I &#x3E; 0 is the first eigenvalue of the corresponding stationary linearized
operator constructed via a standard procedure.

It is possible, however, for the spectrum of the steady problem to be open.
In this case there is a classical, stable (minimal) stationary solution for h  À*,
no steady state for ~. &#x3E; k,, and, what will be important for us, a unique weak
singular (i.e., unbounded in the L°°-norm) steady state for h = À*. In the

critical case h = X,, the corresponding singular steady state Us is still stable
from below in, say, the L2-norm (but quite unstable from above, cf. [PV]).
There is now the question of the rate of approach of global classical solutions
of ( 1.1 )-( 1.3) to the unique singular steady state Us in the pointwise sense taken
over compact subsets of BR B fOl (x = 0 is assumed to be the unique singular
point where Us = oo), as well as of the rate of divergence of at the

singular point x = 0.
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1.2. - The heat equation with exponential source

In the present paper we study the critical case À = À* of the open spectrum.
By rescaling x H ax we may put h = 1. We consider the classical combustion
equation [Z4] with an exponential source

Then the open spectrum case arises if 10. The unique singular stationary
state exists for N &#x3E; 2 and has the form (cf. [G] and [JL])

In order to satisfy the boundary condition we set

We fix initial data uo E 

For 3  9 the singular state is unstable. On the other hand, if 10 it
is stable from below and as t -~ oo (see e.g. [LT] and [PV])

Recall that for N &#x3E; 10 the solution u (x, t) with singular initial data uo V
L 00 (B R) is unique in the class {u  UI, see [PV].

We will describe the precise rate of convergence of u(., t) to Us using the
L 00 -norm. The main facts are stated as follows.

THEOREM 1.1. Let N &#x3E; 10 and (1.7) hold. Then the global solution to (EE)
satisfies

where the constant ao &#x3E; 0 depends only on N.

The sharp estimate (1.9) is the result of matching of the behaviour in the
inner region, a neighbourhood of the origin, and the outer expansion away from
r = 0. It is worth mentioning that for N &#x3E; 10, the outer expansion is given by
the linearized problem due to a suitable integrability property of the nonlinear
perturbation. We prove that the matching of the exponential-type convergence
in the outer region with the inner behaviour determines the rate (1.9). The

constant ao is computed in Section 5, formula (5.13).
Our analysis covers all dimensions N &#x3E; 10, which can be viewed as real

numbers (not only integers) for the Laplacian when applied to radial functions,
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Au = We prove that for any N &#x3E; 10 the behaviour in the outer

region is governed by the stable manifold of a linear operator A which admits
a suitable self-adjoint extension. It is shown that it has a purely point spectrum
in if N &#x3E; N+ = 6 + 2,J5, and in a weighted space if N E (10, N+).
(The origin r = 0 changes from the limit-point case of a singular endpoint
for N+ to the limit-circle case for N  N+.) The case N = 10, where
after an exponential scaling, the outer expansion corresponds to a slow decay
on the centre manifold of A, needs a separate analysis. We note that our inner
analysis in Section 3 is true also for N = 10.

In order to show the range of applications of the above techniques, we also
briefly consider some related nonlinear parabolic problems.

1.3. - Generalizations

First, for the semilinear equation with a power-type reaction term

the case of an open spectrum happens if (cf. [JL])

The corresponding singular stationary state has the form

Fixing now R = 1, we get the following boundary condition

THEOREM 1.2. Let N &#x3E; 10, p &#x3E; pu, and initial data uo(x) satisfy (1.7). Then
the solution u (x, t) to (PE) is such that as t --&#x3E;. oo 

’

The methods and main results carry over to a class of more general quasi-
linear heat equations with the diffusion term (the p-Laplacian
operator) or A(u’) (porous medium operator). For instance, we can cover the
case of an open spectrum for a quasilinear equation with exponential source

or for equations with power-like nonlinearities
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1.4. - Plan of the paper

Sections 2-5 are devoted to the detailed study of (EE) and to the proof
of Theorem 1.1 for N &#x3E; 10. An outline of the proof of Theorem 1.2 for

equation (PE) is given in Section 6. The present methods apply to quasilinear
generalizations such as reaction-diffusion equations with more general diffusive
operators of quasilinear type. These generalizations are discussed in Section 7.
In the Appendix we give a derivation of useful Hardy’s identities and inequalities
with best possible constants.

Acknowledgments. We would like to thank J.R. King for useful discussions.
This paper was started while the second author visited the School of Mathe-
matics of the University of Bristol, Department of Mathematics of Heriot-Watt
University and Department of Mathematics, University Autonoma of Madrid,
to which he is deeply grateful for their hospitality. His final visit to Madrid
was sponsored by the programme "Profesor Visitante Iberdrola de Ciencia y
Tecnologia". The second and the fourth authors have been partially supported
by EEC Grant SCI--0019-C(TT) and DGICYT Project PB90-0218 (Spain).

2. - First lower bounds for the exponential problem

We begin with the study of problem (EE) for solutions which are below US ,
cf. (1.7). It is proved in [PV] that for N &#x3E; 10, given uo satisfying (1.7), such
a solution is unique and bounded for all t &#x3E; 0. Setting

with

we arrive at the problem

with initial data We may assume that Wo E L2(BR) and that
0 so that via a standard regularity theory w (x, t) E C°° ((BR B {OJ) x R+)

and w(x, t) &#x3E; 0 in BR for all t &#x3E; 0. We denote by (-, .) and I - ~ I I 2 the scalar
product and the norm in L 2 ( BR ) .

We first prove the estimate of the convergence to the singular steady state
in the L2-norm. Here and in the sequel c &#x3E; 0 denotes different constants which

depend on the parameters of the equation and initial data.

LEMMA 2.1. Let N &#x3E; 10. Then as t --~ oo we have
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PROOF. Multiplying equation (2.2) by w in L2(BR) and using the regularity
of the classical solution we have

Using now the Hardy inequality (or the Hardy-Littlewood-P61ya inequali-
ty, [HLP]; see also [PV] and the Appendix) with best possible constant,

we arrive at the inequality

where y = (N - 10)/(N - 2) &#x3E; 0. Then, since

we obtain from (2.6)

Finally, since

where it I &#x3E; 0 is the first eigenvalue of the problem

we get the inequality

whence estimate (2.3). D

We now prove some preliminary lower bounds of global solutions in the
class {u  US}.
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LEMMA 2. 2. Under the hypotheses of Theorem 1.1

PROOF. In view of the Strong Maximum Principle, for any to &#x3E; 0 we
have that V(Us - u (to ) ) ~ n  0 on SI, where n is the outward normal to

SI. Hence there exists a monotone decreasing function such
that in BR, and hence u- (r, t) in BR x (to, oo) by
comparison, where u is the solution with the initial data uo at t = to. Since

we have that

where h (t) is such that Us(h(t)) = E(0, t), i.e.,

Hence, from (2.13)

Since ~(0, t), using (2.3) we arrive at (2.12). D

3. - Inner analysis

In this section we prove that in the inner region the solution u (r, t) is given
asymptotically by a quasi-steady problem so that it is close to a radially sym-
metric stationary solution. We therefore begin with the study of the properties
of a family of stationary solutions to (EE).

3.1. - Properties of the family of radial stationary solutions for N &#x3E; 10

Consider the symmetric stationary equation
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Let Uo (r) be the solution of (3.1 ) with the conditions

Clearly, Uo (r )  0 and U¿(r)  0 for all r &#x3E; 0. When 10 we have

and if N &#x3E; 10 as 

where y+ (N)  0 is a constant, explicitly computed later in Section 4. In the
critical dimension N = 10 the asymptotic expansion of Uo(r) is different:

Via the scaling invariance of equation (3 .1 ) we have that, given a fixed
it E R, the solution U~, (r) with the conditions

has the form

and satisfies (3.3). For N &#x3E; 10

while for N = 10

In both cases as it --+ oo

Observe that U,~ (r) is strictly monotone increasing in g for all r &#x3E; 0 [JL].
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3.2. - Asymptotic behaviour in the inner region

We show that in the inner region the asymptotic behaviour is given by a
slow motion of the orbit lu(-, t), t &#x3E; 0} near the family of stationary states

&#x3E; 0}. In view of an evident symmetrization and comparison argument
we now may assume that u = u(r, t) &#x3E; 0 is symmetric and decreasing in r for
all t &#x3E; 0. Therefore,

Moreover, intersection comparison with the family of stationary solutions implies
that we may also assume strict monotonicity:

See details in [S4, Chapter 7] and a similar comparison in the proof of
Lemma 3.2.

We first establish a slowly varying stationary structure of the solution in
the inner region, a result which is quite general for such kind of asymptotic
behaviour. We state this result in its most general form for all dimensions

10.

THEOREM 3.1. Let N &#x3E; 10. Then as t - o0

uniformly on compact subsets f ~ = re’(t)12  c 1, c &#x3E; 0.

PROOF. We introduce the rescaled function 0,

It then follows from (3.11) that

and

Substituting (3.14) into equation (EE), Section 1.2, and introducing the new
time variable

we obtain that the function 8 (~, t)  0 satisfies the following semilinear

parabolic equation
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where S is the stationary operator (3.1 ), C is the linear first-order operator

and

Equation (3.17) looks like a time-dependent perturbation of equation (EE).
Observe that the perturbation is not integrable in time. Indeed, we have

from (3.19) and (3.16) that

It follows from (EE) with x = 0 that a’(t) = ut(0, e"(t) so that by (3.12) we
may suppose that 1. The perturbation is uniformly bounded. Therefore,
via the standard C°°-interior regularity for uniformly parabolic equations, we
obtain bounds for the solution 0 and its derivatives and which
are uniform on compact subsets of ~ .

Let us prove that g(r) ~ 0 as t - 0. We argue by contradiction. Since

g is uniformly bounded, we then may assume that there exists a sequence
I -~ oo such that ~ - yo  0. Then using the interior regularity,

we conclude that 0 (., ik + s) 2013~ /x(-, s ) uniformly on compact subsets, where h
solves the autonomous equation

and moreover

By the Strong Maximum Principle (see comments below), this means that h(~, s)
is the stationary solution, h (s) = Vo where Vo solves the stationary equation

satisfying Vo  Us . For any yo &#x3E; 0 the function Vo comes from the blow-up
self-similar solution of (EE) of the form

One then concludes that Vo must intersect Us, otherwise, as it is well-known,
no blow-up is possible in the problem (this intersection property can be seen
from the ODE for vo). Thus, under the assumption Us, geT) vanishes
at infinity. Therefore, multiplying equation (3.17) with r = tk + s by the test
function X (~, s), integrating over x R+ and passing to the limit as k ~ oo,
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from the regularity we deduce that 0 (., rk + s) --* f ( ~ , s ) uniformly on compact
subsets where the function f (~, s) satisfies the limit equation (3.17), i.e.

It follows from (3.15) that f satisfies the same conditions. Observe that, due
to the standard regularity theory for uniformly parabolic equations with analytic
coefficients, f is a C °° -function and moreover analytic in x. Therefore, we
conclude that

Indeed, if (3.22) is not true then via the Sturmian argument (see a full list
of references in [S4, Chapter 4]), equality (3.15) for f implies that f (~, s)
intersects the stationary solution Uo (~ ) infinitely many times for 0. Since
the number of intersections between 0(~, r) and Uo (~ ) cannot increase with time
and initially (say, for i = 8 &#x3E; 0) it was finite due to the analyticity of both
solutions, this contradicts the assumption. Hence, (3.22) is valid, completing
the proof. D

We now establish a result which in particular shows that the stabilization
in (3.13) is from above.

LEMMA 3.2. For N &#x3E; 10 we have

PROOF. We argue via the Intersection Comparison with the family of sta-
tionary solutions (the method of stationary states, see [S4, p. 414]). Since
by the Strong Maximum Principle &#x3E; ( US ) r with t &#x3E; 0 for r = R, we have
from (3.10) that any stationary solution U,(r) with tt » 1 intersects M(r, 1)
exactly once. By the Sturmian argument the number of intersections J,(t) be-
tween the solutions u (r, t) and U~, (r) (i.e. the number of sign changes of the
difference u(r, t) - Ut-t(r)), cannot increase in time. Hence, 1 for all
t &#x3E; 0. This means that u (r, U~, (r ) if p = a (t ) :

Rescaling (3.24) by means of (3.14) we get (3.23) as well as (3.12). Observe
that by the Strong Maximum Principle we have the strict inequality in (3.23)
for 0. 0

The function a (t) in (3.11 ) is still unknown and will be determined later
via matching with an outer asymptotic expansion.
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4. - Linearized analysis

We devote this section to develop further the functional framework which
allows us to improve the convergence analysis of Section 2. Let us rewrite

equation (2.2) for w = Us - u in the form

where ,,4 is the linear operator

with v = 2(N - 2), and F is the nonlinear one

We begin with’ the properties of the linear operator A. First, consider A
with domain D(A) = Using the following Hardy inequality
(see the Appendix)

we have that Aw E L2(BR) for all w E D(A) and ,,4 is symmetric. It follows
from (2.6) that

with y = (N - 10) / (N - 2) &#x3E; 0 if N &#x3E; 10. The operator ,,4 is lower
semibounded and moreover positive definite. Therefore, there exists a unique
Friedrichs extension of .,4 (still denoted by ,,4) which is obtained from the

quadratic form associated with ,,4 and satisfies the same lower bound (4.5), see
e.g. [BS, p. 228]. It then follows from (4.5) that D(A). As long as
we consider radially symmetric functions (due to the symmetrization argument
for parabolic equations) we can take any real number N &#x3E; 10.

We need to consider further properties of ,,4 separately in the so-called

limit-point case and in the limit-circle case.
(i) N &#x3E; N+ = 6 + 2,J5. Let us show that A-I is compact and a Hilbert-

Schmidt operator. Indeed, solving the corresponding homogeneous problem

we obtain the following two solutions

and
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where y-  y+  0 are the roots of the quadratic equation

so that, for N &#x3E; 10,

We have that

and moreover 1/1 + E One can also check that

and ,A is essentially self-adjoint on R) [RS, p. 161]. Moreover, one can
see that 1/1+ E H 2 ( BR ) provided that N &#x3E; N- = 6 + 3,J2 ~ 10.24  N+.

The situation (4.9), (4.10) is called the limit-point case of a singular endpoint
[R, p. 205]. Due to the coercivity extimate (4.5) is well-defined. Therefore,
calculating via a standard procedure for the Sturm-Liouville operators, we
obtain an integral equation with a Hilbert-Schmidt kernel C (x, y) E 
whence the result [BS, p. 250]. It then follows that there exists an in-

creasing sequence of the eigenvalues of A, and the corresponding eigenfunctions
form an orthonormal basis in L2 (BR) restricted to radial functions. We

have that ~,1 I is simple and 1/11 (r) &#x3E; 0 in BR. The singularities of 1/1k (r) as

r -~ 0 are of the type for instance,

with a constant a = &#x3E; 0.

(ii) 10  N  N+. It follows from (4.7), (4.8) that both functions 1/1’:!:
satisfy

which corresponds to the limit-circle case of the singular endpoint r = 0
[R, p. 209]. Then there exist self-adjoint extensions of A [R, p. 210]. We

show that for N &#x3E; 10 a unique Friedrichs extension again plays a special role.
In the limit-circle case an extra boundary condition at the singular point r = 0
is necessary. This is provided by the uniform bound on the solution

Namely, we set w = ~_ (r) W . Then the function W satisfies the equation
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with the linear operator

and, due to (4.13), the boundary condition

The equation Bq5 = 0 admits linearly independent solutions 0+ = 1/1 + / 1/1- and
q5- = 1 where the latter one does not satisfy (4.16). Therefore, the endpoint
r = 0 is now in the limit-point case (and can be treated as a regular one)
for operator (4.15) subject to the condition (4.16). Then in a similar way one
concludes that B-1 is a Hilbert-Schmidt operator with eigenfunctions which
form an orthonormal basis in the weighted space p(r) = r4-N, of
radial functions.

We sum up the results as follows.

LEMMA 4.1. For N &#x3E; 10 operator (4.2) admits a unique self-adjoint Friedrichs
extension which is positive definite with a purely discrete spectrum. The first
(minimal) eigenvalue is strictly positive:

We can now easily improve estimate (2.3).

COROLLARY 4. 2. Let N &#x3E; 10. Then there exists a constant Co &#x3E; 0 depending
on the initial data such that as t - 00

PROOF. It follows from Lemma 4.1 that

Therefore, multiplying (4.1 ) by w in and using (4.19) and inequal-
ity (4.3) we get

Thus, the function is nonincreasing whence the result. D

It follows from the next section that the constant Co is indeed positive.
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5. - Detailed asymptotics: Matching expansion

5.1. - The outer region

We now prove that for N &#x3E; 10 the asymptotic behaviour of radial so-

lutions in the outer (boundary) region is governed by the stable manifold of
operator (4.2).

LEMMA 5.1. Let N &#x3E; 10. There exists a constant Co = Co (uo) &#x3E; 0 (same as
in (4.18)) such that as t -~ oo

PROOF. Setting w = e-Xltv we obtain the equation

with initial data v (o) - vo - wo. Since by the assumptions w = Us - u 
21 log r I and by (4.11) *1 (r) - rY+ as r -~ 0, we deduce that there exists

a constant A &#x3E; 0 such that

The last perturbation term in (5.2) is exponentially small in the sets c}
(and hence integrable). We now prove that f - 0 does not belong to the W-limit
set of the solution, w(vo).

In order to derive a lower bound we substitute the upper bound (5.3) in (5.2)
to get that v &#x3E; z, where the function z(r, t) solves the following linear parabolic
equation

with the same initial and boundary data. It follows from Lemma 4.1 that the
solution is given by the series

where the coefficients satisfy the dynamical system

One can see from (4.3) and (4.9) that the right-hand sides in (5.6), (5.7) are
well-defined, and the scalar product terms are exponentially small (so that the
perturbation is integrable). Specifically, we split the integrals in (5.6), (5.7)
into two parts, over Bro and over BR B Bro, where ro - ro (t) is such that
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= 1. An exponential estimate of the integral over Bro is

straightforward. In the second leading integral we use the expansion (4.11)
and the fact that the perturbation term (4.3) is quadratic of the order 
w - 0. Finally, we obtain the following exponential estimates

Since h h i -h2  0 for all k = 2, 3,..., we conclude from (5.8) that the
asymptotic behaviour as t ~ oo is governed by the first equation. From (5.6)
we deduce that the limit value ci (oo) is strictly positive provided that A is not
too large, a condition which is not essential due to the translational invariance
in time of the equation (EE) and estimate (5.3).

Passing to the limit t ~ oo we then obtain that

whence the lower bound.

Finally, multiplying (5.2) by vt in L2(BR) and integrating over t using
estimates (5.3), (5.8), (5.9), we prove convergence of the following integral

In fact, one can prove that (5.2) admits an approximate Lyapunov function
which is "almost" nonincreasing on the evolution orbits.

Fix a sequence ftj I -+ oo. Passing to the limit in (5.2) as t = tj + s -~ oo,
using (5.10) and standard regularity results for uniformly parabolic equations
we obtain that the limit set of v satisfies

It then follows from (5.3) and from the lower bound (5.9) that

The uniqueness of limit points, Co &#x3E; 0, follows from mono-
tonicity : multiplying (5.2) by v and using (4.3) and (4.9) we deduce that

This completes the proof.
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5.2. - Formal matching with the inner region for N &#x3E; 10

We now show how to match formally the inner behaviour from Theo-
rem 3.1 with the outer behaviour indicated in Lemma 5.1. Using the inner be-
haviour (3.13) and the asymptotic expansion (3.8) and setting here r = 8, 8« 1,
we expect the difference w = Us - u to satisfy

On the other hand, substituting (4.11) into (5.1 ) we deduce that at r = 8

Comparing (5.11) with (5.12) we obtain the following asymptotic equality

which implies (1.9) and gives the value of ao = 

REMARK. This analysis directly applies to the construction of solutions
= 2, 3, ... }, which in the outer region are governed by the rest of the

spectrum = 2, 3, ... } of the self-adjoint operator A, so that wk (r, t) ~
for t » 1 in 13  r  R}. Then the formal matching procedure

yields a similar but slightly greater rate of growth at the origin of the form
I for t » 1. Nevertheless, unlike the first stable (and

absolutely stable from below) pattern studied in the present paper, the higher
order ones {uk (r, t), k = 2, 3, .. I are expected to be unstable and play no role
in the evolution analysis of the dense class of global solutions. Any positive
perturbation of such uk’s implies blow-up of the solution in a finite time, while
a negative one leads to convergence to the first stable pattern.

5.3. - Proof of Theorem 1.1.

We now justify the previous formal analysis. We begin with obtaining an
upper bound of the function a(t) given in (3.11 ).

LEMMA 5.2. There holds

PROOF. It follows from (3.23), (3.7) and the expansion (3.8) that for a fixed
positive r « 1

Comparing with (5.12) we conclude that

and estimate (5.14) follows. D
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The second step consists in establishing a lower bound, which will complete
the proof of Theorem 1.1 with the precise value (5.13).

LEMMA 5.3. AS t - 00

PROOF. First, one can see that

is a supersolution of (4.1 ) provided that T » 1, so that w (r, 0) .
Therefore

is a subsolution of (EE), i.e.

By the monotonicity of u(r, t) in r we have

for t » T, where the supremum is easily calculated for t » 1 by substituting
the expansion (4.11) into the definition of the function u in (5.17), (5.16). It

is attained at r ~ const . exp (Àlt /y+), whence the result. 0

6. - Stabilization for (PE)

Let us briefly describe some new aspects in the study of stabilization for the
second model proposed in this paper, the semilinear equation (PE) of Section 1.3.

6.1. - Inner analysis

The stationary equation

admits the family U~, (o) _ JL &#x3E; 0, of the radial solutions
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where Uo is such that Uo (o) = 1. Then (3.10) holds under hypothesis (1.10).
We have that (3.13) is true on the compact subsets f~ =rot (p-1)12(t) ::~ c). The

proof is similar to that for (EE). The rescaled function is given by (cf. (3.14))
u(r, t) = a (t)9 (~, t), which solves the perturbed equation (3.17) with

and

The rate of perturbation is now

so that the perturbation is bounded, ~g’(i) (  1, and tends to zero. The passage
to the limit to prove Theorem 3.1 is the same. Lemma 3.2 also holds.

6.2. - Linearized analysis

The function w given by (2.1 ) solves the equation (4.1 ) where the linear
operator A is as in (4.2) with

The perturbation term F is

Solving the homogeneous problem (4.6) (with R = 1) we arrive at the solu-

tions (4.7) where y± satisfies a quadratic equation and finally

We have D &#x3E; 0 if D = 0 for p = pu and D  0 if Observe
that pu has the equivalent representation

as the maximal root of the quadratic equation

From the Hardy inequality (2.5) we have that (4.5) holds, where
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so that ,~4 is positive definite. We consider two cases.
(i) Checking the conditions (4.9), (4.10) of the limit-point case we find

that the first one, N + 2y+ &#x3E; 0, is always true while the second condition,
N + 2y-  0, reduces to the inequality

Therefore, N &#x3E; N+ = 6 + 20i and

where Pc is the maximal root of the quadratic equation (6.11). One can see
from (6.9), (6.11 ) that Pc &#x3E; pu for N &#x3E; N+.

(ii) In the limit-circle case for p &#x3E; pu, admits a unique Friedrichs
extension and ~,1 I &#x3E; 0 by (4.5), (6.10).

Finally, for p &#x3E; Pu, N &#x3E; 10, we arrive at Lemma 4.1 and Corollary 4.2.

6.3. - Matching expansion

The results from Section 5 are proved similarly. Finally we derive that

where and M¡ and M2 are positive constants, whence (1.13).

7. - Stabilization for quasilinear equations

As a typical example, without loss of generality we now briefly study the
quasilinear equation ( 1.15) with the porous medium operator, m &#x3E; 1. Setting
u = vm we arrive at the equation with the stationary operator of (PE):

Therefore, the same critical value (1.10) appears and the family of stationary
solutions is given by (6.2). We now follow the lines of the previous section.

In the inner analysis, the perturbed equation (3.17) consists of the stationary
operator (6.1) and the nonlinear perturbation with
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where

Since the perturbation is uniformly bounded and vanishes at infinity, the results
in Section 3 remain valid.

In the linearized analysis, we arrive at the equation .

where A is given by (4.2), (6.5) and F is as in (6.6). It follows from (7.4)
that the linearized operator ,,4 is now defined in the weighted space L2(BR) of
radial functions with the weight function

Then (6.7) holds. Finally, the conditions (4.9), (4.10) for the limit-point case
to be valid in L 2(BR) are true provided that

the restriction which plays the same role as the inequality (6.12). The extension
in the limit-circle case is performed similarly.

In the matching expansion, estimate (5.3) is true since the function A 1/1’1 (r)
is a supersolution to the equation satisfied by v = eÀ 1 t w:

The lower bound is derived via the same technique applied to the fully linearized
equation (7.7).

Lemma 5.2 holds. In the proof of Lemma 5.3 the function (5.16) is no

longer a supersolution of (7.7). Nevertheless, such a supersolution is constructed
via a small perturbation. Namely, in (5.16) one can take hi (t) = Àl (1 
Then under a suitable choice of the parameters 1£1 « 1 and y » 1 the point of
the supremum in (5.19) for t » 1 always belongs to the domain where (5.17)
is a subsolution. The rest of the proof is the same.
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Appendix: On some Hardy inequalities and identities

Though Hardy’s inequalities are well-known in the literature (see [HLP]
and [L], [Li] and references therein), we present here the derivation of some
identities and inequalities with best constants. Let us derive the following
Hardy inequality in a ball B = llxl [  R }, R &#x3E; 0.

THEOREM A .1. For every u E H 2 ( B ) n we have in dimensions N &#x3E; 5
the inequality

with best constant

This is strongly related to the first Hardy inequality [HLP] (see also a proof
in [PV]).

THEOREM A.2. For every u E Ho (B) we have in dimensions N &#x3E; 3 the

inequality

with best constant C = 4/(N - 2)2.
First of all, the functions u E C2,, (B) which vanish at = R are a dense

set in Ho , hence it is enough to prove the result for them. We may take
R = 1.

AN IDENTITY. In dimensions N &#x3E; 5 the function E L 2(B). It is

easily checked that = -alxl-4 with a = 2 (N - 4) . Therefore, in these
dimensions

Now we use A (u 2) = + to get

Observing that Au + = 0 we arrive at the "energy" identity
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from which the statement of Theorem A.l follows after applying the Holder
inequality but we get a constant k = 1 / (N - 4) which is not optimal.

MORE IDENTITIES. Let BE = {x : E I  R } and let S, = lixl == ~}. We
have

We compute the first integral of the right-hand side as

with

Using the fact that A(Ixl-’) = -(N - 3)lxl-’ and A (I X 1-2) = -2(N - 4) IX 1-4
we get

and in this way

In the limit s 0 we obtain in dimensions N &#x3E; 5 the identity

Moreover, from the formula (VU)IIXI = V(ullxl) + (UX)IIX13 we get.
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PROOF OF THEOREM A .1. We combine (4) and (6) to get

from which by the Holder inequality we obtain an embedding inequality

Going back to (4) we have

Using the Holder inequality in the second member we get formula (1) with
constant (2). Observe that by (6) this also gives another embedding inequality

REMARKS. 1) The proof is quicker if we use the first Hardy inequality.
Then we have 

I

with best constant C = 4/(N - 2)2. Using (5) we finally get the basic formula

Now observe that

Using the Holder inequality in the right-hand side of (10) we get (1) with the
prescribed value of k. Moreover, it is clear that since C is the best constant

for (3), k will also be the best constant for (1).

1) Formula (8) is a stronger version of (1), interesting in itself.
2) Most of the above results become trivial for N = 4. However, identity (4)

becomes

The proof given above holds since a = 0 for N = 4.



687

REFERENCES

[BS] M. S. BIRMAN - M. Z. SOLOMJAK, "Spectral Theory of Self-Adjoint Operators in Hilbert
Space", D. Reidel, Dordrecht/Tokyo, 1987.

[G] I. M. GEL’FAND, Some problems in the theory of quasilinear equations, Uspekhi Mat.
Nauk 14 (1959), 87-158. English translation: Amer. Math. Soc. Transl. (2) 29 (1963),
295-381.

[HLP] G. H. HARDY - J. E. LITTLEWOOD - G. PÓLYA, "Inequalities", 2nd ed., Cambridge
Univ. Press, Cambridge, 1952.

[JL] D. D. JOSEPH - T. S. LUNDGREN, Quasilinear Dirichlet problems driven by positive
sources, Arch. Ration. Mech. Anal. 49 (1973), 241-269.

[LT] A. A. LACEY - D. TZANETIS, Global existence and convergence to a singular steady
state for a semilinear heat equation, Proc. Royal Soc. Edinburgh A 41 (1987), 289-305.

[L] E. H. LIEB, Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities,
Ann. Math. 118 (1983), 349-374.

[Li] P. L. LIONS, The concentration-compactness principle in the calculus of variations (The
limit case, Part 2), Revista Mat. Iberoamericana 1 (1985), 45-121.

[PV] I. PERAL - J. L. VAZQUEZ, On the stability or instability of the singular solution of the
semilinear heat equation with exponential reaction term, Arch. Ration. Mech. Anal. 129
(1995), 201-224.

[RS] M. REED - B. SIMON, "Methods of Modem Mathematical Physics", Vol. II, Acad. Press,
New York/London, 1979.

[R] R. D. RICHTMYER, "Principles of Advanced Mathematical Physics", Vol. 1, Springer-
Verlag, New York/Berlin, 1978.

[S4] A. A. SAMARSKII - V. A. GALAKTIONOV - S. P. KURDYUMOV - A. P. MIKHAILOV,

"Blow-up in Quasilinear Parabolic Equations", Nauka, Moscow, 1987; English transla-
tion : Walter de Gruyter, Berlin/New York, 1995.

[Z4] YA. B. ZELDOVICH - G. I. BARENBLATT - V. B. LIBROVICH - G. M. MAKHVILADZE,
"The Mathematical Theory of Combustion and Explosions", Consultants Bureau, New
York, 1985.

Mathematical Department
UMIST, P.O. Box 88
Manchester M60 1 QD, UK
J.W.Dold@ umist.ac.uk

Department of Mathematical Sciences
University of Bath
Claverton Down, Bath BA2 7AY, UK

vag@ maths.bath.ac.uk

Department of Mathematics
Heriot-Watt University
Riccarton, Edinburgh EH14 4AS, UK
andrewl@ ma.hw.ac.uk

Departamento de Matemdticas
Universidad Autonoma de Madrid
28049 Madrid, Spain
juanluis.vazquez@ uam.es


