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Exact Boundary Controllability of Galerkin’s Approximations
of Navier-Stokes Equations

JACQUES-LOUIS LIONS - ENRIQUE ZUAZUA*

Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)
Vol. XXVI (98),

Abstract. We consider the 2-d and 3-d Navier - Stokes equations in a bounded
smooth domain with a boundary control acting on the system through the Navier
slip boundary conditions. We introduce a finite-dimensional Galerkin approxima-
tion of this system. Under suitable assumptions on the Galerkin basis we prove
that this Galerkin approximation is exactly controllable. Moreover we prove that
the cost of controlling is independent of the presence of the nonlinearity on the
system. Our assumptions on the Galerkin basis are related to the linear inde-
pendence of suitable traces of its elements over the boundary. At this respect,
the one-dimensional Burgers equation provides a particularly degenerate example
that we study in detail. In this case we prove local controllability results.

Mathematics Subject Classification (1991): 93B05 (primary), 35Q30, 65M60
(secondary).

1. - Introduction

In a bounded domain of (we can consider the 2-dimensional case as
well) we consider a flow governed by the Navier-Stokes equations. If y = y (x, t)
denotes the velocity of the flow and p = p(x, t) the pressure (defined up to a
function of time), they satisfy the Navier-Stokes equations

where it &#x3E; 0 denotes the viscosity and T &#x3E; 0 a given value of time.
We assume that we act on the flow through a boundary control. Let

ri r = 8Q - R 3, j = 1, 2 be two smooth vector fields

constituting an orthonormal basis of the tangent plane to S2 at each x E r. Let
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us denote by y (x) another tangent vector field, which is the direction in which
the scalar controls we shall use will be applied in the system. Let us denote

by n the unit outward normal to S2, and by alan the normal derivative. On
the other hand, let us denote by D (y) the symmetric part of the gradient of y
so that 

-

Let ro be an open non-empty subset of r.
We can now write the boundary conditions we consider:

with À &#x3E; 0 and where v E L2 (ro x (0, T)) is a scalar function that plays the
role of the control.

In case lo = r we shall assume that h &#x3E; 0.
Observe that the control function v is scalar and that the control it pro-

duces v y is oriented in the direction of the given tangent vector field y. Observe
also that we act on the system only on the subset ro of the boundary and that
the control enters in the system as a tangential friction.

Condition (1.2) guarantees that fr y - ndr = 0, which is necessary for the
compatibility with div y = 0.

We assume, to fix ideas, that

although all our results are valid as well if the initial data is not zero.
Then, given v smoooth enough it is known (cf. for instance J.-L. Lions [Ll])

that there exists at least one weak solution of ( 1.1 )-( 1.5). More precisely,
consider the Hilbert spaces

and

Multiply ( 1.1 ) integrating formally by parts and using the boundary
conditions we obtain:



607

Here and in what follows (., .) and ( ~ , ~ ) ro denote the scalar product in (L 2(Q))3
and (L2(ro))3. It is easy to see by classical methods that this system admits
a solution y E L~(0, T ; H ) f1 L~(0, T ; V). However, uniqueness is an open
problem. We denote by y(x, t; v) the set of all possible solutions.

We want to address the problem of (approximate) controllability. Namely,
let y T be given, satisfying at least

The problem may be formulated as follows: To find a (tangential) control v
such that there exists, among the set (possibly reduced to one element) of all
y(x, t; v), one of them which satisfies

( 1.11 ) y ( ~ , T; v ) is a close as we wish (in the L 2 sense) to y T . p

Some years ago it was conjectured by the first author (cf. J.-L. Lions [Ll])
that this is indeed the case for distributed control, i.e. when the control vector
is distributed over an open subset of Q (which can be arbitrarily small).

Many important steps in the direction of a positive answer to the conjecture
have been made.

Actually, for the case it = 0 (Euler’s equations), it has been proven by
J. M. Coron [Cl] that one has exact controllability (in suitable spaces) in the
2-dimensional case. Later on, in [C2] it was proved that 2-dimensional Navier-
Stokes equations are approximately controllable for some choices of the bound-
ary conditions. On the other hand, A. Fursikov and O. Yu. Imanuvilov [FI], by
different techniques that rely on Carleman’s estimates, have proved the null con-
trollability of small solutions. More recently, J. M. Coron and A. Fursikov [CF]
have proved the null controllability of the two-dimensional Navier-Stokes equa-
tions in a manifold without boundary.

We conjecture that similar results hold true for the tangential boundary control
considered here.

REMARK 1.1. In the problem ( 1.1 )-( 1.5) under consideration we have "very
few" control functions since we have only one scalar function as control for a
3D problem. It could be that, in this situation, approximate controllability is

only "generically" true, i.e. that, if not true for a given set ro c r, then it
will be true after an arbitrarily small modification of S2 and ro. Such a result
has been proven for the linear Stokes system with Dirichlet boundary conditions
and for distributed control by the authors in [LZ 1 ] . 0

In a recent paper (cf. [LZ2]) we have proven the conjecture for Galerkin’s
approximations of the system for distributed control. We have also proven that
one can achieve the result (actually, in the finite dimensional approximation,
we have exact controllability) at a "cost" (i.e. an estimate of the L2-norm of
the control function in terms of y T ) which can be bounded independently of the
non linearity (i.e. with the term y - oy present in the system or not) and of

I  oQ
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We are going to show that similar results hold true in the present situation
where boundary controls are used.

In order to show and to make explicit that the "cost of control" can be
bounded "independently of the non linearity", we introduce the (non physical)
family of state equations

all other conditions being unchanged, with a E R. We will prove that the
estimates we obtain do not depend on a.

, In the following section we introduce the Galerkin’s approximations and
we state the main result.

Section 3 is devoted to the proof of this result. In Section 4 we analyze
similar questions for the ID Burgers equations which, in some sense that we
will explain below, is a degenerate situation for what concerns the boundary
controllability.

2. - Galerkin’s approximations and main result

Let us consider a basis 1 of V such that fei - 1 are linearly
independent in L2 (ro) . The existence of this basis is guaranteed by the following
abstract result proved by the authors in [LZ3].

PROPOSITION 2.1. Let H, and H2 be two separable Hilbert spaces. Let L :

HI -+ H2 be a bounded linear operator with an infinite dimensional range. Then,
there exists a Riesz basis feili,l of H, such that fleili,l are linearly independent
in H2.

We consider a finite dimensional space E generated by

Of course E C V.
We now introduce the Galerkin approximation of the variational formulation

(1.8)-(1.9) of the state equation:

REMARK 2.1. System (2.3) is a set of N ordinary differential equations
which are non linear. Global existence in time of a unique solution is insured

by the fact that (e - De, e) = 0 for all e E E which is a consequence of the

fact that e E V. On the other hand, it is easy to see that for v smooth fixed,
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solutions of (2.2)-(2.3) as N - oo converge to a solution of the variational
form of the state equation. 0

REMARK 2.2. A simple inspection of (2.3) shows that in order to obtain
results of controllability, the following condition on the basis of E is rather
natural

(2.4) the dimension of span y on ro equals N.!f  -

In other words, it is natural to assume that the functions

(2.5) y . = 1, ... , Nare linearly independent on ro.

As we have seen above the choice of the satisfying
this condition is always possible. C7

REMARK 2.3. The analysis of the controllability of (2.2)-(2.3) when the
dimension of the span ly is less than N is an interesting open
problem.

In this sense, ID problems are always degenerate cases in which the dimen-
sion of this span is at most 2. To illustrate the type of results one may expect
when (2.4) fails, in Section 4 we address the controllability of the Galerkin’s
approximations of the ID Burgers equation. 0

We now consider

(2.6) y T given in E.

In the next section we prove the following results:

THEOREM 2.1. We assume that (2.5) holds true. Then, one can find v E
L2 (fo x (0, T)) such that the solution y (t ; v) of (2.2)-(2.3) satisfies

We can then introduce the cost to achieve (2.7). Namely,

One has

THEOREM 2.2. For any a E R and any it such that 0  it l  00 one can

achieve (2.7) by a control v = v (a, such that

(2.9) C (v (a,  constant independent of a and It.

REMARK 2.4. Note that the statement of Theorem 2.2 remains valid as

~c ~ 0. More precisely the cost of controlling remains bounded as p - 0 as
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well. It can then be proved that as p - 0 the controls v, of minimal norm
converge weakly in x (0, T) to a control v such that the solution of

satisfies

Note however that (2.10) is not a realistic approximation of Euler’s equations
with boundary control. 0

REMARK 2.5. The results of Theorems 2.1 and 2.2 are also valid if the
control is taken a priori in a finite-dimensional subspace of x (0, T ) of
dimension N. Indeed, let us assume that the control function has the following
structure

where the control "actions" are E L 2(0, T) and where the mj’s are N
linearly independent smooth scalar functions, with support in ro.

Physically the mj’s correspond to "actuators" and the vj’s describe "how
we use" these actuators. (Of course in practice there are often constraints on
the vj’s which are not taken into account here).

If one chooses the finite-dimensional subspace E (of dimension N), where
e 1, ... , eN are such that

then all results apply to the present situation. 1:1

REMARK 2.6. The results of Theorems 2.1 and 2.2 are also valid if the
initial condition y(0) = 0 is replaced by y (o) = yo for any yo E E. D

REMARK 2.7. In the begining of this section we have introduced a special
basis of V such that (2.5) holds for all N. However it is also natural to consider
the problem of whether a given particular basis satisfies (2.5) or not. In this
sense one can consider an orthogonal basis of the subspace of V, constituted by
the eigenfunctions of the Stokes operator with appropriate boundary conditions
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Given a finite N and a tangent vector field y, the question of whether
y - ej, j = 1, ’ N are linearly independent on ro or not is an interesting
open problem.

We conjecture however that (2.4) holds at least generically for the eigen-
functions of (2.13). More precisely, if c r and y are such that (2.4)
does not hold for a finite number of eigenfunctions of the Stokes operator, very
probably (2.4) will hold after an arbitrarily small perturbation of Q, ro and y. C7

REMARK 2.8. It is obvious that an assumption of the form (2.4) does not
make sense for 1 D problems. We will return to this question in Section 4. 0

The two Theorems stated in this section will be proved simultaneously in
the following section.

3. - Proof of the main results

Theorems 2.1 and 2.2 are going to be proven simultaneously according to
the following steps.

STEP 1. LINEARIZATION.

STEP 2. ESTIMATES USING DUALITY ARGUMENTS.

STEP 3. CONCLUSIONS.

STEP 1. LINEARIZATION. We consider a function h such that

and we consider the linear state equation

Let us check that system (3.2) is exactly controllable, i.e. the existence of
v E L2 (ro x (0, T)) such that the solution of (3.2) satisfies

Clearly, it suffices to prove that if f E E satisfies

then f n 0.
Let us introduce cp defined by
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Clearly (3.5) has a unique solution. Thus, cp is well defined.
Let us take e = y(t) in (3.5). We observe that

so that, after integration by parts in t, we obtain

Hence, using (3.2),

If (3.4) holds true, then (3.6) implies that

on

But = and thanks to (2.5), it follows from (3.7) that
= 0 for i = i, , N so that cP m 0 and f n 0.

STEP 2. ESTIMATES USING DUALITY. Thanks to the results of Step 1 one
can define

where Uad is the set of admissible controls

We define in this way a function of h E L2 (o, T ; E).
We are going to prove that

(3.9) constant independent of h, a E R and it E [0, 

We use for that a duality argument.
We define the continuous linear operator L : L2 (ro x (0, T)) -~ E de-

fined by

and we introduce
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Then

and by the duality theorem of Fenchel and Rockafellar [FR] we have

where L* is the adjoint of L.
Using (3.6) one sees that

so that (3.14) gives

But, in view (2.4) and (2.5), (fro I y - is a norm on E, so that

with c(E), C(E) &#x3E; 0 positive constants that only depend on E.
Thus, (3.16) gives

We now take e = in (3.5) and we integrate from t to T. Then the

term containing h drops out. We obtain

= Dij (qJ)).
We integrate (3.19) in (0, T). We obtain
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Since E is finite-dimensional

for a suitable C &#x3E; 0 that only depends on E. Hence (3.20) gives

In view of (3.18) we get

Hence

If JL I (and even if we have, of course,

Hence (3.9) follows.

REMARK 3.1. We do not know if (3.22) provides "the best" estimate but
it is probably not far of being a good indication of what is going on. It gives
a number of important indications: ~

(i) Increasing tt does not help, and probably, on the contrary. In fact from (3.18)
it is clear that estimate (3.22) is sharp. Thus, when the flow becomes more
viscous, it becomes more difficult to control

(ii) The cost remains bounded as T --~ oo. But the cost could become infinite
as T - 0, according to common sense. (A precise result along these lines
has been given, for other purposes, and for a much simpler system, in
J.-L. Lions [L3]). D

STEP 3. CONCLUSIONS. Let h be given in L 2(0, T ; E). We choose for v
the unique element such that

We define in this way a continuous mapping h --~ v = v (h) from L2(0, T ; E)
into L 2 ( ro x (0, T ) ) . We denote by y = y (h ) the solution of (3.2) with the
control v = v (h ) .
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Taking e = y(t) in (3.2) gives

so that

Combining (3.17) and (3.26) with inequality

we deduce that

In view of (3.25) it follows that

(3.29) 
y remains a bounded subset K of L2(0, T; E) when

(3.29) 
h varies in L2 (0, T ; E).

We claim that

(3.30) the map h -~ y(h) admits a fixed point in K.

Assuming for a moment that (3.30) holds let us conclude the proofs of
Theorem 2.1 and 2.2.

If h is a fixed point, then, in view of (3.2)-(3.3), Theorem 2.1 holds.

Moreover, for any h we have the uniform estimate (3.9), so that the control
v(h) satisfies the conditions of Theorem 2.2.

It only remains to prove (3.30).
According to Schauder’s fixed point theorem, it suffices to show that the

range of y (h) when h spans K is compact in K, which follows from the

following estimate

(3.31) yt remains in a bounded set of L (0, T ; E) when h describes K.



616

To prove (3.31 ), we observe that, from (3.2), the following holds

for all e E E, since on the finite-dimensional space E all the norms are equiv-
alent

Therefore

which implies (3.31 ). D

REMARK 3.2. During the proof of Theorems 2.1 and 2.2 the finite-dimen-
sionality of E has been used several times:
(i) In Step 1, when deducing that w m 0 from the fact that y . w = 0 on

ro x (0, T). For the continuous model this would constitute a difficult

unique continuation problem that, according to Remark 2.7, one can only
expect to hold in some generic sense.

(ii) In Step 2 inequality (3.17) relies in an essential way on the finite-dimen-
sional character of E. This allows to prove immediatelly the coercivity of
the quadratic functional appearing in (3.16) in the characterization of the
cost. The situation is analogous to the case in which the continuous model
is controlled by means of distributed controls everywhere in the domain Q.

(iii) In deriving the estimate (3.22) by using (3.21).

Obviously this argument fails in the continuous model and this fact is

related to the irreversibility (in time) of the system. Indeed, notice that, at

the level of the continuous model, this difficulty disappears if, instead of the
problem of driving y (0) - 0 into y(T) = yT, we consider the problem of
driving y(0) = y° into y(T) = 0. In that case the functional appearing in the
characterization of M in (3.16) takes the form

Thus, this time, (3.5) has to be considered backwards in time and there-
fore (3.21) is useless.

(iv) The finite dimensional character of E is used again in Step 3 to derive the
uniform bounds in the state y. 0

REMARK 3.3. Inequality (3.27) in infinite space dimensions corresponds
to the classical inequality of Kom. However, since we are in finite space
dimensions, in (3.27) we just claim that defines a
norm in E. As we said in the introduction, when /t &#x3E; 0 this only fails when
ro = r and h = 0 due to the rigid motions. In view of the assumption (2.4)
the same is true over E when it = 0. D
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4. - The 1-D Burgers equation

As we have seen in Section 3 above, the assumption guaranteeing that
the dimension of the on ro coincides with N plays a crucial
role in the proof of our main results. It is evident that this kind of condition
is never fulfilled for I-D problems. However, we of course do not exclude a
priori the controllability of the Galerkin approximation when this condition is
not fulfilled.

As a first attempt to address the situations in which condition (2.4) is not
fulfilled we study here the I-D Burgers equation. For the sake of completeness
we first consider the distributed control problem. As we shall see, in this
case the system is exactly controllable. We then address the boundary control
problem and prove local controllability results.

4.1. - Distributed control

We consider the 1-D Burgers equation in the interval = (0, 1) with
control in an open subset co = (a, b) C (0, 1) with 0  a  b  1:

Following [LZ2], we introduce a basis of 1) such that Iw);;:::l 1
are linearly independent in L 2(w). Given a finite-dimensional subspace E =
span [e 1, ... , eN ] we introduce the Galerkin approximation of (4.1):

Taking into account that (yyx , y) = 0 for all y E HÓ(O, 1), it is easy to
see that for any v E X (0, T)) system (4.2) has a unique (global in time)
solution.

Our main result is as follows:

THEOREM 4.1. System (4.2) is exactly controllable. More precisely for any
yT E E there exists v E L2(w X (0, T)) such that the solution of (4.2) satisfies

REMARK 4.1. The same result holds when the initial condition y(0) = 0 is
replaced by y(0) = yo for any yo E E. Thus, system (4.2) is exactly controllable
in the classical sense. D

REMARK 4.2. As we shall see in the proof of the theorem, the cost of
controlling is independent of the presence of the non-linearity in the system. D
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REMARK 4.3. When proving Theorem 4.1 the fact that

plays a crucial role. This is the analogous of condition (2.4) for the boundary
controllability of Navier-Stokes equations. Obviously, (4.4) is fulfilled for many
choices of the basis in particular when ej = sin(j1l’x). 0

REMARK 4.4. It is by now well known that the continuous Burgers equa-
tion (4.1) is not approximately controllable (see [FI]). Thus, the exact control-
lability of the Galerkin approximation is in contrast with the behaviour of the
continuous model. This implies that the cost of controlling tends to infinity
when E increases to cover the whole space. 0

PROOF OF THEOREM 4.1. We proceed as in [LZ2]. We just give a sketch of
the proof.

STEP 1. LINEARIZATION. This has to be done carefully in order to preserve
the analogous of the properties that the non-linearity satisfies. Given h E

L2 (o, T ; E) we consider the system

with

The 3-linear form b has the following properties:
(a) b(h, y, y) = 0.
(b) b (y ~ y ~ e) _ e) -

This shows, in particular, that when h = y, y solves the non-linear sys-
tem (4.2). Moreover, (a) indicates that the cancellation property of the nonlin-
earity of Burgers equation is preserved by the linearization.

In view of condition (4.4) and proceeding as in [LZ2] or Section 3 above we
deduce easily that system (4.5) is exactly controllable for any h E L2 (0, T ; E).
Moreover, given yT E E, the cost of controlling system (4.5) to achieve the
final condition (4.3) is independent of h E L 2(0, T ; E).

STEP 2 FIXED POINT. Taking into account that the cost of controlling is

independent of h E L 2(0, T ; E), the exact controllability of (4.2) follows by
Schauder’s fixed point Theorem as in [LZ2] or Section 3 above. 0
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4.2. - Boundary control

We now consider the case in which the control acts on the extreme x = 1:

We introduce the Hilbert space V = JU E 1) : u(0) = 01. We also
introduce a basis I of V. We then define the finite-dimensional subspace
E = span [el, ..., eN] of V and introduce the Galerkin approximation:

We analyze the exact controllability of (4.8), i.e. given yT E E we look
for v E L2 (o, T) such that the solution of (4.8) satisfies (4.3).

Clearly this is a completely degenerate situation since, whatever the space
E is, the subspace generated by is of dimension 1. Thus, the analo-
gous of (2.4) is never satisfied. In fact system (4.8) is constituted by N = dim E
equations and we only dispose of a control V E L 2(0, T) for all of them. This
is in contrast with the situation we encountered in Section 3 under assump-
tion (2.4): That time we had N equations but also N controls.

To analyze the controllability of (4.8) we consider the particular case in
which

In this case ej = sin((2 j + 1)Jrx/2) are the eigenfunctions of the Laplacian
with boundary conditions u(O) = = 0.

We analize first the linearization of (4.8) around y = 0, i.e.

Clearly, (4.10) is the Galerkin approximation of the heat equation:

The following holds:

THEOREM 4.2. The Galerkin approximation (4.10) of the heat equation with E
as in (4.9) is exactly controllable.
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REMARK 4.5. Note that, although the analogous of condition (2.4) is not

verified, system (4.10) is controllable. D

PROOF OF THEOREM 4.2. Proceeding as in Section 3 we introduce the adjoint
system:

The problem is then reduced to prove the existence of a constant C &#x3E; 0
such that

Writing

the solution ~ of (4.12) can be computed explicitely:

Then

In view of (4.14) and taking into account that the functions

are linearly independent in L2 (0, T) we deduce that (4.13) holds. 0

Combining the exact controllability of the linear system (4.10) and the
Inverse Function Theorem (IFT) it is easy to deduce the following local con-
trollability result for (4.8).

THEOREM 4.3. The Galerkin approximation (4.8) of the Burgers equation with
E as in (4.9) is locally controllable in the following sense: For all T &#x3E; 0 there exists
s &#x3E; 0 such that for every yT E E with II yT 8 there exists v E L2(0, T) such
that the solution of (4.8) satisfies (4.3).
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REMARK 4.6. Note that Theorem 4.3 does not provide any information about
the reachability of large final states y T . In this sense the result is much weaker
than those of Section 2. Whether system (4.8) is globally exactly controllable
or not is an open problem whose solution very possibly requires the use of
deep tools from the theory of controllability of non-linear finite-dimensional
systems. C7
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