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Isometries of the Teichmüller Metric

MARCO ABATE - GIORGIO PATRIZIO

Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)
Vol. XXVI ( 1998), pp. 437-452

Abstract. We study the curvature properties of the Kobayashi-Teichriiuller metric
showing in particular that the holomorphic curvature is constant -4. Carrying a
program due to Royden, we describe the consequences on complex geodesics. The
results are applied to characterize biholomorphic maps into Teichmfller spaces in
finite and infinite dimension.

Mathematics Subject Classification (1991): 32G 15, 32H 15.

0. - Introduction

The aim of this paper is to try to apply some ideas coming from several
complex variables and from complex differential geometry to questions about
Teichmfller spaces.

Differential geometrical techniques have played a significant role in the

study of Teichmfller spaces. In fact, at least since the work of Kravets ([12]),
it was understood that the Teichmfller metric - though it is not Riemannian -
may be considered in the framework of differential geometry as Finsler metric.
The difficulty of this approach has advised to pursue other directions which
led for instance to the definition of the Weil-Peterssen metrics which being
Kahlerian behave much better and are quite useful in a number of applications.
On the other hand Royden ([17]) realized that Teichmfller metric is exactly
the Kobayashi metric of a Teichmfller space (see Gardiner [6] for the infinite
dimensional case). Therefore Teichmfller metric not only is "naturally" defined,
it is deeply related with the complex structure. For instance, as a consequence
of this result, Royden was able to compute the automorphism group of finite
dimensional Teichmfller spaces. Furthermore Royden (again [17]) proved that,
in the finite dimensional case, the Kobayashi-Teichmuller metric has a certain
amount of smoothness which makes reasonable to address questions such as
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existence of isometries in terms of curvature. In this regard Royden conjectured
that Teichmfller disks, which are isometries from the unit disk into a Teichmfller
space, are in fact global isometries with respect to the hyperbolic distance of the
disk and the Teichmfller distance. In relation to this conjecture he studied the
geometry of complex Finsler metrics ([18]) and, under some further assumptions,
was able to prove that Teichmfller disks are infinitesimal isometries at every
point. The conjecture was later fully proved in [5] using different methods.

Motivated mainly by the intention of achieve a better understanding of
Kobayashi metric and of its applications in function theory, recently we made
an effort to develop an efficient approach to complex Finsler geometry (see
[2]). Some progresses made in this direction suggested to return to Royden
original ideas and search for new possible applications in Teichmfller theory.
First of all it is of interest to understand exactly the role of the curvature of
Teichmfller metric. It is known that it is not true that Teichmfller spaces have

nonpositive curvature and that, though they look "hyperbolic" this is not the
case at least in the usual, "real", point of view ([14]). On the other hand
Teichmfller spaces have constant negative holomorphic curvature and therefore
are quite hyperbolic from the complex point of view. Here we provide a proof
(both in the -finite and in the infinite dimensional case) of this fact that may
be known but does not seem to be stated in the literature. As a consequence,
without unnecessary hypotheses, it is easy to show that Teichmfller disks are
infinitesimal isometries. As in other situations ([2]), for topological reasons,
this is not enough to conclude that they are isometries for the distances and
therefore it does not seem to be possible to recover the full Royden conjecture
via differential geometry.

Another useful guideline is to remember that the Bers realization of a
Teichmfller space is a pseudoconvex domain in a complex (Banach) space and
therefore it carries a nice complex analytic function theory. Inspired by other
similar results in several complex variables we tried to give characterizations of
Teichmfller spaces in terms of isometries of intrinsic metrics. Generalizing of
Royden’s theorem ([17]) on isometries, our main result in the finite dimensional
case is the following:

THEOREM 0.1. A taut connected complex manifold N is biholomorphic to a
finite dimensional Teichmüller space T (r) if and only if there exists a holomorphic
map F : N - T (r) which is an isometry for the Kobayashi metric at one point.

As the proof this result uses strongly the uniqueness of extremal disks,
the result does not extend in the infinite dimensional case where, as additional
difficulty, a satisfactory theory of holomorphic mappings is yet to be developed.
Nevertheless, again in the vein of Royden’s work, we have the following partial
result.

THEOREM 0.2. Let and T (r2) be infinite dimensional Teichmiiller spaces.
Then a holomorphic map F : T (r2) is biholomorphic if and only it
satisfies the following assumptions:
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(i) F is a Fredholm map of index 0 i.e. dim Ker d Fx = dim Coker d Fx  oo for
all x E M;

(ii) F has a discrete fibers and closed image;
(iii) F is an isometry for the Kobayashi- Teichmiiller metric at one point.

Most likely Theorem 0.2 may be improved but it requires a better under-
standing of both function theory and differential geometry of Teichmfller spaces
in the infinite dimensional case. The latter could be quite illuminating although
there is the additional difficulty that in this case the Teichmfller metric is not
smooth ([27]).

We feel that it may be fruitful to pursue further the application in Te-
ichmfller theory of ideas coming from several complex variables and complex
differential geometry and we hope to come back to these questions. In fact
Bers realization of finite dimensional Teichmfller spaces is a very interesting
bounded presudoconvex topologically trivial domain in (Cn whose function theory
deserves further study on his own.

The paper is organized as follows. In Section 1 there is a quick outline of
the necessary notions of complex Finsler geometry. Section 2 and 3 are devoted
to the study of the Kobayashi-Teichmuller metric with regard to curvature and
complex geodesics. Precise statement and proofs of Theorem 0.1 and 0.2 are
in Section 4.

1. - Complex Finsler metrics

We shall need some facts about complex Finsler geometry and intrinsic
metrics on complex manifolds of finite and infinite dimension. Most of them
are standard, but not easy to find in the literature for the infinite dimensional
case; so, for reader’s convenience and to set notations, in this section we give
a short overview of the subject.

A complex Finsler metric F on a complex (Banach) manifold M is an upper
semicontinuous function F : R+ satisfying
(i) F(p; v) &#x3E; 0 for all p E M and V E 0;

(ii) for all p E M, v E T’,OM and À E C.
We shall systematically denote by G : - R+ the function G = F 2

Using condition (ii) and the usual identification between real and holomorphic
tangent bundles, the definition of length of a smooth curve in a Riemannian
manifold makes sense in this context too; so we may again associate to F a
topological distance on M, and we shall say that F is complete if this distance
is. For the same reason, it makes sense to call (real) geodesics the extremals of
the length functional. For an introduction to real and complex Finsler geometry
(in the finite dimensional case) we refer to [2].

An important role in the study of complex Finsler metric is played by the
notion of holomorphic curvature. Let us start by considering the case of the
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unit disk A in the complex plane. A pseudohermitian metric f1g of scale g
on A is the upper semicontinuous pseudometric on the tangent bundle of A
defined by

is a non-negative upper semicontinuous function such that
Sg = g-l (0) is a discrete subset of A.

If g is a C2 positive function (i.e., f1g is a standard Hermitian metric on

A), then the Gaussian curvature of f1g is defined by

where A denotes the usual Laplacian

, In the general case (cf. [9]) we shall consider the (lower) generalized Lapla-
cian of an upper semicontinuous function u defined by

It is well known that for a function u of class C2 in a neighborhood of
the point ~o the Laplacian (1.4) actually reduces to (1.3).

Let pg be a pseudohermitian metric on A. Then the Gaussian curvature
of pg is the function defined on 0 B Sg by (1.2), using the generalized

Laplacian (1.4). In particular, if pg is a standard Hermitian metric then K(pg)
reduced to the usual Gaussian curvature.

It should be noted that this notion of holomorphic curvature is completely
equivalent to the classical one based on the consideration of supporting metrics
(see [18], [9]).

Now consider a complex manifold M with a complex Finsler metric F, and
take a point p E M and a non-zero tangent vector V E The holomorphic
curvature v) of F at (p; v) is given by

where the supremum is taken with respect to the family of all holomorphic maps
0 --~ M with w(0) = p and ~/(0) = kv for some h E C* and K(cp*G) is

the Gaussian curvature of the pseudohermitian metric on A.

Clearly, the holomorphic curvature depends only on the complex line span-
ned by v in and not on v itself. Furthermore, the holomorphic curvature
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defined in this way is invariant under holomorphic isometries, and when F is a
honest smooth Hermitian metric on M it coincides with the usual holomorphic
sectional curvature of F at (p; v) (see [26]).

We shall use the classical Ahlfors lemma which compares a generic pseu-
dohermitian metric with an extremal one (usually the Poincare metric), and the
important result of Heins [9, Theorem 7.1] which takes care of the case of
equality of the metrics at one point. For a &#x3E; 0, let ga : 0 -~ R+ be defined by

then = ga d ~ ® d ~ is a Hermitian metric of constant Gaussian curvature
= -4a. Of course, i,c 1 is the standard Poincaré metric con 0 .

Then Ahlfors’ and Heins’ results may be stated as follows:

PROPOSITION 1.1 (Ahlfors-Heins’Lemma). Let itg = gd ~ ® d ~ be a pseudo-
hermitian metric on A such that K  -4a on A B Sg for some a &#x3E; 0. Then

g  ga. Assume there is Ço E A B Sg such that g (~o) = ga (~o). Then Ag = i,c,a.
The notion of holomorphic curvature given for complex Finsler metrics gives

immediately a version of Ahlfor’s lemma even for the infinite dimensional case:

PROPOSITION 1.2. Let F be a complex Finsler metric on a complex manifold
M. Assume that the holomorphic curvature of F is bounded above by a negative
constant -4a, for some a &#x3E; 0. Then

for all holomorphic maps q; : 0 --~ M.

PROOF. By definition, is a pseudohermitian metric on 0; by assumption
(and by the invariance of the Gaussian curvature under automorphisms of 0),

 -4a. Then the assertion follows from Proposition 1.1. 0

As a consequence, we obtain a generalization of a well known criterion of
hyperbolicity for the infinite dimensional case as well:

COROLLARY 1.3. Let M be a complex manifold admitting a (complete) complex
Finsler metric F with holomorphic curvature bounded above by a negative constant.
Then M is (complete) hyperbolic.

PROOF. Up to multiplying F by a suitable constant, we may assume KF :::;
-4. Let d denote the distance induced by F on M, and w the Poincaré distance
on 0. Then Proposition 1.2 yelds

for all ~l, ~2 E ð. and holomorphic maps w : 0 --~ M. But this immediately
implies (cf. [10, Proposition IV. 1.4]) that the Kobayashi distance of M is
bounded below by d, and the assertion follows. 0
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For finite dimensional manifolds, Wong [25] and Suzuki [21] have shown
that the holomorphic curvature of the Caratheodory metric is bounded above by
-4 for Carathéodory-hyperbolyc manifolds, whereas the holomorphic curvature
of the Kobayashi metric is bounded below by -4 for Kobayashi-hyperbolic
manifoldg.

Another interesting immediate consequence of Proposition 1.1 is an inter-

pretation (even in the infinite dimensional case) in terms of curvature of a well
known property of the Caratheodory metric. Let F be a complex Finsler met-
ric on a manifold M. We shall say that a holomorphic map w : M is

infinitesimally extremal at 0161o E A if it is an isometry at 0161o between the Poincar6
metric on A and F, that is if

We shall say that q; is an infinitesimal complex geodesic if it is infinitesimally
extremal at every point of A. Then:

PROPOSITION 1.4. Let F be a complex Finsler metric on a manifold M with
holomorphic curvature bounded above by -4. Let q; : A - M be a holomorphic
map&#x3E; Then the following are equivalent:
(i) q; is infinitesimally extremal at one point ~o E A;
(ii) q; is an infinitesimal complex geodesic.

PROOF. By definition and the invariance of holomorphic curvature under
automorphisms of the unit disk, the Gaussian curvature of is bounded
above by -4. The assertion then follows from Ahlfors-Heins’lemma . 0

We close this section with a remark about the behavior of the holomorphic
curvature for sequences of metrics which we shall need later.

PROPOSITION 1. 5. Let Fk be a sequence of complex Finsler metrics on a manifold
M with holomorphic curvature bounded above by -4 monotonically converging
pointwise to a complex Finsler metric F. Then the holomorphic curvature of F is
still bounded above by -4.

PROOF. It follows from the definition of holomorphic curvature and the
monotone convergence theorem (cf. [9, 1 0(c)]). 0

2. - Intrinsic metrics on the space of Beltrami differentials

Let IHI+ be the upper half plane in C, and let M denote the unit ball
in L 00 (IHI+, C). Then (see, e. g., [4]) the Teichmüller metric a : 
M x L °° (IHI+, C) - R+ is the complex Finsler metric on M defined by
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where !H!oo denotes the L °° norm; note that is the Poincare

length of the tangent vector v (z) at the point p (z) E A. The Teichmiiller distance
on M is just the integrated distance dam of the Finsler metric a. It is known
that M with the Teichmfller metric is a complete Finsler manifold, and it is

easy to check that

The group G of automorphisms of H+ acts naturally on M as a group of linear
isometries via the action

Now let r be a Fuchsian group, i.e., a subgroup of the automorphism group
of H+ acting properly discontinuously on Then

is a closed subspace of L °° (H+, C), and hence the space of Beltrami differentials
relative to r defined by

is the unit ball in the Banach space Evidently M is the space of
Beltrami differentials relative to the trivial group. The Teichmfller metric and
distance on m (r) - which we denote again with cr and d, respectively - are
obtained by restriction, and again m (r) is a complete Finsler manifold.

It turns out that the Teichmfller metric and distance on M(r) agree with
the Kobayashi and the Caratheodory metric and distance. This fact, partly
observed in [5, Proposition 1 ], is a direct consequence of more general results
due to Harris [8] and Vesentini [22]. In fact it is also a simple corollary of
theorem of Dineen-Timoney-Vigue ([3]) which says that the Kobayashi metric
(distance) agrees with the Caratheodory metric (distance) on any convex set in
a complex Banach space. Here we state the result precisely and give a simple
direct proof.

THEOREM 2. l. Let r be a Fuchsian group. Then the Teichmüller, Carathéodory
and Kobayashi metrics (distances) of M(1’) coincide.

PROOF. First of all we claim that that it is enough to prove the result at
the origin (i.e., to show that Teichmfller, Kobayashi and Caratheodory metrics
agree at the origin and that Teichmfller, Kobayashi and Caratheodory distances
from the origin agree). To this end observe that for any 0 ~ It E M (r ) there
exists a holomorphic automorphism F~, of M(r) defined by
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Clearly F~, (o) _ /-t; furthermore it is easy to check that F, is an isometry for
both Teichmfller metric and distance, and it is an isometry for Kobayashi and
Caratheodory metrics and distances being a biholomorphic map, so that our
claim follows.

Now, it is well known (see for instance [1]) proved that the Kobayashi
and Caratheodory metric of a unit ball in a complex Banach space X at the
origin agree with the norm I I - I I of X - and thus with the Teichmfller metric
at the origin if X = M(r), by (2,1). Analogously, it is also known (see again
[1]) that the Kobayashi and Caratheodory distance from the origin of the unit
ball in X are given by 11, , and thus they agree with the Teichmuller
distance from the origin if X = M(r), by (2.2). D

Let F be a complex Finsler metric on a manifold M. We shall say that a
holomorphic map w : A 2013~ M is extremal at Ço c- A if

where dF is the distance induced by F and cv is the Poincaré distance. We
shall say that q; is a complex geodesic if it is extremal at all points of A, that
is if it is a global isometry between the Poincaré distance and dF .

An immediate consequence of Theorem 2.1 is the following:
COROLLARY 2.2. Let r be a Fuchsian group, A --* M(r) a holomorphic

map. Then the following statements are equivalent:
(i) q; is infinitesimally extremal at one point with respect to the Teichmüller metric

of M(r); .

(ii) q; is an infinitesimal complex geodesic with respect to the Teichmüller metric of
M(f);

(iii) q; is extremal at one point with respect to the Teichmüller metric of M(1’);
(iv) q; is a complex geodesic with respect to the Teichmüller metric of M(f).

PROOF. Since the four properties are equivalent for the Carathéodory met-
ric ([22]), the claim is consequence of Theorem 2.1 D

3. - Complex geodesics on Teichmüller spaces

Let us start by recalling a few facts about Teichmüller spaces, following [4]
and [6]. Let IHI- denote the lower half plane in C and consider the Banach
space B of holomorphic functions on IHI- with norm

Then G = acts on B as a group of linear isometries via
the action G x B - B defined by
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If r c G is a Fuchsian group, we denote by B (r ) the subspace of B of
r-invariant functions i. e., the subspace

Given A E M let w,~ be the unique quasiconformal homeomorphism of IHI+
fixing the points 0, 1, oo and satisfying the Beltrami equation pwz. If

~u E M then there exists a unique homeomorphism w’ of the Riemann sphere
in itself which leaves 0, 1, oo fixed and such that w ~ is holomorphic on IHI-

and w~ o is holomorphic on Thanks to Nehari’s theorem a map
(D : M - B is well defined = where [.] denotes the Schwarzian
derivative. The image T = 4S(M) of (D is called the Universal Teichmiiller

space; if r is a Fuchsian group then

is called the Teichmüller space of IF. It is known that this presentation of
Teichmfller spaces is equivalent to the presentation as moduli spaces of Riemann
surfaces. Furthermore Bers has proved that the map (D is continuous and

holomorphic and that the holomorphic and topological structures of T(r) are
just the quotient structure induced by (D : M(f) ~ T(IF). We can then define
the Teichmüller metric ir : T (r) x B(I’) -* R on T (r) using the quotient map
4S as follows:

where a is the Teichmfller metric on M (r ) . Notice that (3.4) is well posed
as cr is invariant under right translations (see [4] for details). In an analogous
way one defines the Teichmüller distance d,r: v

The Teichmfller distance is always complete. Furthermore, O’Byme ([15])
proved that in fact dtr is exactly the integrated distance of Tr, as it is desirable.
This is also a consequence of the famous result of Royden ([17]) which states
that the Teichmfller metric coincides with the Kobayashi metric of T ( r ) . Ac-
tually Royden proved the equality in the case of finite dimensional Teichmfller
spaces only, but later Gardiner (see [6]), by means of an approximation ar-

gument, proved that the equality also holds in the infinite dimensional case.

Gardiner’s argument has a consequence that we shall need later on:

PROPOSITION 3. l. Let r be any Fuchsian group. Then the holomorphic curva-
ture of the Kobayashi- Teichmüller metric of T (r) is identically equal to -4. As a
consequence, T (I) is Kobayashi complete hyperbolic.
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PROOF. If T (r) is finite dimensional, then it is known that the holomor-

phic curvature of finite dimensional Teichmfller spaces is bounded above by
-4 ([6, Lemma 7.8]). Hence, by Corollary 1.3, T (r) is complete hyperbolic
so that the holomorphic curvature must also be bounded below by -4 ([25],
[21]) and the claim follows. Let us assume that T (r) is not finite dimen-

sional, then is possible to apply Gardiner’s approximation procedure (see [6]).
There exists a sequence of finite dimensional Teichmfller spaces and a

sequence of holomorphic maps T (r) --~ Tj such that the pull-back metrics
monotonically converge to Tr. Since the holomorphic curvature of finite

dimensional Teichmfller spaces is bounded above by -4 ([6, Lemma 7.8]),
Propositions 1.5 implies that the holomorphic curvature of rr is bounded above

by -4. In particular, by Corollary 1.3, T (r) is complete hyperbolic.
To prove that the holomorphic curvature is bounded below by -4, fix

E T (r) and 1/f E B(r) "’ By [4, Theorem 3.(c)], up to replacing
r by an isomorphic Fuchsian group we can assume that = 1&#x3E;(0). Choose
v E L°° (r) such that 1/f = and rF([~]; *) = u(O; v) ; in other words, v
is infinitesimally extremal. Define : 0 -~ M(F) by ~p (~ ) and set

w = 4$ o §i. Then ~p (o) _ and rr (w(0); ~o’(0)) = 1. By Proposition 1.4, then,
w*rr is the Poincare metric of A, which has a Gaussian curvature identically
-4. Thus the definition implies that the holomorphic curvature of ir at ([~c]; 1/f)
is at least -4, and we are done. 0

It is known that Teichmfller spaces have not nonpositive real curvature and
that they are not hyperbolic in any reasonable real sense (see [14] for instance).
Nevertheless, as it has been underlined by many, Teichmfller spaces behave
very much in a hyperbolic manner. We feel that the reason is purely a complex
geometrical one, as it is illustrated by Proposition 3.1.

As announced in the introduction, we are now able to complete Royden’s
program at the infinitesimal level:

COROLLARY 3.2. 0 -~ T (r) a holomorphic
map. Then the following statements are equivalent:
(i) w is infinitesimally extremal at one point with respect to the Teichmüller metric

an infinitesimal complex geodesic with respect to the Teichmüller metric of
T(r).

PROOF. It follows from Propositions 1.4 and 3.1. 0

So it is clear that the hard part in Royden’s program lies in passing from
the metric to the distance; this has been accomplished in [5] where it is proved
the analogous of Theorem 2.2 for T(r) by means of the following lifting
lemma: for any holomorphic map w : 0 -~ T (r) there exists a holomorphic

0 --~ M ( r ) such that w = 4$ o ~.
We end this section by discussing existence and uniqueness of (infinitesimal)

complex geodesics:
PROPOSITION 3.3. Let r be a Fuchsian group. Then:
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(i) for any point E T (IF) and tangent vector 1/1 E B (r ) there exists a infinites-
imal complex geodesic cp : A -* T (r ) such that [~c,~] and cp’ (0) is a
non-zero multiple of 1/1. Furthermore, if T (r) is finite dimensional then cp is
uniquely determined.

(ii) for any couple of distinct points [i,c 1 ], E T (r) there exists a complex
geodesic cp : A - T (r) such that and cp(r) = for some r &#x3E; 0.

Furthermore, if T (r) is finite dimensional then cp is uniquely determined.

PROOF. Using right translations, up to replacing r by an isomorphic Fuchsian
group we can assume (see [4, Theorem 3.(c)]) that [A] = 1&#x3E;(0). Choose again
v E such that 1/1 = and tr ([~c,c]; ~) - or(O; v), and define

p : 0 -~ T (r) as in the proof of Proposition 3.1. By construction, ~o is

infinitesimally extremal at the origin, and thus the existence part of (i) is done,
by Corollary 3.2. A similar argument yelds the existence part of (ii), using
[5, Theorem 5] instead of Corollary 3.2. The uniqueness is well known. D

We close this section underlining how Kobayashi-Teichmuller metric on
the Bers realization (which is not starlike with respect to any of its points)
has a geometry (e.g. good regularity, constant negative curvature, existence and
uniqueness of complex geodesics, existence of pluricomplex Green functions,... )
which resembles in a striking way the geometry of invariant metrics on (strictly)
convex domains for which Kobayashi and Caratheodory metric agree. It is also
known ( [ 11 ] ) that Kobayashi and Caratheodory metric agree on many directions
and we recall that Theorem 2.1 holds. Even though Caratheodory metric need
not to be preserved under projections, in light of all this it is very surprising
that it has been claimed that in general the Kobayashi-Teichmuller metric does
not agree with Caratheodory metric (see [13] and its references). This aspect
should be better understood and deserves further investigation.

4. - Isometries and biholomorphic maps into Teichmfller spaces

In this paragraph we would like to show typical arguments involving intrin-
sic metrics may be useful in Teichmfller theory. Following ideas of [16], [23,
24] and in particular imitating the arguments of [7] we can show the following
result in the vein of Royden’s characterization of automorphisms of Teichmfller
spaces as isometries of the Teichmfller metric.

THEOREM 4. l. Let r be a Fuchsian group so that T (r) is finite dimen-
sional, and let N be a taut connected complex manifold. Then a holomorphic map
F : N --~ biholomorphic if and only if it is an isometry for the Kobayashi
metric at one point.

PROOF. If F : N ~ T (r) is biholomorphic then it is an isometry of

Kobayashi metric, and hence the claim in one direction is trivial.
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Conversely, suppose that F : N --* T (r) is a holomorphic map which is
isometric at the point p E N, i.e., such that

for every v E where KN is the Kobayashi metric of N and is the

Kobayashi metric of T(r).
Let J ( p) be the set of holomorphic maps cp : 0 --~ N with w(0) = p

and infinitesimally extremal at the origin with respect to KN ; being N taut, for
there is at least one cp E J ( p) such that cpt (0) is a positive

multiple of v. Take cp E J ( p) . The fact that ~F is an isometry at p implies that
is still infinitesimally extremal at the origin with respect to KT(r); hence,

by [5, Theorem 5], F 0 cp is a complex geodesic in T (r). But then recalling
the decreasing property of the Kobayashi distance we get

for every ~l, ~2 E A, where cv is the Poincare distance of A and kT(r) is
the Teichmfller (Kobayashi) distance of T(r); therefore every w E J(p) is a

complex geodesic with respect to the Kobayashi distance of N.
Now, as remarked in [7, Proposition 2], it is easy to show that the set

is closed. On the other hand observe that by Proposition 3.3 the images of the
complex geodesic of T(f) through = F(p) fill all T(r), and the image of
two complex geodesics meeting at [p] either coincide or meet only at [A]. We
noticed that F sends complex geodesics through p in complex geodesics through
F(p) ; since complex geodesics _are proper maps biholomorphic onto their image
([22]), it follows that is bijective. If we can show that No
is also open it will follow that No = N and that F is biholomorphic. For this
aim it suffices to show that f - is a homeomorphism of No, with the
induced topology, onto T(f). To this end we need only to check the continuity
of Let be a sequence of points in T ( r ) with

For all j let Pj = No ; we must show that pj - po. Take wj E J ( p )
such that = pj for some 0  rj  1. Now (4.1 ) implies that

Since the topology induced by the Teichmfller distance on T(r) is equivalent
to the manifold topology, the sequence I is bounded away from 1.
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To prove that pj - po it suffices to show that every subsequence of I pj }
admits a subsequence converging to po. So fix a subsequence of which we
shall still denote by Ipjl. From what we have seen we get a subsequence }
converging to some ro  1. On the other hand, because of the tautness of N,
there exists a subsequence of which we denote again by converging
uniformly on compact subsets of A to a holomorphic map ~po - N such that
wo(0) = p. Then converges to some point cpo(ro) E N. But,
by construction ~oo belongs to J ( p); therefore

It follows that = = po, and so Pjk - po, as needed. C7

So Royden’s theorem about biholomorphic isometries of finite dimensional
Teichmfller spaces is just a particular case of this result, because we have
already remarked that every finite dimensional Teichmfller space is taut (see
[1] for properties and examples of taut manifolds).

For infinite dimensional Teichmfller spaces the previous proof fails because
the uniqueness of complex geodesics through pair of points does not hold.
A different approach suggests a way to circumvent this problem: if N is a
Teichmfller space, then it is already known that No = N. Furthermore exactly
as before one shows that F preserves the distance from the base point p, that
is (4.2). If N is finite dimensional, it is then easy to prove that F is proper
(essentially because closed Kobayashi balls are compact, which follows from
Teichmfller spaces being complete hyperbolic). Standard theorems about proper
holomorphic maps between equidimensional complex manifolds then imply that
F is surjective, and that the cardinality of almost every fiber is constant (and
finite), and the exceptional fibers have fewer elements. But (4.2) implies that
this cardinality should be one, and so F is a biholomorphism.

If the infinite dimensional case this argument breaks down because (4.2)
does not imply anymore that F is proper; moreover, one should be careful
in talking about "equidimensionality". Nevertheless, a result due to Shoiykhet
([20]) suggests that further investigations in this direction may be fruitful. We
need some preliminaries. Let F : M ~ N be a holomorphic map between
complex Banach manifolds. We say that X E M is a regular point if the
differential of F at x is surjective; otherwise we say that x is a singular point.
We denote the set of singular points by SF. Also we say that F is a Fredholm
map of index 0 if for all x E M

(4.3) dim ker d Fx = dim Coker d Fx  oo;

notice that this equality is a way of saying that M and N are equidimensional.
Shoiykhet’s result is summarized in the following

PROPOSITION 4.2. Let F : M - N be a holomorphic map between complex
Banach manifolds such that F is a Fredholm map of index 0 with discrete fibers, i.e.,
such that F-1 (y) is discrete for all y E N. Then
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(i) the singular set SF is an analytic set and in fact it is the zero set of some
holomorphic function on M;

(ii) the image F (M) of F is an open subset of N;
(ii) there is an integer m &#x3E; 1, the multiplicity of F, such that for every y E
F (M) B F (SF) the fiber has exactly m elements and for any y E F(SF) the
fiber F - (y) has strictly less than m elements.

PROOF. Becausè of [20, Theorem 1], given any x E M there exists a neigh-
borhood Ux such that the restriction satisfies the claim of the proposition.
It is straightforward to globalize the result. D

A proper map between complex manifolds has discrete fibers and closed
image. So the following result is a generalization of Royden’s theorem to the
infinite dimensional case:

PROPOSITION 4.3. Let T (r 1 ) and T (r2) be Teichmüller spaces (possibly infinite
dimensional) relative to Fuchsian groups rj 1 and 12. Then a holomorphic map
F : T (f 1) - T (r2) is biholomorphic if and only if it is a Fredholm map of index
0 with discrete fibers and closed image which is an isometry for the Kobayashi-
Teichmüller metric at one point.

PROOF. Clearly if F is biholomorphic then it is a bijective isometry at

every point. Furthermore in the finite dimensional case the result is a corollary
of Theorem 4.1. Let us then assume that F a Fredholm map of index 0
with discrete fibers and closed image which is an isometry at some point

E T (r 1 ) . In particular, by Proposition 4.2.(ii), F is surjective.
Now notice that for any point [/t] E T (r 1 ) there is a complex geodesic

q; : A --* T (r 1 ) such [/to] and 0(r) = [A] for some 0  r  1.

Then, as F is an infinitesimal isometry at [/,to], the composition F o q; is

infinitesimally extremal at the origin, and hence a complex geodesic through
[vo] = F([~,co)). This implies that

for all E in particular, F has multiplicity 1 in an open neighborhood
of This is enough to conclude that F is biholomorphic. In fact, using (i)
and (iii) of Proposition 4.2, it follows that F has multiplicity m = 1 on all

T(fl) and SF = 0, so that the inverse of F, by the implicit function theorem,
is holomorphic. 0

It would be interesting to know whether the hypotheses (closed image,
discrete fibers, and so on) in this proposition hold for any holomorphic map
between infinite dimensional Teichmfller spaces which is an isometry at one

point, as they do in the finite dimensional case.
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