Kunihiko Kajitani

Masahiro Mikami

The Cauchy problem for degenerate parabolic equations in Gevrey classes

Annali della Scuola Normale Superiore di Pisa, Classe di Scienze 4 e série, tome 26, $\mathrm{n}^{\mathrm{o}} 2$ (1998), p. 383-406
http://www.numdam.org/item?id=ASNSP_1998_4_26_2_383_0
© Scuola Normale Superiore, Pisa, 1998, tous droits réservés.
L'accès aux archives de la revue «Annali della Scuola Normale Superiore di Pisa, Classe di Scienze» (http://www.sns.it/it/edizioni/riviste/annaliscienze/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

The Cauchy Problem for Degenerate Parabolic Equations in Gevrey Classes

KUNIHIKO KAJITANI - MASAHIRO MIKAMI

Abstract

This paper is devoted to the study of parabolic operators which are degenerate at the time variable $t=0$. Under the assumptions associated with the Newton's polygon the Cauchy problem for this operator can be solved uniquely in Sobolev spaces and Gevrey spaces.

Mathematics Subject Classification (1991): 35K30.

1. - Introduction

In this paper we investigate the Cauchy problem for degenerate parabolic operators associated with Newton's polygon. Let us consider the following Cauchy problem in a band $(0, T) \times \mathbb{R}^{n}(T>0)$

$$
\begin{align*}
P\left(t, x, \partial_{t}, D_{x}\right) u(t, x) & =f(t, x), \quad(t, x) \in(0, T) \times \mathbb{R}^{n}, \tag{1}\\
\partial_{t}^{i} u(0, x) & =u_{j}(x), \quad x \in \mathbb{R}^{n}, \quad j=0, \ldots, m-1, \tag{2}
\end{align*}
$$

where

$$
\begin{equation*}
P\left(t, x, \partial_{t}, D_{x}\right)=\partial_{t}^{m}+\sum_{j=1}^{m} \sum_{\alpha: f i n i t e} a_{j \alpha}(t, x) D_{x}^{\alpha} \partial_{t}^{m-j}, \quad D_{x}=-i \partial_{x} \tag{3}
\end{equation*}
$$

We assume that P is degenerate at $t=0$, namely, the coefficients $a_{j \alpha}(t, x)$ satisfy

$$
\begin{equation*}
a_{j \alpha}(t, x)=t^{\sigma(j \alpha)} b_{j \alpha}(t, x) \tag{4}
\end{equation*}
$$

where $\sigma(j \alpha)$ are non negative integers and $b_{j \alpha}(t, x)$ belongs to $C^{\infty}\left(\left[0, T_{0}\right] ; \gamma^{\left\langle s_{0}\right\rangle}\right)$ (respectively $C^{\infty}\left(\left[0, T_{0}\right] ; \gamma^{\left(s_{0}\right)}\right)$). Denote by $\gamma^{(s)}$ (respectively $\gamma^{(s)}$) the set of
function $a(x)$ defined in \mathbb{R}^{n} such that for any $A>0$ (respectively $\exists A>0$) there is $C_{A}>0$ such that

$$
\begin{equation*}
\left|D_{z}^{\alpha} a(x)\right| \leq C_{A} A^{|\alpha|}|\alpha|!^{s} \text { for } x \in \mathbb{R}^{n}, \quad \alpha \in \mathbb{N}^{n} \tag{5}
\end{equation*}
$$

There are several papers on the Cauchy problem for degenerate parabolic equations published in the 1970's. M. Miyake in [9] and K. Igari in [2] gave necessary conditions to be H^{∞}-wellposed in the case of first order in ∂_{t}. K. Shinkai in [10] constructed the fundamental solution of the Cauchy problem for a single operator of higher order. Recently S. Gindikin and L. R. Volevich in [1] treated the equations with constant coefficients using the method of Newton's polygon.

Definition 1. Let $\mathbb{R}_{+}^{2}=[0, \infty)$ and let $\tau(P)=\left\{(j, \alpha) \in \mathbb{N}^{n+1} ; b_{j \alpha}(0, x) \not \equiv 0\right\}$ and $\nu(P)=\left\{(1+\sigma(j \alpha) / j,|\alpha| / j) \in \mathbb{R}_{+}^{2} ;(j \alpha) \in \tau(P)\right\}$. Denote by $N(P)$ the smallest convex polygon in \mathbb{R}_{+}^{2} possessing following properties:
(i) $v(P) \subset N(P)$,
(ii) if $(q, r) \in \mathbb{R}_{+}^{2},\left(q^{\prime}, r^{\prime}\right) \in N(P), q^{\prime} \leq q$ and $r \leq r^{\prime}$, then $(q, r) \in N(P)$.
$N(P)$ is called the Newton's polygon associated with P.
For a number $r_{0} \geq 0$ let $L_{r_{0}}$ be the line passing through the point $Q_{0}=\left(0, r_{0}\right)$ which is tangent to the Newton's polygon $N(P)$. Denote by $Q_{1}=\left(1+q_{1}, r_{1}\right) \in L_{r_{0}}$ the vertex of $N(P)$ such that $q_{1} \geq q$ and $r_{1} \geq r$ hold if $(1+q, r)$ belongs to $N(P)$ and $L_{r_{0}}$ and denote by $Q_{1}=\left(1+q_{1}, r_{1}\right), \ldots$ and $Q_{l}=\left(1+q_{l}, r_{l}\right)$, the vertices of $N(P)$ indexed in the clockwise direction beginning with Q_{1}. For $i=1, \ldots, l-1$ the sides joining the two vertices Q_{i}, Q_{i+1} will be denoted as Γ_{i} and let $\Gamma=\cup_{i=1}^{l-1} \Gamma_{i}$ if $l \geq 2$ and $\Gamma=Q_{1}$ if $l=1$. It is evident that the choice of Q_{1} depends only r_{0}. Moreover denote by $\Gamma^{\prime}=Q_{1}^{\prime} Q_{1} \cup \Gamma$ if there is a vertex $Q_{1}^{\prime}=\left(1+q_{1}^{\prime}, r_{1}^{\prime}\right)$ of $N(P)$ except Q_{1} in the line $L_{r_{0}}$ and $\Gamma^{\prime}=\Gamma$ if it is not so.

Property (ii) of the Newton's polygon $N(P)$ implies that the vertices $Q_{i}=$ $\left(1+q_{i}, r_{i}\right), i=1, \ldots, l$ must satisfy the inequalities

$$
0 \leq q_{1}<\cdots<q_{l}, \quad r_{0}<r_{1}<\cdots<r_{l}
$$

We shall define the principal part of P associated with the Newton's polygon $N(P)$. For each vertex Q_{i}, for each vertical side Γ_{i} and for Γ the union of vertical sides $\Gamma_{i}(i=1, \ldots, l-1)$ we define respectively

$$
\begin{equation*}
P_{Q_{i}}=\lambda^{m}+\sum_{\left(1+\frac{\sigma(j \alpha)}{j}, \frac{|\alpha|}{j}\right) \in Q_{i}} t^{\sigma(j \alpha)} b_{j \alpha}(0, x) \xi^{\alpha} \lambda^{m-j}, \quad i=1, \ldots, l \tag{6}
\end{equation*}
$$

(7) $\quad P_{\Gamma_{i}}=\lambda^{m}+\sum_{\left(1+\frac{\sigma(j \alpha)}{j}, \frac{|\alpha|}{j}\right) \in \Gamma_{i}} t^{\sigma(j \alpha)} b_{j \alpha}(0, x) \xi^{\alpha} \lambda^{m-j}, \quad i=1, \ldots, l-1$,

$$
\begin{equation*}
P_{\Gamma}=\lambda^{m}+\sum_{\left(1+\frac{\sigma(j \alpha)}{j}, \frac{|\alpha|}{j}\right) \in \Gamma} t^{\sigma(j \alpha)} b_{j \alpha}(0, x) \xi^{\alpha} \lambda^{m-1} \tag{8}
\end{equation*}
$$

We define a weight function associated with $N(P)$ as follows:

$$
\begin{equation*}
w_{\Gamma}(t, \xi)=\sum_{i=1}^{l} t^{q_{i}}|\xi|^{r_{i}} \tag{9}
\end{equation*}
$$

Definition 2. The operator P is said to be Γ-parabolic at $t=0$ if P_{Γ} satisfies the inequality below

$$
\begin{equation*}
\left|P_{\Gamma}(t, x, \lambda, \xi)\right| \geq c_{0}\left(|\lambda|+w_{\Gamma}\right)^{m} \quad\left(\dot{c_{0}}>0\right) \tag{10}
\end{equation*}
$$

for $t \geq 0, x, \xi \in \mathbb{R}^{n}$ and $\lambda \in C$ with $\operatorname{Re} \lambda \geq 0$.
We shall introduce the functional spaces in which we consider the Cauchy problem (1)-(2). For $s \geq 1$ denote by $H^{\langle s\rangle}$ (respectively $H^{(s)}$) the set of functions of which element $u(x)$ defined in \mathbb{R}^{n} satisfies that $e^{\rho|\xi|^{1 / s}} \hat{u}(\xi) \in L^{2}\left(\mathbb{R}_{\xi}^{n}\right)$ for any $\rho>0$ (respectively $\exists \rho>0$), where $\hat{u}(\xi)$ means a Fourier transform of u. For sake of convenience denote by $H^{(\infty)}$ the usual Sobolev space $H^{\infty}=\cap_{s \geq 0} H^{s}$ and $\gamma^{(\infty)}=\mathcal{B}^{\infty}$ which means the set of functions of which all derivatives are bounded in \mathbb{R}^{n}.

In this paper we prove:

Theorem 3. For a differential operator P satisfying (4) we assume that $1<s_{0} \leq s \leq r_{0}^{-1}$ if $r_{0}>0$ and $1<s_{0} \leq s \leq \infty$ if $r_{0}=0$ (respectively $1 \leq$ $\left.s_{0} \leq s \leq r_{0}^{-1}<\infty\right)$, the coefficients $b_{j \alpha}(t, x)$ belong to $C^{\infty}\left(\left[0, T_{0}\right] ; \gamma^{\left\langle s_{0}\right\rangle}\right)$ (respectively $\left.C^{\infty}\left(\left[0, T_{0}\right] ; \gamma^{\left(s_{0}\right)}\right)\right)\left(T_{0}>0\right)$ and P is Γ (respectively $\left.\Gamma^{\prime}\right)$-parabolic at $t=0$. Then there is $T>0\left(T \leq T_{0}\right)$ such that for any $u_{j} \in H^{(s)}$ (respectively $\left.H^{(s)}\right)$ and $f \in C^{\infty}\left([0, T] ; H^{(s)}\right)$ (respectively $\left.C^{\infty}\left([0, T] ; H^{(s)}\right)\right)$ there exists a unique solution $u \in C^{\infty}\left([0, T] ; H^{\langle s\rangle}\right)$ (respectively $C^{\infty}\left([0, T] ; H^{(s)}\right)$) of the Cauchy problem (1)-(2).

This theorem will be proved in Section 4.
Let $\lambda_{Q_{i} k}, \lambda_{\Gamma_{i} k}$ and $\lambda_{\Gamma k}(k=1, \ldots, m)$ be the zeros with respect to λ of $P_{Q_{i}}, P_{\Gamma_{i}}$ and P_{Γ} respectively. Then we can easily see that P is Γ-parabolic at $t=0$ if and only if there is $\delta>0$ such that all the zeros of P_{Γ} satisfy

$$
\begin{equation*}
\operatorname{Re} \lambda_{\Gamma k}(t, x, \xi) \leq-\delta w_{\Gamma}(t, \xi), \quad k=1, \ldots, m \tag{11}
\end{equation*}
$$

for $t \geq 0$, and $x, \xi \in \mathbb{R}^{n}$. The inequalities (11) hold if and only if there is $\delta>0$ such that the following inequalities are verified:

$$
\begin{array}{ll}
\operatorname{Re} \lambda_{Q_{i} k}(t, x, \xi) \leq-\delta t^{q_{i}}|\xi|^{r_{i}}, & i=1, \ldots, l, \\
\operatorname{Re} \lambda_{\Gamma_{i} k}(t, x, \xi) \leq-\delta t^{q_{i}}|\xi|^{r_{i}}, & i=1, \ldots, l-1, \tag{13}\\
k=1, \ldots, m
\end{array}
$$

for $t \geq 0$ and $x, \xi \in \mathbb{R}^{n}$. This fact will be proved later in Proposition 5.
Remark. K. Kitagawa in [5], [6] derived the following two necessary conditions weaker than the inequalities (12) and (13) in order that the Cauchy problem (1)-(2) is well posed in $H^{\langle s\rangle}(s \geq 1)$:

$$
\begin{array}{ll}
\operatorname{Re} \lambda_{Q_{i} k}(t, x, \xi) \leq 0, & i=1, \ldots, l, \\
\operatorname{Re} \lambda_{\Gamma_{i} k}(t, x, \xi) \leq 0, & i=1, \ldots, l-1, \tag{15}\\
k=1, \ldots, m
\end{array}
$$

for $t \geq 0$ and $x, \xi \in \mathbb{R}^{n}$. Moreover M. Mikami in [8] proved that when the coefficients of P are independent of the space variable x, the homogeneous Cauchy problem for P is well posed in H^{∞} under the assumption (12) and (15) and the non-homogeneous Cauchy problem for P is well posed in H^{∞} under the assumption (12) and (13).

Notation. We use the following notation in this paper:

$$
\begin{aligned}
& x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}, \xi=\left(\xi_{1}, \ldots, \xi_{n}\right) \in \mathbb{R}^{n},|\xi|=\sqrt{\xi_{1}^{2}+\cdots+\xi_{n}^{2}}, \partial t=\frac{\partial}{\partial t}, \\
& \partial_{x_{j}}=\frac{\partial}{\partial x_{j}}, \alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right) \in \mathbb{N}^{n}, \mathbb{N}=\{0,1,2, \ldots\},|\alpha|=\alpha_{1}+\cdots+\alpha_{n}, \\
& \partial_{x}^{\alpha}=\partial_{x_{1}}^{\alpha_{1}} \cdots \partial_{x_{n}}^{\alpha_{n}}, \\
& \quad H^{s}=\left\{f(x) \in L^{2}\left(\mathbb{R}_{x}^{n}\right) ;\langle\xi\rangle^{s} \hat{f}(\xi) \in L^{2}\left(\mathbb{R}_{\xi}^{n}\right)\right\} \quad(s \geq 0),
\end{aligned}
$$

$C^{m}(I ; X)$ denotes the set of m times continuously differentiable functions of $t \in I$ with value in X.

2. - Γ-parabolic polynomials

In this section our aim is to show Proposition 4 mentioned later. For the sake of convenience put $q_{0}=-1, q_{l+1}=\infty$ and $r_{l+1}=r_{l}$. Let $\sigma_{i}(i=0, \ldots, l)$ stand for the slopes of the sides $Q_{i} Q_{i+1}$, i.e.

$$
\begin{equation*}
\sigma_{i}=\frac{r_{i+1}-r_{i}}{q_{i+1}-q_{i}}, \quad \sigma_{0}>\cdots>\sigma_{l}=0 \tag{16}
\end{equation*}
$$

Putting $\langle\xi\rangle_{h}=\sqrt{h^{2}+|\xi|^{2}}$, we have $\langle\xi\rangle_{h}^{-\sigma_{0}} \leq \cdots \leq\langle\xi\rangle_{h}^{-\sigma_{l}}$ for $h \geq 1$ and $\xi \in \mathbb{R}^{n}$. Let $f=f(t, \xi)=\left(t+\langle\xi\rangle_{h}^{-\sigma_{0}}\right)^{-\left(\sigma_{0}+r_{0}\right) / \sigma_{0}}$ and

$$
\begin{equation*}
w_{\Gamma, h}(t, \xi)=\sum_{i=1}^{l} \varphi(t)^{q_{i}}\langle\xi\rangle_{h}^{r_{i}} \tag{17}
\end{equation*}
$$

where

$$
\varphi(t)= \begin{cases}t, & 0 \leq t \leq T \\ T+1, & t \geq T+1\end{cases}
$$

$\varphi(t)$ belongs to $C^{\infty}([0, \infty))$ and is monotone increasing function. The constant $T>0$ is sufficient small and will be determined later.

Proposition 4. Assume that P is Γ (respectively Γ^{\prime})-parabolic at $t=0$. Then there are $c_{0}>0, M_{0} \gg 1$ (respectively $0<M_{0} \ll 1$), $h_{0} \gg 1$ and $0<T \ll 1$ such that

$$
\begin{equation*}
c_{0}^{-1}\left(|\lambda|+M f+w_{\Sigma, h}\right)^{m} \leq|P(t, x, \lambda+M f, \xi)| \leq c_{0}\left(|\lambda|+M f+w_{\Sigma, h}\right)^{m} \tag{18}
\end{equation*}
$$

for $0 \leq t \leq T, x, \xi \in \mathbb{R}^{n}, M \geq M_{0}$ (respectively $0<M \leq M_{0}$), $\Sigma=\Gamma$ (respectively $\left.\Sigma=\Gamma^{\prime}\right)$ and $\lambda \in \mathbb{C}\left(\operatorname{Re} \lambda \geq h^{r_{l}}, h \geq h_{0}\right.$ (respectively $\left.h \geq h_{0}(M)\right)$) and there is $C_{i j \alpha \beta}$ such that

$$
\begin{align*}
\left|\partial_{t}^{j} \partial_{x}^{\beta} \partial_{\lambda}^{i} \partial_{\xi}^{\alpha} P(t, x, \lambda+M f, \xi)\right| \leq & C_{i j \alpha \beta}\left(|\lambda|+M f+w_{\Sigma, h}\right)^{m-i} \tag{19}\\
& \times\left(t+\langle\xi\rangle_{h}^{-\sigma_{0}}\right)^{-j}\langle\xi\rangle_{h}^{-|\alpha|}
\end{align*}
$$

for $i, j \in \mathbb{N}, \alpha, \beta \in \mathbb{N}^{n}, 0 \leq t \leq T, x, \xi \in \mathbb{R}^{n}, \lambda \in \mathbb{C}$ and $h \geq 1$.
In the proposition above we should remark that the constant $C_{i j \alpha \beta}$ if independent of M.

Proposition 5. There are $A>0$ and $h>0$ such that when $t \geq A^{-1}|\xi|^{-\sigma_{0}}$ and $|\xi| \geq h$, the inequalities (11) hold if and only if the inequalities (12) and (13) are verified.

Proposition 4 and Proposition 5 will be proved after the proof of Lemma 10.

Lemma 6. Assume that P is Γ-parabolic at $t=0$. Then there is $c_{1}>0$ such that

$$
\begin{equation*}
\left|P_{\Gamma}(t, x, \lambda, \xi)\right| \geq c_{1}\left(|\lambda|+w_{\Gamma, h}\right)^{m} \tag{20}
\end{equation*}
$$

for $t \geq 0, x, \xi \in \mathbb{R}^{n}, \lambda \in \mathbb{C}\left(\operatorname{Re} \lambda \geq h^{r_{l}}\right)$ and $h \geq 1$.
Proof. It is sufficient to show that there is $\delta>0$ such that

$$
\begin{equation*}
|\lambda|+w_{\Gamma} \geq \delta\left(|\lambda|+w_{\Gamma, h}\right) \tag{21}
\end{equation*}
$$

for $t \geq 0, x, \xi \in \mathbb{R}^{n}, \lambda \in \mathbb{C}\left(\operatorname{Re} \lambda \geq h^{r_{l}}\right)$ and $h \geq 1$. In fact, $|\xi| \geq\langle\xi\rangle_{h} / 2$ if $|\xi| \geq h$, then (21) holds. Besides $\varphi(t)^{q_{i}}\langle\xi\rangle_{h}^{r_{i}} \leq(T+1)^{q_{l}} 2^{r_{l} / 2}|\lambda|$ if $\operatorname{Re} \lambda \geq h^{r_{l}}$ and $|\xi| \leq h$, then (21) also holds. We note that (20) holds for Γ^{\prime}.

By simple computation we get:
Lemma 7. Let $i=1, \ldots, l,(1+\sigma(j \alpha) / j,|\alpha| / j) \in N(P)$ and $A>0$.
(i) If $A^{-1}\langle\xi\rangle_{h}^{-\sigma_{i-1}} \leq t, \sigma(j \alpha) \leq j q_{i}$ and $\tau_{i}(j \alpha)=\sigma_{i-1}\left(\sigma(j \alpha)-j q_{i}\right)+j r_{i}-|\alpha| \geq 0$, then

$$
\begin{equation*}
t^{\sigma(j \alpha)}\langle\xi\rangle_{h}^{|\alpha|} \leq A^{j q_{i}-\sigma(j \alpha)} h^{-\tau_{i}(j \alpha)}\left(t^{q_{i}}\langle\xi\rangle_{h}^{r_{i}}\right)^{j} \tag{22}
\end{equation*}
$$

for $t \geq 0, x, \xi \in \mathbb{R}^{n}$ and $h \geq 1$.
(ii) If $0 \leq t \leq A\langle\xi\rangle_{h}^{-\sigma_{i}}, \sigma(j \alpha) \geq j q_{i}$ and $\tilde{\tau}_{i}(j \alpha)=\sigma_{i}\left(\sigma(j \alpha)-j q_{i}\right)+j r_{i}-|\alpha| \geq$ 0 , then

$$
\begin{equation*}
t^{\sigma(j \alpha)}\langle\xi\rangle_{h}^{|\alpha|} \leq A^{\sigma(j \alpha)-j q_{i}} h^{-\tilde{\tau}_{i}(j \alpha)}\left(t^{q_{i}}\langle\xi\rangle_{h}^{r_{i}}\right)^{j} \tag{23}
\end{equation*}
$$

for $t \geq 0, x, \xi \in \mathbb{R}^{n}$ and $h \geq 1$.
Proof. (i) By assumption it follows that

$$
\begin{aligned}
t^{\sigma(j \alpha)}\langle\xi\rangle_{h}^{|\alpha|} & =t^{\sigma(j \alpha)}\langle\xi\rangle_{h}^{\sigma_{i-1}\left(\sigma(j \alpha)-j q_{i}\right)+j r_{i}-\tau_{i}(j \alpha)} \\
& =A^{-\sigma(j \alpha)}\left(A t\langle\xi\rangle_{h}^{\sigma_{i-1}}\right)^{\sigma(j \alpha)}\langle\xi\rangle_{h}^{\left(r_{i}-\sigma_{i-1} q_{i}\right) j-\tau_{i}(j \alpha)} \\
& \leq A^{-\sigma(j \alpha)}\left(A t\langle\xi\rangle_{h}^{\sigma_{i-1}}\right)^{j q_{i}}\langle\xi\rangle_{h}^{\left(r_{i}-\sigma_{i-1} q_{i}\right) j-\tau_{i}(j \alpha)} \\
& \leq A^{j q_{i}-\sigma(j \alpha)} h^{-\tau_{i}(j \alpha)}\left(t^{q_{i}}\langle\xi\rangle_{h}^{r_{i}}\right)^{j}
\end{aligned}
$$

(ii) In the same way it follows that

$$
\begin{aligned}
t^{\sigma(j \alpha)}\langle\xi\rangle_{h}^{|\alpha|} & =t^{\sigma(j \alpha)}\langle\xi\rangle_{h}^{\sigma_{i}\left(\sigma(j \alpha)-j q_{i}\right)+j r_{i}-\tilde{\tau}_{i}(j \alpha)} \\
& =\left(t\langle\xi\rangle_{h}^{\sigma_{i}}\right)^{\sigma(j \alpha)-j q_{i}}\left(t^{q_{i}}\langle\xi\rangle_{h}^{r_{i}}\right)^{j}\langle\xi\rangle_{h}^{-\tilde{\tau}_{i}(j \alpha)} \\
& \leq A^{\sigma(j \alpha)-j q_{i}} h^{-\tilde{\tau}_{i}(j \alpha)}\left(t^{q_{i}}\langle\xi\rangle_{h}^{r_{i}}\right)^{j}
\end{aligned}
$$

We investigate the properties of the characteristic polynomial $P(t, x, \lambda, \xi)$. First we consider the case $A^{-1}\langle\xi\rangle_{h}^{-\sigma_{0}} \leq t \leq T$.

Proposition 8. Assume that P is Γ-parabolic at $t=0$. Then there are $c_{0}>0$, $0<T \ll 1,0<A \ll 1$ and $h_{0} \gg 1$ such that

$$
\begin{equation*}
c_{0}^{-1}\left(|\lambda|+w_{\Gamma, h}\right)^{m} \leq|P(t, x, \lambda, \xi)| \leq c_{0}\left(|\lambda|+w_{\Gamma, h}\right)^{m}, \tag{24}
\end{equation*}
$$

for $A^{-1}\langle\xi\rangle_{h}^{-\sigma_{0}} \leq t \leq T, \lambda \in \mathbb{C}\left(\operatorname{Re} \lambda \geq h^{r_{l}}, h \geq h_{0}\right)$, and $x, \xi \in \mathbb{R}^{n}$.
Proof. Decompose P as follows:

$$
\begin{aligned}
P(t, x, \lambda, \xi)= & P_{\Gamma}(t, x, \lambda, \xi)+\sum_{\left(1+\frac{\sigma(j \alpha)}{j}, \frac{|\alpha|}{j}\right) \notin \Gamma} t^{\sigma(j \alpha)} b_{j \alpha}(t, x) \xi^{\alpha} \lambda^{m-j} \\
& +\sum_{\left(1+\frac{\sigma(j \alpha)}{j}, \frac{|\alpha|}{j}\right) \in \Gamma} t^{\sigma(j \alpha)}\left(b_{j \alpha}(t, x)-b_{j \alpha}(0, x)\right) \xi^{\alpha} \lambda^{m-j}
\end{aligned}
$$

It is obvious that the first term $P_{\Gamma}(t, x, \lambda, \xi)$ satisfy (24). When $(1+\sigma(j \alpha) / j$, $|\alpha| / j) \notin \Gamma$, it follows that $\tau_{i}(j \alpha)>0$ and $\tilde{\tau}_{i}(j \alpha)>0$ for $i=1, \ldots, l$ if $\sigma(j \alpha) / j \geq q_{1}$. If $t \geq A^{-1}\langle\xi\rangle_{h}^{-\sigma_{0}}$, there are three cases as follows:
$1^{*} A^{-1}\langle\xi\rangle_{h}^{-\sigma_{0}} \leq t \leq\langle\xi\rangle_{h}^{-\sigma_{1}}$,
2^{*} there is $k(2 \leq k \leq l)$ such that $\langle\xi\rangle_{h}^{-\sigma_{k-1}} \leq t \leq\langle\xi\rangle_{h}^{-\sigma_{k}}$,
$3^{*} t \geq\langle\xi\rangle_{h}^{-\sigma_{l}}$.
(i) In the case $\sigma(j \alpha) \geq j q_{1}$:

In the case $1^{*}, 2^{*}$ and 3^{*} by Lemma 7 we have $t^{\sigma(j \alpha)}\langle\xi\rangle_{h}^{|\alpha|} \leq h^{-\tilde{\tau}_{1}(j \alpha)}\left(t^{q_{1}}\langle\xi\rangle_{h}^{r_{1}}\right)^{j}$, $t^{\sigma(j \alpha)}\langle\xi\rangle_{h}^{|\alpha|} \leq h^{-\tilde{\tau}_{k}(j \alpha)}\left(t^{q_{k}}\langle\xi\rangle_{h}^{r_{k}}\right)^{j}$ and $t^{\sigma(j \alpha)}\langle\xi\rangle_{h}^{|\alpha|} \leq h^{-\tau_{l}(j \alpha)}\left(t^{q_{l}}\langle\xi\rangle_{h}^{r_{l}}\right)^{j}$ respectively. Putting $\tau_{0}=\inf _{i}\left\{\tau_{i}(j \alpha), \tilde{\tau}_{i}(j \alpha)\right\}>0$ we have

$$
\begin{equation*}
t^{\sigma(j \alpha)}\langle\xi\rangle_{h}^{|\alpha|} \leq h^{-\tau_{0}}\left(w_{\Gamma, h}\right)^{j} \tag{25}
\end{equation*}
$$

(ii) In the case $\sigma(j \alpha)<j q_{1}$:

By the same way of (i) we have

$$
\begin{equation*}
t^{\sigma(j \alpha)}\langle\xi\rangle_{h}^{|\alpha|} \leq A\left(w_{\Gamma, h}\right)^{j} \tag{26}
\end{equation*}
$$

Thus from (25), (26), $0<A \ll 1$ and $h_{0} \gg 1$ we have

$$
\left|\sum_{\left(1+\frac{\sigma}{j}, \frac{|\alpha|}{j}\right) \notin \Gamma} t^{\sigma(j \alpha)} b_{j \alpha}(t, x) \xi^{\alpha} \lambda^{m-j}\right| \leq \frac{c_{0}}{4}{ }_{\left(|\lambda|+w_{\Gamma, h}\right)^{m} .}
$$

And from $0<T \ll 1$ we get

$$
\left|\sum_{\left(1+\frac{\sigma}{j}, \frac{|\alpha|}{j}\right) \in \Gamma} t^{\sigma(j \alpha)}\left(b_{j \alpha}(t, x)-b_{j \alpha}(0, x)\right) \xi^{\alpha} \lambda^{m-j}\right| \leq \frac{c_{0}}{4}\left(|\lambda|+w_{\Gamma, h}\right)^{m}
$$

hence we obtain (24).

We note that (24) is valid for Γ^{\prime}.
Proposition 9. There are $C_{i j \alpha \beta}>0$ and $0<A \ll 1$ such that

$$
\begin{equation*}
\left|\partial_{t}^{j} \partial_{x}^{\beta} \partial_{\lambda}^{i} \partial_{\xi}^{\alpha} P(t, x, \lambda, \xi)\right| \leq C_{i j \alpha \beta}\left(|\lambda|+w_{\Gamma, h}\right)^{m-i}\langle\xi\rangle_{h}^{\sigma_{0} j-|\alpha|}, \tag{27}
\end{equation*}
$$

for $i, j \in \mathbb{N}, \alpha, \beta \in \mathbb{N}^{n}, A^{-1}\langle\xi\rangle_{h}^{-\sigma_{0}} \leq t \leq T, x, \xi \in \mathbb{R}^{n}, \lambda \in \mathbb{C}$ and $h \geq 1$.
Proof. Noting $\left|\partial_{t}^{j} \partial_{x}^{\beta} \partial_{\lambda}^{i} \partial_{\xi}^{\alpha} \lambda^{m}\right| \leq C_{i}|\lambda|^{m-i}$ and $\left|\partial_{t}^{j} \partial_{x}^{\beta} a_{k \gamma}(t, x)\right| \leq C_{j \beta} t^{\sigma(k \gamma)-j}$, from Lemma 7 we have

$$
\begin{aligned}
\left|\partial_{t}^{j} \partial_{x}^{\beta} \partial_{\lambda}^{i} \partial_{\xi}^{\alpha} P(t, x, \lambda, \xi)\right| \leq & \left|\partial_{t}^{j} \partial_{x}^{\beta} \partial_{\lambda}^{i} \partial_{\xi}^{\alpha} \lambda^{m}\right| \\
& +\sum_{k=1}^{m} \sum_{\gamma: f \mathrm{finite}}\left|\partial_{t}^{j} \partial_{x}^{\beta} a_{k \gamma}(t, x) \partial_{\xi}^{\alpha} \xi^{\gamma} \partial_{\lambda}^{i} \lambda^{m-k}\right| \\
\leq & C_{i j \alpha \beta}\left(|\lambda|+w_{\Gamma, h}\right)^{m-i}\langle\xi\rangle_{h}^{\sigma_{0} j-|\alpha|}
\end{aligned}
$$

Next we consider the case $0 \leq T \leq A^{-1}\langle\xi\rangle_{h}^{-\sigma_{0}}$.
Lemma 10. Let $0<A \leq 1$. If $|\alpha| / j \leq \sigma_{0}\left(\sigma(j \alpha) / j-q_{0}\right)+r_{0}$, there is $M_{0}=M(A)>0$ such that

$$
\begin{equation*}
t^{\sigma(j \alpha)}\langle\xi\rangle_{h}^{|\alpha|} \leq\left(M_{0} f\right)^{j} h^{-\tilde{\tau}_{0}(j \alpha)} \tag{28}
\end{equation*}
$$

for $0 \leq t \leq A^{-1}\langle\xi\rangle_{h}^{-\sigma_{0}}, \xi \in \mathbb{R}^{n}, h \geq 1$.
Proof. By assumption and $\sigma(j \alpha) \leq j q_{l}$

$$
t^{\sigma(j \alpha)}\langle\xi\rangle_{h}^{|\alpha|} \leq\left(A^{-q_{l}}\langle\xi\rangle_{h}^{r_{0}+\sigma_{0}}\right)^{j} h^{-\tilde{\tau}_{0}(j \alpha)} .
$$

Since $\sigma_{0}=\left(r_{1}-r_{0}\right) /\left(q_{1}+1\right)$ the inequality below

$$
A^{-q_{l}}\langle\xi\rangle_{h}^{r_{0}+\sigma_{0}} \leq M f
$$

is equivalent to

$$
t\langle\xi\rangle_{h}^{\sigma_{0}}+1 \leq\left(M A^{q_{l}}\right)^{\frac{\sigma_{0}}{\sigma_{0}+r_{0}}}
$$

for $t\langle\xi\rangle_{h}^{\sigma_{0}} \leq A^{-1}$. Thus we can choose the constant

$$
M_{0}=\left(A^{-1}+1\right)^{\frac{\sigma_{0}+r_{0}}{\sigma_{0}}} A^{-q_{l}},
$$

satisfying this lemma.

Now we shall prove Proposition 4 and Proposition 5.
Proof of Proposition 4. In the case $A^{-1}\langle\xi\rangle_{h}^{-\sigma_{0}} \leq t \leq T$ we can easily see that (18) and (19) hold by (24) and (27) respectively, so we only prove in the case $0 \leq t \leq A^{-1}\langle\xi\rangle_{h}^{-\sigma_{0}}$. First, we prove (18) when $0 \leq t \leq A^{-1}\langle\xi\rangle_{h}^{-\sigma_{0}}$. It is obvious that $P_{\Gamma}(t, x, \lambda+M f, \xi)$ satisfy (18). There is $M_{1} \gg 1$ (respectively $h_{0}(M)>0$ for $\left.M>0\right)$ such that

$$
\begin{equation*}
\left|\sum_{\left(1+\frac{\sigma(j \alpha)}{j}, \frac{|\alpha|}{j}\right) \notin \Gamma} t^{\sigma(j \alpha)} b_{j \alpha}(t, x) \xi^{\alpha} \lambda^{m-j}\right| \leq \frac{c_{0}^{-1}}{2}(|\lambda|+M f)^{m} \tag{29}
\end{equation*}
$$

for $\forall M \geq M_{1}$ (respectively $\forall h \geq h_{0}(M)$). In fact, by Lemma 10 , putting $K=\max _{j \alpha x}\left|b_{j \alpha}(0, x)\right|$ we have

$$
\left|t^{\sigma(j \alpha)} b_{j \alpha}(0, x) \xi^{\alpha} \lambda^{m-j}\right| \leq \frac{M_{0} K}{M}(M f)^{j}|\lambda|^{m-j} h^{-\tilde{\tau}_{0}(j \alpha)}
$$

Thus taking $M_{1}=2 M_{0} K c_{0}$ (respectively $h_{0}(M)=\left(2 M_{0} K c_{0} / M\right)^{1 / \tau_{0}}$, where $\tau_{0}=\inf \tilde{\tau}_{0}(j \alpha)>0$, since P is Γ^{\prime}-parabolic at $t=0$) we obtain (29), implying (18) in $0 \leq t \leq A^{-1}\langle\xi\rangle_{h}^{-\sigma_{0}}$.

Next, we prove (19) in $0 \leq t \leq A^{-1}\langle\xi\rangle_{h}^{-\sigma_{0}}$.

$$
\begin{aligned}
&\left|\partial_{t}^{j} \partial_{x}^{\beta} \partial_{\lambda}^{i} \partial_{\xi}^{\alpha} P(t, x, \lambda+M f, \xi)\right| \\
& \leq\left|\partial_{t}^{j} \partial_{x}^{\beta} \partial_{\lambda}^{i} \partial_{\xi}^{\alpha}(\lambda+M f)^{m}\right| \\
&+\sum_{k=1}^{m} \sum_{\gamma: \mathrm{finite}}\left|\partial_{t}^{j} \partial_{x}^{\beta} a_{k \gamma}(t, x) \partial_{\xi}^{\alpha} \xi^{\gamma} \partial_{\lambda}^{i}(\lambda+M f)^{m-k}\right| \\
& \leq C_{i j \alpha}\left(|\lambda|+M f+w_{\Gamma, h}\right)^{m-i}\left(t+\langle\xi\rangle_{h}^{-\sigma_{0}}\right)^{-j}\langle\xi\rangle_{h}^{-|\alpha|} \\
&+\sum_{k=1}^{m} \sum_{\sigma(k \gamma) \geq j} C_{\alpha \beta i j} t^{\sigma(k \gamma)-j}\langle\xi\rangle_{h}^{|\gamma|-|\alpha|}(|\lambda|+M f)^{m-k-i}
\end{aligned}
$$

Here from $0 \leq t \leq A^{-1}\langle\xi\rangle_{h}^{-\sigma_{0}}$ we have

$$
\begin{align*}
& t^{\sigma(k \gamma)-j}\langle\xi\rangle_{h}^{|\gamma|-|\alpha|}(|\lambda|+M f)^{m-k-i} \\
& \quad \leq C\langle\xi\rangle_{h}^{|\gamma|-|\alpha|+\sigma(j-\sigma(k \gamma))}\left(|\lambda|+M f+w_{\Gamma, h}\right)^{m-k-i} \tag{31}
\end{align*}
$$

Besides from $|\gamma| / k-\sigma(1+\sigma(k \gamma) / k) \leq r_{0}$ we have

$$
\begin{equation*}
\langle\xi\rangle_{h}^{|\gamma|+\sigma(j-\sigma(k \gamma))}\left(t+\langle\xi\rangle_{h}^{-\sigma}\right)^{j} \leq C\left(|\lambda|+M f+w_{\Gamma, h}\right)^{k} \tag{32}
\end{equation*}
$$

Hence (19) is proved in $0 \leq t \leq A^{-1}\langle\xi\rangle_{h}^{-\sigma_{0}}$ from (30), (31) and (32).
Proof of Proposition 5. First remark that $\langle\xi\rangle_{h} \leq|\xi| \leq 2\langle\xi\rangle_{h}$ if $|\xi| \geq h$. If $t \geq A^{-1}|\xi|^{-\sigma_{0}}(0<A<1)$, then there is $i \geq 1$ such that there are three cases as follows:
(i) $A^{-1}\langle\xi\rangle_{h}^{-\sigma_{i-1}} \leq t \leq A\langle\xi\rangle_{h}^{-\sigma_{i}}$,
(ii) $A\langle\xi\rangle_{h}^{-\sigma_{i}} \leq t \leq A^{-1}\langle\xi\rangle_{h}^{-\sigma_{i}}$,
(iii) $t \geq A^{-1}\langle\xi\rangle_{h}^{\sigma_{l}}$.
(i) In the case $A^{-1}\langle\xi\rangle_{h}^{-\sigma_{i-1}} \leq t \leq A\langle\xi\rangle_{h}^{-\sigma_{i}}$:

It follows that

$$
\begin{equation*}
t^{q_{i}}\langle\xi\rangle_{h}^{r_{i}} \leq \sum_{j=1}^{t} t^{q_{j}}\langle\xi\rangle_{h}^{r_{j}} \leq\left(1+\sum_{1 \leq j \neq i} A^{q_{j+1}-q_{j}}\right) t^{q_{i}}\langle\xi\rangle_{h}^{r_{i}} \tag{33}
\end{equation*}
$$

for $h \geq 1$. Therefore there exists $0<A \ll 1$ such that

$$
\begin{equation*}
t^{q_{i}}\langle\xi\rangle_{h}^{r_{i}} \leq \sum_{j=1}^{l} t^{q_{j}}\langle\xi\rangle_{h}^{r_{j}} \leq \frac{3}{2} t^{q_{i}}\langle\xi\rangle_{h}^{r_{i}} \tag{34}
\end{equation*}
$$

Moreover it is obvious that

$$
\begin{equation*}
\left.\left|P_{\Gamma}(t, x, \lambda, \xi)-P_{Q_{i}}(t, x, \lambda, \xi)\right| \leq \sum_{\left(1+\frac{\sigma}{j}, \frac{\alpha \alpha}{j}\right)}\right) \in \Gamma \backslash Q_{i} . \tag{35}
\end{equation*}
$$

We have then from Lemma 7

$$
t^{\sigma(j \alpha)}\left|\xi^{\alpha}\right| \leq \begin{cases}A^{j q_{i}-\sigma(j \alpha)} h^{-\tau_{i}(j \alpha)}\left(t^{q_{i}}\langle\xi\rangle_{h}^{r_{i}}\right)^{j}, & j q_{i}-\sigma(j \alpha)>0 \\ A^{\sigma(j \alpha)-j q_{i}} h^{-\tilde{\tau}_{i}(j \alpha)}\left(t^{q_{i}}\langle\xi\rangle_{h}^{r_{i}}\right)^{j}, & j q_{i}-\sigma(j \alpha)<0\end{cases}
$$

If $\left(1+\frac{\sigma(j \alpha)}{j}, \frac{|\alpha|}{j}\right) \in \Gamma \backslash Q_{i}$,

$$
\begin{cases}\left(j q_{i}-\sigma(j \alpha)\right) \tau_{i}(j \alpha) \neq 0, & j q_{i}-\sigma(j \alpha) \leq 0 \\ \left(\sigma(j \alpha)-j q_{i}\right) \tilde{\tau}_{i}(j \alpha) \neq 0, & j q_{i}-\sigma(j \alpha) \geq 0\end{cases}
$$

and then there is $A=A_{\varepsilon}>0$ or $h=h_{\varepsilon}>0$ for any $\varepsilon>0$ such that

$$
\begin{equation*}
t^{\sigma(j \alpha)}\left|\xi^{\alpha}\right| \leq \varepsilon\left(t^{q_{i}}\langle\xi\rangle_{h}^{r_{i}}\right)^{j} \tag{36}
\end{equation*}
$$

for $t \in\left[A^{-1}\langle\xi\rangle_{h}^{-\sigma_{i-1}}, A\langle\xi\rangle_{h}^{-\sigma_{i}}\right]$. We have then from (35) and (36)

$$
\begin{align*}
\left|P_{\Gamma}(t, x, \lambda, \xi)-P_{Q_{i}}(t, x, \lambda, \xi)\right| & \leq \text { const. } \sum_{\left(1+\frac{\sigma}{j}, \frac{|\alpha|}{j}\right) \in \Gamma \backslash Q_{i}} t^{\sigma(j \alpha)}\langle\xi\rangle_{h}^{|\alpha|}|\lambda|^{m-j} \\
& \leq \text { const. } \varepsilon \sum_{j=1}^{m}\left(t^{q_{i}}\langle\xi\rangle_{h}^{r_{i}}\right)^{j}|\lambda|^{m-j} \tag{3}\\
& \leq \text { const. } \varepsilon\left(|\lambda|+t^{q_{i}}\langle\xi\rangle_{h}^{r_{i}}\right)^{m} \\
& \leq \text { const. } \varepsilon\left(|\lambda|+\sum_{j=1}^{l} t^{q_{j}}\langle\xi\rangle_{h}^{r_{j}}\right)^{m}
\end{align*}
$$

Then, from (10), it follows that for sufficiently small $\varepsilon>0$

$$
\begin{aligned}
\left|P_{Q_{i}}(t, x, \lambda, \xi)\right| & \leq\left|P_{\Gamma}(t, x, \lambda, \xi)\right|+\left|P_{\Gamma}(t, x, \lambda, \xi)-P_{Q_{i}}(t, x, \lambda, \xi)\right| \\
& \leq\left|P_{\Gamma}(t, x, \lambda, \xi)\right|+\text { const. } \varepsilon\left|P_{\Gamma}(t, x, \lambda, \xi)\right| \\
& \leq 2\left|P_{\Gamma}(t, x, \lambda, \xi)\right|,
\end{aligned}
$$

for $\operatorname{Re} \lambda \geq 0$. In the same way it follows that

$$
\left|P_{Q_{i}}(t, x, \lambda, \xi)\right| \geq \frac{1}{2}\left|P_{\Gamma}(t, x, \lambda, \xi)\right|,
$$

for $\operatorname{Re} \lambda \geq 0$. Thus

$$
\begin{equation*}
\frac{1}{2}\left|P_{\Gamma}(t, x, \lambda, \xi)\right| \leq\left|P_{Q_{i}}(t, x, \lambda, \xi)\right| \leq 2\left|P_{\Gamma}(t, x, \lambda, \xi)\right| \tag{38}
\end{equation*}
$$

for $\operatorname{Re} \lambda \geq 0$. Hence we see that the inequalities (11) hold if and only if the inequalities (12) and (13) are verified when $A^{-1}\langle\xi\rangle_{h}^{-\sigma_{i-1}} \leq t \leq A\langle\xi\rangle_{h}^{-\sigma_{i}}$.
(ii) In the case $A\langle\xi\rangle_{h}^{-\sigma_{i}} \leq t \leq A^{-1}\langle\xi\rangle_{h}^{-\sigma_{i}}$:

It is obvious that there is $C=C_{A}>0$ such that

$$
\begin{equation*}
t^{q_{i}}\langle\xi\rangle_{h}^{r_{i}} \leq \sum_{j=1}^{l} t^{q_{j}}\langle\xi\rangle_{h}^{r_{j}} \leq C t^{q_{i}}\langle\xi\rangle_{h}^{r_{i}} \tag{39}
\end{equation*}
$$

Note that $\left(1+\frac{\sigma(j \alpha)}{j}, \frac{|\alpha|}{j}\right) \in \Gamma \backslash \Gamma_{i}$ is equivalent to that $|\alpha| / j<\sigma_{i}(\sigma(j \alpha) / j-$ $\left.q_{i}\right)+r_{i}$ (i.e. $\left.\tilde{\tau}_{i}(j \alpha)=\sigma_{i}\left(\sigma(j \alpha)-j q_{i}\right)+j r_{i}-|\alpha|>0\right)$. In the same way as (i)
we obtain the following, remarking that $A \leq t\langle\xi\rangle_{h}^{\sigma_{i}} \leq A^{-1}$:

$$
\begin{aligned}
& \left|P_{\Gamma}(t, x, \lambda, \xi)-P_{\Gamma_{i}}(t, x, \lambda, \xi)\right| \leq \sum_{\left(1+\frac{\sigma}{j}, \frac{|\alpha|}{j}\right) \in \Gamma \backslash \Gamma_{i}} t^{\sigma(j \alpha)}\left|b_{j \alpha}(0, x)\right|\left|\xi^{\alpha}\right||\lambda|^{m-j} \\
& \leq \text { const. } \sum_{\left(1+\frac{\sigma}{j}, \frac{|\alpha|}{j}\right) \in \Gamma \backslash \Gamma_{i}} t^{\sigma(j \alpha)}\langle\xi\rangle_{h}^{|\alpha|}|\lambda|^{m-j} \\
& =\text { const. } \sum_{\left(1+\frac{\sigma}{j}, \frac{|\alpha|}{j}\right) \in \Gamma \backslash \Gamma_{i}} t^{\sigma(j \alpha)}\langle\xi\rangle_{h}^{\sigma_{i}\left(\sigma(j \alpha)-j q_{i}\right)+j r_{i}-\tilde{\tau}_{i}(j \alpha)}|\lambda|^{m-j} \\
& \leq \text { const. } \quad \sum\left(t\langle\xi\rangle_{h}^{\sigma_{i}}\right)^{\sigma(j \alpha)-j q_{i}}\langle\xi\rangle_{h}^{-\tilde{\tau}_{i}(j \alpha)}\left(t^{q_{i}}\langle\xi\rangle_{h}^{r_{i}}\right)^{j}|\lambda|^{m-j} \\
& \left(1+\frac{\sigma}{j}, \frac{|\alpha|}{j}\right) \in \Gamma \backslash \Gamma_{i} \\
& \leq \text { const. } \quad \sum_{i \alpha \mid} A^{-\left|\sigma(j \alpha)-j q_{i}\right|} h^{-\tilde{\tau}_{i}(j \alpha)}\left(t^{q_{i}}\langle\xi\rangle_{h}^{r_{i}}\right)^{j}|\lambda|^{m-j} \\
& \left(1+\frac{\sigma}{j}, \frac{|\alpha|}{j}\right) \in \Gamma \backslash \Gamma_{i} \\
& \leq \varepsilon \sum_{j=1}^{m}\left(t^{q_{i}}\langle\xi\rangle_{h}^{r_{i}}\right)^{j}|\lambda|^{m-j} . \\
& \leq \varepsilon\left(|\lambda|+t^{q_{i}}(\xi\rangle_{h}^{r_{i}}\right)^{m} \\
& \leq \varepsilon\left(|\lambda|+\sum_{j=1}^{l} t^{q_{j}}\langle\xi\rangle_{h}^{r_{j}}\right)^{m},
\end{aligned}
$$

for any $\varepsilon>0$ and $h=h(\varepsilon, A)>0$. Thus in the same way as (i) we get

$$
\begin{equation*}
\frac{1}{2}\left|P_{\Gamma}(t, x, \lambda, \xi)\right| \leq\left|P_{\Gamma_{i}}(t, x, \lambda, \xi)\right| \leq 2\left|P_{\Gamma}(t, x, \lambda, \xi)\right| \tag{41}
\end{equation*}
$$

Hence we see that the inequalities (11) hold if and only if the inequalities (12) and (13) are verified when $A\langle\xi\rangle_{h}^{-\sigma_{i}} \leq t \leq A^{-1}\langle\xi\rangle_{h}^{-\sigma_{i}}$.
(iii) In the case $t \geq A^{-1}\langle\xi\rangle_{h}^{-\sigma_{l}}$:

We have $t \geq A^{-1}$ since $\sigma_{l}=0$. If $\left(1+\frac{\sigma(j \alpha)}{j}, \frac{|\alpha|}{j}\right) \in \Gamma \backslash Q_{l}$ then $\sigma(j \alpha)-j q_{l}<0$ and $|\alpha| \leq j r_{l}$. Then it is obvious that there is $C=C_{A}>0$ such that

$$
\begin{equation*}
t^{q_{l}}\langle\xi\rangle_{h}^{r_{l}} \leq \sum_{j=1}^{l} t^{q_{j}}\langle\xi\rangle_{h}^{r_{j}} \leq C t^{q_{l}}\langle\xi\rangle_{h}^{r_{l}} \tag{42}
\end{equation*}
$$

Thus there exists $0<A \ll 1$ for any $\varepsilon>0$ such that

$$
\begin{aligned}
\mid P_{\Gamma}(t, x, \lambda, \xi) & -\left.P_{\Gamma_{l}}(t, x, \lambda, \xi)\left|\leq \sum_{\left(1+\frac{\sigma}{j}, \frac{|\alpha|}{j}\right) \in \Gamma \backslash Q_{l}} t^{\sigma(j \alpha)}\right| b_{j \alpha}(0, x)| | \xi^{\alpha}| | \lambda\right|^{m-j} \\
& \leq \text { const. } \sum_{\left(1+\frac{\sigma}{j}, \frac{|\alpha|}{j}\right) \in \Gamma \backslash Q_{l}} t^{\sigma(j \alpha)}\langle\xi\rangle_{h}^{|\alpha|}|\lambda|^{m-j} \\
& \leq \text { const. } \sum_{\left(1+\frac{\sigma}{j}, \frac{|\alpha|}{j}\right) \in \Gamma \backslash Q_{l}} t^{\sigma(j \alpha)-j q_{l} t^{j q_{l}}\langle\xi\rangle_{h}^{j r_{l}}|\lambda|^{m-j}} \\
& \leq \text { const. } \sum_{\left(1+\frac{\sigma}{j}, \frac{|\alpha \alpha|}{j}\right) \in \Gamma \backslash Q_{l}} A^{j q_{l}-\sigma(j \alpha)}\left(t^{q_{l}}\langle\xi\rangle_{h}^{r_{l}}\right)^{j}|\lambda|^{m-j} \\
& \leq \varepsilon \sum_{j=1}^{m}\left(t^{q_{l}}\langle\xi\rangle_{h}^{r_{l}}\right)^{j}|\lambda|^{m-j} \\
& \leq \varepsilon\left(|\lambda|+t^{q_{l}}\langle\xi\rangle_{h}^{r_{l}}\right)^{m} \\
& \leq \varepsilon\left(|\lambda|+\sum_{j=1}^{l} t^{q_{j}}\langle\xi\rangle_{h}^{r_{j}}\right)^{m}
\end{aligned}
$$

In the same way as (i) it follows that

$$
\begin{equation*}
\frac{1}{2}\left|P_{\Gamma}(t, x, \lambda, \xi)\right| \leq\left|P_{Q_{l}}(t, x, \lambda, \xi)\right| \leq 2\left|P_{\Gamma}(t, x, \lambda, \xi)\right| \tag{44}
\end{equation*}
$$

for $\operatorname{Re} \lambda \geq 0$. Thus we see that the inequalities (11) hold if and only if the inequalities (12) and (13) are verified when $t \geq A^{-1}\langle\xi\rangle_{h}^{-\sigma_{l}}$.

3. - Construction of parametrix

Write $\sigma=\sigma_{0}$. Let

$$
\chi(t)= \begin{cases}1, & 0 \leq t \leq T / 2 \\ 0, & t \geq T\end{cases}
$$

$\chi(t)$ belongs to $C^{\infty}([0, \infty))$ and is monotone increasing function. Let

$$
\widetilde{P}\left(t, x, \partial_{t}, D_{x}\right)=\partial_{t}^{m}+\sum_{j \alpha} \tilde{a}_{j \alpha}(t, x) D_{x}^{\alpha} \partial_{t}^{m-j}
$$

where

$$
\tilde{a}_{j \alpha}(t, x)=\varphi(t)^{\sigma(j \alpha)} b_{j \alpha}(0, x)+\chi(t) t^{\sigma(j \alpha)}\left(b_{j \alpha}(t, x)-b_{j \alpha}(0, x)\right)
$$

From Proposition 4 it follows immediately that:

Proposition 11. Assume that P is Γ (respectively Γ^{\prime})-parabolic at $t=0$, then

$$
\begin{align*}
\left|\partial_{t}^{j} \partial_{x}^{\beta} \partial_{\lambda}^{i} \partial_{\xi}^{\alpha} \widetilde{P}(t, x, \lambda+M f, \xi)^{ \pm 1}\right| \leq & C_{i j \alpha \beta}\left(|\lambda|+M f+w_{\Gamma, h}\right)^{ \pm m-i} \tag{45}\\
& \times\left(t+\langle\xi\rangle_{h}^{-\sigma}\right)^{-j}\langle\xi\rangle_{h}^{-|\alpha|}
\end{align*}
$$

for $i, j \in \mathbb{N}, \alpha, \beta \in \mathbb{N}^{n}, t \geq 0, x, \xi \in \mathbb{R}^{n}, \lambda \in \mathbb{C}\left(\operatorname{Re} \lambda \geq h^{r_{l}}\right), M \geq M_{1}$ and $h \geq 1$ (respectively $h \geq h_{0}(M)$ and $M>0$). ($C_{i j \alpha \beta}$ is independent of M.)

Consider the Cauchy problem for the operator \widetilde{P} instead of the operator P, that is,

$$
\begin{align*}
\widetilde{P}\left(t, x, \partial_{t}, D_{x}\right) u(t, x) & =f(t, x), \quad(t, x) \in(0, \infty) \times \mathbb{R}^{n}, \tag{46}\\
\partial_{t}^{j} u(0, x) & =u_{j}(x), \quad j=0, \ldots, m-1 . \tag{47}
\end{align*}
$$

Note that $\widetilde{P}=P$ for $0 \leq t \leq T / 2$. Translate the problem above into another one by the following reduction. Let

$$
\Lambda(t, \xi)=\left\{\begin{array}{ll}
-M\left\{\log \left(t+\langle\xi\rangle_{h}^{-\sigma}\right)+\log \langle\xi\rangle_{h}\right\}, & r_{0}=0 \tag{48}\\
-\frac{\sigma M}{r_{0}}\left\{\left(t+\langle\xi\rangle_{h}^{-\sigma}\right)^{-\frac{r_{0}}{\sigma}}+\langle\xi\rangle_{h}^{1 / s}\right\}, & r_{0}>0
\end{array} \quad\left(s \leq r_{0}^{-1}\right)\right.
$$

Remark that $\partial_{t} \Lambda=M f$. It follows evidently that

$$
\left|\partial_{t}^{j} \partial_{\xi}^{\alpha} \Lambda(t, \xi)\right| \leq \begin{cases}C_{j \alpha} M\left(t+\langle\xi\rangle_{h}^{-\sigma}\right)^{-j}\langle\xi\rangle_{h}^{-|\alpha|}, & r_{0}=0 \tag{49}\\ C_{j} M\left(t+\langle\xi\rangle_{h}^{-\sigma}\right)^{-j}\langle\xi\rangle_{h}^{1 / s-|\alpha|} A_{0}^{|\alpha|}|\alpha|!, & r_{0}>0\end{cases}
$$

for $j \in \mathbb{N}, \alpha \in \mathbb{N}^{n}, t \geq 0, x, \xi \in \mathbb{R}^{n}$ and $h \geq 1$. $\left(C_{j}\right.$ and $A_{0}>0$ are independent of α, ξ and h.)

From [3, Section 6] and [4, Proposition 2.3] we have
Lemma 12. Assume that Λ satisfies (49) and $a(x, \xi)$ satisfies that for any $A>0$ there are $C_{A}>0, \kappa \geq 1$ and $s \geq \kappa^{-1}$ such that

$$
\begin{equation*}
\left|a_{(\beta)}^{(\alpha)}(x, \xi)\right| \leq C_{A} A^{|\alpha+\beta|}|\alpha+\beta|!^{\kappa}\langle\xi\rangle_{h}^{m-|\alpha|} \tag{50}
\end{equation*}
$$

for $\alpha, \beta \in \mathbb{N}^{n}, x, \xi \in \mathbb{R}^{n}$ and $h \geq 1$, where $a_{(\beta)}^{(\alpha)}=\partial_{\xi}^{\alpha} D_{x}^{\beta} a$. Then

$$
\begin{equation*}
e^{-\Lambda(t, D)} a(x, D) e^{\Lambda(t, D)}=a(x, D)+a_{1}(t, x, D) \tag{51}
\end{equation*}
$$

with

$$
\begin{equation*}
\left|\partial_{t}^{j} a_{1(\beta)}^{(\alpha)}(t, x, \xi)\right| \leq C_{j \alpha \beta M}\left(t+\langle\xi\rangle_{h}^{-\sigma}\right)^{-j}\langle\xi\rangle_{h}^{m-|\alpha|-(1-1 / s)} \tag{52}
\end{equation*}
$$

for $j \in \mathbb{N}, \alpha, \beta \in \mathbb{N}^{n}, t \geq 0, x, \xi \in \mathbb{R}^{n}$ and $h \geq 1$, where $e^{ \pm \Lambda(t, D)}$ stand for the pseudo-differential operators with their symbols $e^{ \pm \Lambda(t, \xi)}$ respectively. In particular if $0<M \ll 1$ we can take $C_{j \alpha \beta M}=M C_{j \alpha \beta}$.

Change unknown function $u(t, x)$ for (46)-(47) as $v(t, x)=e^{-\Lambda(t, D)} u(t, x)$. Remarking that $\partial_{t} u(t, x)=e^{\Lambda(t, D)}\left(\partial_{t}+\Lambda_{t}\right) v(t, x)$, we have

$$
\begin{align*}
& \widetilde{P}\left(t, x, \partial_{t}, D_{x}\right) u(t, x) \\
= & \left(\partial_{t}^{m}+\sum_{j \alpha} \tilde{a}_{j \alpha}(t, x) D_{x}^{\alpha} \partial_{t}^{m-j}\right)\left(e^{\Lambda(t, D)} v(t, x)\right) \\
= & e^{\Lambda(t, D)}\left\{\left(\partial_{t}+\Lambda_{t}\right)^{m}+\sum_{j \alpha} \tilde{a}_{j \alpha \Lambda}(t, x, D) D_{x}^{\alpha}\left(\partial_{t}+\Lambda_{t}\right)^{m-j}\right\} v(t, x) \tag{53}\\
\equiv & e^{\Lambda(t, D)} \widetilde{P}_{\Lambda}\left(t, x, \partial_{t}, D_{x}\right) v(t, x)
\end{align*}
$$

where

$$
\begin{align*}
\Lambda_{t}(t, \xi) & =\partial_{t} \Lambda(t, \xi) \tag{54}\\
\tilde{a}_{j \alpha \Lambda}(t, x, D) & =e^{-\Lambda(t, D)} \tilde{a}_{j \alpha}(t, x) e^{\Lambda(t, D)} \tag{55}
\end{align*}
$$

Hereafter we shall consider the following Cauchy problem instead of (46)-(47):

$$
\begin{align*}
\widetilde{P}_{\Lambda}\left(t, x, \partial_{t}, D_{x}\right) v(t, x) & =e^{-\Lambda(t, D)} f(t, x), \quad t>0, x \in \mathbb{R}^{n} \tag{56}\\
\left(\partial_{t}+\Lambda_{t}\right)^{j} v(0, x) & =e^{-\Lambda(t, D)} u_{j}(x), \quad j=0, \ldots, m-1 . \tag{57}
\end{align*}
$$

Lemma 13. Let $\sigma\left(a\left(\partial_{t}, D\right)\right)$ stands for the symbol of $a ; a(\lambda, \xi)$, then it follows that
(58) $\quad \sigma\left(\left(\partial_{t}+\Lambda_{t}\right)^{j}\right)= \begin{cases}\lambda+\Lambda_{t}, & j=1 \\ \left(\lambda+\Lambda_{t}\right)^{j}+\sum_{i=2}^{j} b_{i}^{(j)}(t, \xi)\left(\lambda+\Lambda_{t}\right)^{j-i}, & j \geq 2\end{cases}$
with $b_{j}^{(j)}=\partial_{t}^{j} \Lambda$ and

$$
\begin{equation*}
\left|\partial_{t}^{k} \partial_{\xi}^{\alpha} b_{i}^{(j)}(t, \xi)\right| \leq C_{k \alpha} \sum_{l=1}^{i-1}\left(t+\langle\xi\rangle_{h}^{-\sigma}\right)^{-(i-l)-k}\langle\xi\rangle_{h}^{-|\alpha|}, \quad i=2, \ldots, j, \tag{59}
\end{equation*}
$$

for $k \in \mathbb{N}, \alpha \in \mathbb{N}^{n}, t \geq 0, \xi \in \mathbb{R}^{n}$ and $h \geq 1$.

Proof. We use induction on j. The claim is trivial for $j=1, \ldots, 4$; assume it is true for $j-1(j \geq 5)$. Let $Q_{j}(t, \lambda, \xi)=\sigma\left(\left(\partial_{t}+\Lambda_{t}\right)^{j}\right)$. Then

$$
\begin{aligned}
& Q_{j}(t, \lambda, \xi) \\
= & \left(\lambda+\Lambda_{t}\right) Q_{j-1}+\partial_{t} Q_{j-1} \\
= & \left(\lambda+\Lambda_{t}\right)\left\{\left(\lambda+\Lambda_{t}\right)^{j-1}+\sum_{i=2}^{j-1} b_{i}^{(j-1)}\left(\lambda+\Lambda_{t}\right)^{j-1-i}\right\} \\
& +\partial_{t}\left\{\left(\lambda+\Lambda_{t}\right)^{j-1}+\sum_{i=2}^{j-1} b_{i}^{(j-1)}\left(\lambda+\Lambda_{t}\right)^{j-1-i}\right\} \\
= & \left(\lambda+\Lambda_{t}\right)^{j}+\left\{(j-1) \Lambda_{t t}+b_{2}^{(j-1)}\right\}\left(\lambda+\Lambda_{t}\right)^{j-2} \\
& +\left\{b_{3}^{(j-1)}+\partial_{t} b_{2}^{(j-1)}\right\}\left(\lambda+\Lambda_{t}\right)^{j-3} \\
& +\sum_{i=4}^{j-1}\left\{b_{i}^{(j-1)}+\partial_{t} b_{i-1}^{(j-1)}+(j+1-i) \Lambda_{t t} b_{i-2}^{(j-1)}\right\}\left(\lambda+\Lambda_{t}\right)^{j-i}+b_{j}^{(j)} .
\end{aligned}
$$

Thus putting
$b_{2}^{(k)}=(k-1) \Lambda_{t t}+b_{2}^{(k-1)}$,

$$
k=3, \ldots, j
$$

$$
b_{3}^{(k)}=b_{3}^{(k-1)}+\partial_{t} b_{2}^{(k-1)}
$$

$$
k=4, \ldots, j
$$

$$
b_{l}^{(k)}=b_{l}^{(k-1)}+\partial_{t} b_{l-1}^{(k-1)}+(k+1-l) \Lambda_{t t} b_{l-2}^{(k-1)}, l=4, \ldots, j, \quad k=l+1, \ldots, j
$$

we have (58) and (59) inductively.
From (53) we can write

$$
\begin{aligned}
\sigma\left(\widetilde{P}_{\Lambda}\right)(t, x, \lambda, \xi)= & \widetilde{P}\left(t, x, \lambda+\Lambda_{t}, \xi\right) \\
& +\sum_{i=2}^{m} b_{i}^{(m)}(t, \xi)\left(\lambda+\Lambda_{t}\right)^{m-i} \\
& +\sum_{j \alpha} \tilde{a}_{j \alpha, 1}(t, x, \xi) \xi^{\alpha} \sigma\left(\left(\partial_{t}+\Lambda_{t}\right)^{m-j}\right) \\
& +\sum_{j \alpha} \tilde{a}_{j \alpha}(t, x, \xi) \xi^{\alpha} \sum_{i=2}^{m-j} b_{i}^{(m-j)}(t, \xi)\left(\lambda+\Lambda_{t}\right)^{m-j-i} \\
\equiv & \widetilde{P}+I_{1}+I_{2}+I_{3}
\end{aligned}
$$

where $\tilde{a}_{j \alpha, 1}(t, x, \xi)=\tilde{a}_{j \alpha \Lambda}(t, x, \xi)-\tilde{a}_{j \alpha}(t, x)$. Here estimate I_{1}, I_{2} and I_{3} in turn. If $t+\langle\xi\rangle_{h}^{-\sigma} \geq \varepsilon(0<\varepsilon \gg 1)$, then taking $\operatorname{Re} \lambda \geq h^{r_{l}}$ with $h \geq h_{0} \ll 1$
we have

$$
\begin{aligned}
\left|I_{1}\right| & \leq C \sum_{i=2}^{m} \sum_{l=1}^{i-1} \Lambda_{t}^{l}\left(t+\langle\xi\rangle_{h}^{-\sigma}\right)^{-(i-l)}\left(|\lambda|+\Lambda_{t}\right)^{m-i} \\
& \leq C \varepsilon^{-m}\left(|\lambda|+\Lambda_{t}\right)^{m-1} \\
& \leq C \varepsilon^{-m} h^{-1}\left(|\lambda|+\Lambda_{t}\right)^{m}
\end{aligned}
$$

and if $t+\langle\xi\rangle_{h}^{-\sigma} \leq \varepsilon$, then

$$
\begin{aligned}
\left|I_{1}\right| & \leq C \sum_{i=2}^{m} \sum_{l=1}^{i-1}\left(t+\langle\xi\rangle_{h}^{-\sigma}\right)^{\frac{r_{0}}{\sigma}(i-l)} M^{-(i-l)} \Lambda_{t}^{i}\left(|\lambda|+\Lambda_{t}\right)^{m-i} \\
& \leq C\left(1+M^{-1}\right)^{m} \varepsilon\left(|\lambda|+\Lambda_{t}\right)^{m}
\end{aligned}
$$

Hence taking $\varepsilon=h^{-\delta}$ and choosing $\delta>0$ suitably we can obtain

$$
\left|I_{1}\right| \leq \frac{1}{6}|\widetilde{P}(t, x, \lambda, \xi)|
$$

From Lemma 7, (28) and Lemma 12 it follows that if $s>1$

$$
\begin{aligned}
\left|I_{2}\right| & \leq C_{M} \sum_{j \alpha} t^{\sigma(j \alpha)}\langle\xi\rangle_{h}^{|\alpha|+1 / s-1}\left(|\lambda|+\Lambda_{r}\right)^{m-j} \\
& \leq C_{M} h^{1 / s-1} \sum_{j=1}^{m}\left(M f+w_{\Gamma, h}\right)^{j}\left(|\lambda|+\Lambda_{t}\right)^{m-j} \\
& \leq C_{M} h^{1 / s-1}\left(|\lambda|+M f+w_{\Gamma, h}\right)^{m} \\
& \leq \frac{1}{6}|\widetilde{P}(t, x, \lambda, \xi)|
\end{aligned}
$$

If $s=1$ and $0<M \ll 1$, Lemma 12 implies

$$
\left|I_{2}\right| \leq C M\left(|\lambda|+M f+w_{\Gamma^{\prime}, h}\right)^{m} \leq \frac{1}{6}|\widetilde{P}(t, x, \lambda, \xi)|
$$

In the same way as I_{1}

$$
\begin{aligned}
\left|I_{3}\right| & \leq C \sum_{i} \sum_{l}\left(t+\langle\xi\rangle_{h}^{-\sigma}\right)^{-(i-l)}\left(|\lambda|+\Lambda_{t}\right)^{m-j-i} \\
& \leq \frac{1}{6}|\widetilde{P}(t, x, \lambda, \xi)|
\end{aligned}
$$

Hence $\widetilde{P}_{\Lambda}(t, x, \lambda, \xi)$ satisfies Proposition 11 if we take M_{1} (respectively $h_{0}(M)$) since $\widetilde{P}\left(t, x, \lambda+\Lambda_{t}, \xi\right)$ satisfies Proposition 11. Thus we have

Proposition 14. Assume that P is Γ (respectively Γ^{\prime})-parabolic at $t=0$, then

$$
\begin{align*}
\left|\partial_{t}^{j} \partial_{x}^{\beta} \partial_{\lambda}^{i} \partial_{\xi}^{\alpha} \widetilde{P}_{\Lambda}(t, x, \lambda, \xi)^{ \pm 1}\right| \leq & C_{i j \alpha \beta}\left(|\lambda|+M f+w_{\Gamma, h}\right)^{ \pm m-i} \tag{60}\\
& \times\left(t+\langle\xi\rangle_{h}^{-\sigma}\right)^{-j}\langle\xi\rangle_{h}^{-|\alpha|},
\end{align*}
$$

for $i, j \in \mathbb{N}, \alpha, \beta \in \mathbb{N}^{n}, t \geq 0, x, \xi \in \mathbb{R}^{n}, M \geq M_{1}$ (respectively $h \geq h_{0}(M)$ and $M>0)$ and $\lambda \in \mathbb{C}\left(\operatorname{Re} \lambda \geq h^{r_{l}}, h \geq h_{0}\right)$.

Now we shall defined a Riemannian metric g as follows:

$$
\begin{aligned}
g= & g(d t, d x, d \lambda, d \xi)=\left(t+\langle\xi\rangle_{h}^{-\sigma}\right)^{-2} d t^{2}+d x^{2} \\
& +\left(|\lambda|+M f+w_{\Gamma, h}\right)^{-2} d \lambda^{2}+\langle\xi\rangle_{h}^{-2} d \xi^{2}
\end{aligned}
$$

We use notation in [7, Section 18.4].
Definition 15. Denote by $S(m, g)$ the set of functions $a(t, x, \lambda, \xi)$ which is holomorphic with respect to λ in $\operatorname{Re} \lambda \geq h_{1}$ and satisfies

$$
\begin{align*}
\left|\partial_{t}^{j} \partial_{x}^{\beta} \partial_{\lambda}^{i} \partial_{\xi}^{\alpha} a(t, x, \lambda, \xi)\right| \leq & C_{i j \alpha \beta} m(t, x, \lambda, \xi)\left(|\lambda|+M f+w_{\Gamma, h}\right)^{-i} \\
& \times\left(t+\langle\xi\rangle_{h}^{-\sigma}\right)^{-j}\langle\xi\rangle_{h}^{-|\alpha|}, \tag{61}
\end{align*}
$$

for $i, j \in \mathbb{N}, \alpha, \beta \in \mathbb{N}^{n}, t \geq 0, x, \xi \in \mathbb{R}^{n}, \lambda \in \mathbb{C}\left(\operatorname{Re} \lambda \geq h_{1}\right)$ and $h \geq h_{1}$, where $h_{1}>0$ and $m(t, x, \lambda, \xi)$ is a weight function with respect to g defined later. (Definition 17).

For $u(t, x) \in L^{1}\left([0, \infty) \times \mathbb{R}^{n}\right)$ define Fourier-Laplace transformation

$$
\begin{equation*}
\hat{u}(\lambda, \xi)=\int_{0}^{\infty} \int_{\mathbb{R}^{n}} e^{-\lambda t-i x \cdot \xi} u(t, x) d x d t \tag{62}
\end{equation*}
$$

Besides for $a(t, x, \lambda, \xi) \in S(m, g)$ and $u(t, x) \in \mathcal{S}\left(\mathbb{R}^{n+1}\right)$ with $\operatorname{supp}[u] \subset$ $[0, \infty) \times \mathbb{R}^{n}$ define

$$
\begin{equation*}
a\left(t, x, \partial_{t}, D_{x}\right) u(t, u)=\int_{\operatorname{Re} \lambda=h_{1}} \int_{\mathbb{R}^{n}} e^{\lambda t+i x \cdot \xi} a(t, x, \lambda, \xi) \hat{u}(\lambda, \xi) \bar{d} \xi \bar{d} \lambda \tag{63}
\end{equation*}
$$

where $\bar{d} \xi=d \xi /(2 \pi)^{n}$ and $\tilde{d} \lambda=d \lambda /(2 \pi i)$. Note that $\operatorname{supp}[a u] \subset[0, \infty) \times \mathbb{R}^{n}$. For $z=(t, x, \lambda, \xi) \in \mathbb{R}_{+} \times \mathbb{R}^{n} \times \mathbb{C} \times \mathbb{R}^{n}$ denote

$$
\begin{aligned}
g_{z}(s, y, \tau, \eta) & =\left(t+\langle\xi\rangle_{h}^{-\sigma}\right)^{-2} s^{2}+|y|^{2}+\left(|\lambda|+M f+w_{\Gamma, g}\right)^{-2}|\tau|^{2}+\langle\xi\rangle_{h}^{-2}|\eta|^{2} \\
g_{z}^{\sigma}(s, y, \tau, \eta) & =\left(|\lambda|+M f+w_{\Gamma, h}\right)^{2} s^{2}+\langle\xi\rangle_{h}^{2}|y|^{2}+\left(t+\langle\xi\rangle_{h}^{-\sigma}\right)^{2}|\tau|^{2}+|\eta|^{2} \\
H(z) & =\sqrt{\sup _{(s, y, \tau, \eta)} \frac{g_{z}(s, y, \tau, \eta)}{g_{z}^{\sigma}(s, y, \tau, \eta)}} .
\end{aligned}
$$

Definition 16. (i) A function $m(t, x, \lambda, \xi)$ is called slowly varying with respect to g if there are $C>0$ and $c_{0}>0$ such that

$$
m(t, x, \lambda, \xi) / C \leq m(t+s, x+y, \lambda+\tau, \xi+\eta) \leq C m(t, x, \lambda, \xi),
$$

for $(t, x, \lambda, \xi),(s, y, \tau, \eta) \in \mathbb{R}_{+} \times \mathbb{R}^{n} \times \mathbb{C} \times \mathbb{R}^{n}\left(\operatorname{Re} \lambda, \operatorname{Re} \tau \geq h_{1}\right)$ if $g_{z}(s, y, \tau, \eta)$ $<c_{0}$.
(ii) A function $m(t, x, \lambda, \xi)$ is called $\sigma-g$ temperate if there are $C>0$ and $N \geq 0$ such that

$$
m(t+s, x+y, \lambda+\tau, \xi+\eta) \leq C m(t, x, \lambda, \xi)\left(1+g_{z}^{\sigma}(s, y, \tau, \eta)\right)^{N}
$$

for $(t, x, \lambda, \xi),(s, y, \tau, \eta) \in \mathbb{R}_{+} \times \mathbb{R}^{n} \times \mathbb{C} \times \mathbb{R}^{n}\left(\operatorname{Re} \lambda, \operatorname{Re} \tau \geq h_{1}\right)$.
Definition 17. A positive real-valued function $m(t, x, \lambda, \xi)$ is called a weight with respect to g if (i) and (ii) in Definition 16 are valid.

Lemma 18. There exists $h_{0} \geq 1$ and $\delta>0$ such that

$$
H(t, x, \lambda, \xi) \leq \begin{cases}M^{-1}, & r_{0}=0 \tag{64}\\ h^{-\delta}, & r_{0}>0\end{cases}
$$

for $t \geq 0, x, \xi \in \mathbb{R}^{n}, \lambda \in \mathbb{C}$ and $h \geq h_{0}$.
Proof. Since

$$
\begin{aligned}
& \frac{g_{z}(s, y, \tau, \eta)}{g_{z}^{\sigma}(s, y, \tau, \eta)} \\
& \quad=\left(\frac{\left(t+\langle\xi\rangle_{h}^{-\sigma}\right)^{-1}}{|\lambda|+M f+w_{\Gamma, h}}\right)^{2} \\
& \quad+\frac{\left\{1-\left(|\lambda|+M f+w_{\Gamma, h}\right)^{-2}\left(t+\langle\xi\rangle_{h}^{-\sigma}\right)^{-2}\langle\xi\rangle_{h}^{2}\right\}\left(|y|^{2}+\langle\xi\rangle_{h}^{-2}|\eta|^{2}\right)}{\left(|\lambda|+M f+w_{\Gamma, h}\right)^{2} s^{2}+\langle\xi\rangle_{h}^{2}|y|^{2}+\left(t+\langle\xi\rangle_{h}^{-\sigma}\right)^{2}|\tau|^{2}+|\eta|^{2}} \\
& \quad \\
& \quad \leq \begin{cases}\left(\frac{\left(t+\langle\xi\rangle_{h}^{-\sigma}\right)^{-1}}{|\lambda|+M f+w_{\Gamma, h}}\right)^{2}, & \text { if } \frac{\left(t+\langle\xi\rangle_{h}^{-\sigma}\right)^{-1}}{|\lambda|+M f+w_{\Gamma, h}} \geq\langle\xi\rangle_{h}^{-1} \\
2\langle\xi\rangle_{h}^{-2}, & \text { if } \frac{\left(t+\langle\xi\rangle^{-\sigma}\right)^{-1}}{|\lambda|+M f+w_{\Gamma, h}} \leq\langle\xi\rangle_{h}^{-1}\end{cases}
\end{aligned}
$$

it follows that

$$
H(t, x, \lambda, \xi) \leq \max \left\{\frac{\left(t+\langle\xi\rangle_{h}^{-\sigma}\right)^{-1}}{|\lambda|+M f+w_{\Gamma, h}}, 2\langle\xi\rangle_{h}^{-1}\right\}
$$

Hence from

$$
\frac{\left(t+\langle\xi\rangle_{h}^{-\sigma}\right)^{-1}}{|\lambda|+M f+w_{\Gamma, h}} \leq \begin{cases}\frac{\left(t+\langle\xi\rangle_{h}^{-\sigma}\right)^{-1}}{M f} \leq M^{-1} h^{-\frac{r_{0}}{\sigma}}, & \text { if } t+\langle\xi\rangle_{h}^{-\sigma} \leq 1 \\ \frac{\left(t+\langle\xi\rangle_{h}^{-1}\right)^{-1}}{|\lambda|} \leq h^{-1}, & \text { if } t+\langle\xi\rangle_{h}^{-\sigma} \geq 1\end{cases}
$$

(64) is verified.

Lemma 19. Let $m(t, \lambda, \xi)=|\lambda|+M f+w_{\Gamma, h}$. Then m is a weight with respect to g, if $M \geq 1\left(r_{0}=0\right)$ and $h \geq h_{1}(M)\left(r_{0}>0\right)$.

Proof. First we shall prove that m is slowly varying with respect to g. Assume $g_{z}(s, y, \tau, \eta)<c_{0}$, then it follows that $s \leq c_{0}\left(t+\langle\xi\rangle_{h}^{-\sigma}\right),|\tau| \leq c_{0} m(t, \lambda, \xi)$ and $|\eta| \leq c_{0}\langle\xi\rangle_{h}$. Then from $\langle\xi\rangle_{h} / C \leq\langle\xi+\eta\rangle_{h} \leq C\langle\xi\rangle_{h}$ we have

$$
\begin{aligned}
|\lambda+\tau| & \leq|\lambda|+c_{0} m(t, \lambda, \xi) \leq C m(t, \lambda, \xi), \\
M\left(t+s+\langle\xi+\eta\rangle_{h}^{-\sigma}\right)^{-1-\frac{r_{0}}{\sigma}} & \leq C M\left(t+\langle\xi\rangle_{h}^{-\sigma}\right)^{-1-\frac{r_{0}}{\sigma}} \leq \operatorname{Cm}(t, \lambda, \xi), \\
\sum_{i=1}^{l}(t+s)^{q_{i}}\langle\xi+\eta\rangle_{h}^{r_{i}} & \leq C \sum_{i=1}^{l}\left(t+\langle\xi\rangle_{h}^{-\sigma}\right)^{q_{i}}\langle\xi\rangle_{h}^{r_{i}} \leq C m(t, \lambda, \xi) .
\end{aligned}
$$

Hence $m(t+s, \lambda+\tau, \xi+\eta) \leq C m(t, \lambda, \xi)$, where C is independent of M and h. Besides we have

$$
\begin{aligned}
|\lambda| & \leq|\lambda+\tau|+|\tau| \leq m(t+s, \lambda+\tau, \xi+\eta)+c_{0} m(t, \lambda, \xi), \\
M\left(t+\langle\xi\rangle_{h}^{-\sigma}\right)^{-1-\frac{r_{0}}{\sigma}} & \leq C M\left(t+s+\langle\xi+\eta\rangle_{h}^{-\sigma}\right)^{-1-\frac{r_{0}}{\sigma}} \leq C m(t+s, \lambda+\tau, \xi+\eta), \\
\sum_{i=1}^{l} t^{q_{i}}\langle\xi\rangle_{h}^{r_{i}} & \leq C \sum_{i=1}^{l}(t+s)^{q_{i}}\langle\xi+\eta\rangle_{h}^{r_{i}} \leq C m(t+s, \lambda+\tau, \xi+\eta)
\end{aligned}
$$

Hence $m(t, \lambda, \xi) / C \leq m(t+s, \lambda+\tau, \xi+\eta)$, where C is independent of M and h.

Next we shall show that m is $\sigma-g$ temperate. Since $|\tau| \leq m(t, \lambda, \xi) \sqrt{g_{z}}$ and $g_{z} \leq g_{z}^{\sigma}$ by Lemma 18, we obtain

$$
|\lambda+\tau| \leq|\lambda|+|\tau| \leq C m(t, \lambda, \xi)\left(1+g_{z}^{\sigma}\right)^{1 / 2}
$$

By $\langle\xi+\eta\rangle_{h} \leq 2\langle\xi\rangle_{h}(1+|\eta|)$ and $|\eta| \leq \sqrt{g_{z}^{\sigma}}$ we get

$$
\begin{aligned}
M\left(t+s+\langle\xi+\eta\rangle_{h}^{-\sigma}\right)^{-1-\frac{r_{0}}{\sigma}} & \leq C M(1+|\eta|)^{\sigma+r_{0}}\left(t+\langle\xi\rangle_{h}^{-\sigma}\right)^{-1-\frac{r_{0}}{\sigma}} \\
& \leq C m(t, \lambda, \xi)\left(1+g_{z}^{\sigma}\right)^{\frac{\sigma+r_{0}}{2}}
\end{aligned}
$$

Next we show

$$
w_{\Gamma, h}(t+s, \xi+\eta) \leq C m(t, \xi)\left(1+\sqrt{g_{z}^{\sigma}}\right)^{r_{l}+q_{l}}
$$

In fact, since $\varphi(t+s) \geq T$ and $\varphi(t) \geq T$ fold for $t \geq T$, we can see

$$
\begin{aligned}
w_{\Gamma, h}(t+s, \xi+\eta) \leq \sum_{i} C\langle\xi+\eta\rangle_{h}^{r_{i}} & \leq C \sum_{i}\langle\xi\rangle_{h}^{r_{i}}\left(1+\sqrt{g_{z}^{\sigma}}\right)^{r_{i}} \\
& \leq C w_{\Gamma, h}(t, \xi)\left(1+\sqrt{g_{z}^{\sigma}}\right)^{r_{l}}
\end{aligned}
$$

When $t \leq T$, noting $s \leq\left(t+\langle\xi\rangle_{h}^{-\sigma}\right) \sqrt{g_{z}^{\sigma}}, \varphi(t)=t$ and $\varphi(t+s) \leq \varphi(t)+s$, we get

$$
w_{\Gamma, h}(t+s, \xi+\eta) \leq \sum_{i}\left(\varphi(t)+\langle\xi\rangle_{h}^{-\sigma}\right)^{q_{i}}\langle\xi\rangle_{h}^{r_{i}}\left(1+\sqrt{g_{z}^{\sigma}}\right)^{r_{i}+q_{i}}
$$

If $\langle\xi\rangle_{h}^{-\sigma} \leq \varphi(t)$, we have

$$
\left(\varphi(t)+\langle\xi\rangle_{h}^{-\sigma}\right)^{q_{i}}\langle\xi\rangle_{h}^{r_{i}} \leq C w_{\Gamma, h}(t, \xi) \leq C m(t, \xi),
$$

and if $\langle\xi\rangle_{h}^{-\sigma} \geq \varphi(t)$,

$$
\left(\varphi(t)+\langle\xi\rangle_{h}^{-\sigma}\right)^{q_{i}}\langle\xi\rangle_{h}^{r_{i}} \leq C\langle\xi\rangle_{h}^{r_{i}-q_{i} \sigma}
$$

holds. Furthermore, from the definition of σ it follows that $r_{i}-q_{i} \sigma \leq \sigma$ for $\forall i$, and $m(t, \xi) \geq M f(t, \xi) \geq M\langle\xi\rangle_{h}^{\sigma} h^{r_{0}}$ holds. Hence we can get

$$
\left(\varphi(t)+\langle\xi\rangle_{h}^{-\sigma}\right)^{q_{i}}\langle\xi\rangle_{h}^{r_{i}} \leq C\langle\xi\rangle_{h}^{\sigma} \leq \frac{C}{M h^{r_{0}}} m(t, \xi)
$$

Thus we obtain

$$
m(t+s, x+y, \lambda+\tau, \xi+\eta) \leq C m(t, x, \lambda, \xi)\left(1+g_{z}^{\sigma}\right)^{N},
$$

where $N=\max \left\{1 / 2,\left(\sigma+r_{0}\right) / 2,\left(r_{l}+q_{l}\right) / 2\right\}$ and C is independent of M and h. Therefore m is $\sigma-g$ temperate.

From [3, Section 6] and Paley-Winner theorem for Fourier-Laplace transformation we have

Lemma 20. (i) Let $a_{i} \in S\left(m_{i}, g\right), i=1,2$ and

$$
b\left(t, x, \partial_{t}, D_{x}\right)=a_{1}\left(t, x, \partial_{t}, D_{x}\right) a_{2}\left(t, x, \partial_{t}, D_{x}\right)
$$

then

$$
\begin{aligned}
b(t, x, \lambda, \xi) & -\sum_{|\alpha|+i<N} \frac{1}{\alpha!i!}\left\{\partial_{\lambda}^{i} \partial_{\xi}^{\alpha} a_{1}(t, x, \lambda, \xi)\right\}\left\{\partial_{t}^{i} D_{x}^{\alpha} a_{2}(t, x, \lambda, \xi)\right\} \\
& \in S\left(m_{1} m_{2} H^{N}, g\right)
\end{aligned}
$$

for $N=0,1,2, \ldots$
(ii) Let $a \in S(1, g)$. Then
$a u \in L^{2}\left(\mathbb{R}^{n+1}\right), \quad \operatorname{supp}[a u] \subset[0, \infty) \times \mathbb{R}^{n}, \quad\|a u\|_{L^{2}\left(\mathbb{R}^{n+1}\right)} \leq C\|u\|_{L^{2}\left(\mathbb{R}^{n+1}\right)}$
if $u \in L^{2}\left(\mathbb{R}^{n+1}\right)$ with $\operatorname{supp}[u] \subset[0, \infty) \times \mathbb{R}^{n}$.
(ii)' It follows that

$$
\partial_{t}^{k}(a u) \in L^{2}\left(\mathbb{R}^{n+1}\right), \quad \operatorname{supp}\left[\partial_{t}^{k}(a u)\right] \subset[0, \infty) \times \mathbb{R}^{n}, \quad k=0, \ldots, m
$$

if $\partial_{t}^{k} u \in L^{2}\left(\mathbb{R}^{n+1}\right)$ with $\operatorname{supp}\left[\partial_{t}^{k} u\right] \subset[0, \infty) \times \mathbb{R}^{n}(k=0, \ldots, m)$.

From Proposition 14, Lemma 18 and Lemma 20 we get
Proposition 21. (i) $\left.\widetilde{P}_{\Lambda}(t, x, \lambda, \xi)^{ \pm 1} \in S\left(|\lambda|+M f+w_{\Gamma, h}\right)^{ \pm m}, g\right)$. (ii) Let $Q(t, x, \lambda, \xi)=\widetilde{P}_{\Lambda}(t, x, \lambda, \xi)^{-1}, R\left(t, x, \partial_{t}, D_{x}\right)=\left(\widetilde{P}_{\Lambda} Q\right)\left(t, x, \partial_{t}, D_{x}\right)-I$ and $R^{\prime}\left(t, x, \partial_{t}, D_{x}\right)=\left(Q \widetilde{P}_{\Lambda}\right)\left(t, x, \partial_{t}, D_{x}\right)-I$, then

$$
\sigma(R)(t, x, \lambda, \xi), \quad \sigma\left(R^{\prime}\right)(t, x, \lambda, \xi) \in S(H, g)
$$

Remark. From Lemma 18 we have

$$
\sigma(R)(t, x, \lambda, \xi), \sigma\left(R^{\prime}\right)(t, x, \lambda, \xi) \in \begin{cases}S\left(M^{-1}, g\right), & \text { if } r_{0}=0 \\ S\left(h^{-\delta}, g\right), & \text { if } r_{0}>0\end{cases}
$$

Proposition 22. Let

$$
\begin{aligned}
L_{+}^{2}\left(\mathbb{R}^{n+1}\right) & =\left\{u(t, x) \in L^{2}\left(\mathbb{R}^{n+1}\right) ; \operatorname{supp}[u] \subset[0, \infty) \times \mathbb{R}^{n}\right\} \text { and } \\
D(\widetilde{P}) & =\left\{u(t, x) \in L_{+}^{2}\left(\mathbb{R}^{n+1}\right) ; \widetilde{P}_{\Lambda} u \in L_{+}^{2}\left(\mathbb{R}^{n+1}\right)\right\}
\end{aligned}
$$

Then $\widetilde{P}_{\Lambda}\left(t, x, \partial_{t}, D_{x}\right)$ is one-to-one and onto mapping from $D\left(\widetilde{P}_{\Lambda}\right)$ to $L_{+}^{2}\left(\mathbb{R}^{n+1}\right)$. Besides $\partial_{t}^{k}\left(\widetilde{P}_{\Lambda}\right)^{-1}\left(t, x, \partial_{t}, D_{x}\right)(k=0,1, \ldots, m)$ map continuously from $L_{+}^{2}\left(\mathbb{R}^{n+1}\right)$ to $L_{+}^{2}\left(\mathbb{R}^{n+1}\right)$.

Proof. From Lemma 20 and Proposition 21 taking $h \gg 1$ and $M \gg 1$ (respectively $h \geq h_{1}(M)$ and $M>0$), we get

$$
\begin{aligned}
\|R u\|_{L^{2}\left(\mathbb{R}^{n+1}\right)} & \leq \frac{1}{2}\|u\|_{L^{2}\left(\mathbb{R}^{n+1}\right)} \\
\left\|R^{\prime} u\right\|_{L^{2}\left(\mathbb{R}^{n+1}\right)} & \leq \frac{1}{2}\|u\|_{L^{2}\left(\mathbb{R}^{n+1}\right)}
\end{aligned}
$$

Thus Newmann series assures the existence of $(I+R)^{-1}$ and $\left(I+R^{\prime}\right)^{-1}$ which map continuously from $L_{+}^{2}\left(\mathbb{R}^{n+1}\right)$ to $L_{+}^{2}\left(\mathbb{R}^{n+1}\right)$. Hence $\left(\widetilde{P}_{\Lambda}\right)^{-1}=Q(I+$ $R)^{-1}$ maps continuously from $L_{+}^{2}\left(\mathbb{R}^{n+1}\right)$ to $D\left(\widetilde{P}_{\Lambda}\right)$. Besides since $\sigma\left(\partial_{t}^{k} Q\right) \in$ $S(1, g), k=0,1, \ldots, m$ implies that $\partial_{t}^{k} Q$ maps continuously from $L_{+}^{2}\left(\mathbb{R}^{n+1}\right)$ to $L_{+}^{2}\left(\mathbb{R}^{n+1}\right)$, it follows that $\partial_{t}^{k}\left(\widetilde{P}_{\Lambda}\right)^{-1}=\partial_{t}^{k} Q(I+R)^{-1}$ also maps continuously from $L_{+}^{2}\left(\mathbb{R}^{n+1}\right)$ to $L_{+}^{2}\left(\mathbb{R}^{n+1}\right)$.

Remark. If $g(t, x) \in L_{+}^{2}\left(\mathbb{R}^{n+1}\right)$, then from (ii)' in Lemma 20 it follows that $\partial_{t}^{k} \widetilde{P}_{\Lambda}^{-1} g \in L_{+}^{2}\left(\mathbb{R}^{n+1}\right)(k=0,1, \ldots, m)$, implying that $\left.\partial_{t}^{k} \widetilde{P}_{\Lambda}^{-1} g\right|_{t=0}=0$ ($k=0,1, \ldots, m-1$).

4. - Proof of Theorem 2

First we shall solve the Cauchy problem (56)-(57). Let $u_{j}(x) \in H^{(s)}$ (respectively $H^{(s)}$) and

$$
v_{0}(t, x)= \begin{cases}\sum_{j=0}^{m-1} \frac{t^{j}}{j!} e^{-\Lambda(t, D)} u_{j}(x), & t \geq 0 \tag{65}\\ 0, & t<0\end{cases}
$$

Note that from $r_{0} \leq 1 / s$

$$
\begin{equation*}
\left.\left(\partial_{t}+\Lambda_{t}\right)^{j} v_{0}(t, x)\right|_{t=0}=e^{-\Lambda(0, D)} u_{j}(x) \in L^{2}\left(\mathbb{R}^{n}\right), \quad j=0,1, \ldots, m-1 \tag{66}
\end{equation*}
$$

If $v(t, x)$ satisfies (56)-(57), then $w(t, x)=v(t, x)-v_{0}(t, x)$ satisfies below:

$$
\begin{align*}
\widetilde{P}_{\Lambda}\left(t, x, \partial_{t}, D_{x}\right) w(t, x) & =g(t, x), \quad(t, x) \in \mathbb{R}^{n+1} \tag{67}\\
\left(\partial_{t}+\Lambda_{t}\right)^{j} w(0, x) & =0, \quad j=0, \ldots, m-1 \tag{68}
\end{align*}
$$

where $g(t, x)=e^{-\Lambda(t, D)} \tilde{f}(t, x)-\widetilde{P}_{\Lambda} v_{0}(t, x)$. Seek the function $w(t, x)$ satisfying (67)-(68). Note that $g(t, x) \in L_{+}^{2}\left(\mathbb{R}^{n+1}\right)$. Let $w(t, x)=\left(\widetilde{P}_{\Lambda}\right)^{-1} g(t, x)$, then $w(t, x)$ belongs to $L_{+}^{2}\left(\mathbb{R}^{n+1}\right)$ and satisfies (67)-(68) by Proposition 22 and its remark. Thus $v(t, x)=w(t, x)+v_{0}(t, x) \in L_{+}^{2}\left(\mathbb{R}^{n+1}\right)$ is a solution of (56)-(57). Moreover a solution of (46)-(47) is given by $u(t, x)=e^{\Lambda(t, D)} v(t, x) \in L_{+}^{2}\left(\mathbb{R}^{n+1}\right)$ satisfying $e^{M\langle D\rangle^{1 / s}} u \in L_{+}^{2}\left(\mathbb{R}^{n+1}\right)$ because of $\Lambda=-M\left(t+\langle\xi\rangle_{h}^{-\sigma}\right)^{-1-\frac{r_{0}}{\sigma}}-M\langle\xi\rangle_{h}^{1 / s}$. Moreover it follows from Remark after Proposition 22 and from the equation (1) that for any positive integer $k, \partial_{t}^{k} e^{M\langle D\rangle^{1 / s}} u \in L^{2}\left(\mathbb{R}^{n+1} \cap\{t \geq 0\}\right)$ and consequently $u \in C^{\infty}\left([0, \infty) ; H^{(s)}\right)$ (respectively $C^{\infty}\left([0, \infty) ; H^{(s)}\right)$). Since $\widetilde{P}=P$ for $0 \leq t \leq T / 2, u(t, x)$ is a solution of (1)-(2) in $0 \leq t \leq T / 2$.

Next we shall prove the uniqueness of solution for the Cauchy problem (56)(57). Assume that

$$
\begin{aligned}
\widetilde{P}_{\Lambda}\left(t, x, \partial_{t}, D_{x}\right) v(t, x) & =g(t, x), \quad(t, x) \in \mathbb{R}^{n+1} \\
\operatorname{supp}[v] & \subset[0, \infty) \times \mathbb{R}^{n} \\
g(t, x) & \equiv 0, \quad t \leq T
\end{aligned}
$$

Then $v(t, x)=\left(\widetilde{P}_{\Lambda}\right)^{-1} g(t, x)=(I+R)^{-1} Q g(t, x)$. Hence by $\operatorname{supp}[g] \subset$ $[T, \infty) \times \mathbb{R}^{n}$ and Paley-Winner theorem for Fourier-Laplace transformation we see that $\operatorname{supp}[v] \subset[T, \infty) \times \mathbb{R}^{n}$, that is, $v(t, x) \equiv 0$ for $t<T$. Therefore since there exists a unique solution $v(t, x)$ in $L^{2}\left([0, T / 2] ; L^{2}\right)$ for the Cauchy problem (56)-(57), under the assumptions in Theorem 3, there exists a unique solution $u(t, x)$ in $C^{\infty}\left([0, T / 2] ; H^{(s\rangle}\right)$ (respectively $C^{\infty}\left([0, T / 2] ; H^{(s)}\right)$) for the Cauchy problem (1)-(2).

REFERENCES

[1] S. Gindikin - L. R. Volevich, "The Method of Newton's Polyhedron in the Theory of Partial Differential Equations", Kluwer Academic Publisher, Dordrecht-Boston-London 1992.
[2] K. Igari, Well-Posedness of the Cauchy problem for some evolution equations, Publ. Res. Inst. Math. Sci. 9 (1974), 613-629.
[3] K. Kajitani - T. Nishitani, "The Hyperbolic Cauchy Problem", Lecture Notes in Math. 1505, Springer-Verlag, Berlin, 1991.
[4] K. Kajitani - K. Yamaguti, On global real analytic solutions of the Degenerate Kirchhoff Equation, Ann. Scuola Norm. Sup. Pisa Cl. Sci (4) 21 (1994), 279-297.
[5] K. Kitagawa, Sur des conditions nécessaries pour les équations en évolution pour gue le problème de Cauchy soit bien posé dans les classes de fonctions $C^{\infty} I$, J. Mat. Kyoto Univ. 30 (1990), 671-703.
[6] K. Kitagawa, Sur des conditions nécessaries pour les équations en évolution pour gue le problème de Cauchy soit bien posé dans les classes de fonctions C^{∞} II, J. Mat. Kyoto Univ. 31 (1991), 1-32.
[7] L. Hörmander, "The Analysis of Linear Partial Differential Operators III", A Series of Comprehensive Studies in Math. 274, Springer-Verlag, Berlin, 1985.
[8] M. Miкамі, The Cauchy problem for degenerate parabolic equations and Newton polygon, Funkcial. Ekvac. 39 (1996), 449-468.
[9] M. Miyake, Degenerate parabolic differential equations-Necessity of the wellposedness of the Cauchy problem, J. Math. Kyoto Univ. 14 (1974), 461-476.
[10] K. Shinkai, The symbol calculus for the fundamental solution of a degenerate parabolic system with applications, Osaka J. Math. 14 (1977), 55-84.

Institute of Mathematics University of Tsukuba 305-8571 Tsukuba Ibaraki Japan

Faculty of Technology Ehime University 790-77 Matsuyama Ehime Japan

