Annali della Scuola Normale Superiore di Pisa *Classe di Scienze*

KUNIHIKO KAJITANI

MASAHIRO MIKAMI

The Cauchy problem for degenerate parabolic equations in Gevrey classes

Annali della Scuola Normale Superiore di Pisa, Classe di Scienze 4^e série, tome 26, nº 2 (1998), p. 383-406

<http://www.numdam.org/item?id=ASNSP 1998 4 26 2 383 0>

© Scuola Normale Superiore, Pisa, 1998, tous droits réservés.

L'accès aux archives de la revue « Annali della Scuola Normale Superiore di Pisa, Classe di Scienze » (http://www.sns.it/it/edizioni/riviste/annaliscienze/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

The Cauchy Problem for Degenerate Parabolic Equations in Gevrey Classes

KUNIHIKO KAJITANI – MASAHIRO MIKAMI

Abstract. This paper is devoted to the study of parabolic operators which are degenerate at the time variable t = 0. Under the assumptions associated with the Newton's polygon the Cauchy problem for this operator can be solved uniquely in Sobolev spaces and Gevrey spaces.

Mathematics Subject Classification (1991): 35K30.

1. – Introduction

In this paper we investigate the Cauchy problem for degenerate parabolic operators associated with Newton's polygon. Let us consider the following Cauchy problem in a band $(0, T) \times \mathbb{R}^n$ (T > 0)

(1)
$$P(t, x, \partial_t, D_x)u(t, x) = f(t, x), \quad (t, x) \in (0, T) \times \mathbb{R}^n,$$

(2)
$$\partial_t^i u(0,x) = u_j(x), \quad x \in \mathbb{R}^n, \quad j = 0, \dots, m-1,$$

where

(3)
$$P(t, x, \partial_t, D_x) = \partial_t^m + \sum_{j=1}^m \sum_{\alpha: \text{finite}} a_{j\alpha}(t, x) D_x^{\alpha} \partial_t^{m-j}, \quad D_x = -i \partial_x.$$

We assume that P is degenerate at t = 0, namely, the coefficients $a_{j\alpha}(t, x)$ satisfy

(4)
$$a_{j\alpha}(t,x) = t^{\sigma(j\alpha)} b_{j\alpha}(t,x),$$

where $\sigma(j\alpha)$ are non negative integers and $b_{j\alpha}(t, x)$ belongs to $C^{\infty}([0, T_0]; \gamma^{(s_0)})$ (respectively $C^{\infty}([0, T_0]; \gamma^{(s_0)})$). Denote by $\gamma^{(s)}$ (respectively $\gamma^{(s)}$) the set of

Pervenuto alla Redazione il 2 maggio 1996 e in forma definitiva il 23 luglio 1997.

function a(x) defined in \mathbb{R}^n such that for any A > 0 (respectively $\exists A > 0$) there is $C_A > 0$ such that

(5)
$$\left| D_z^{\alpha} a(x) \right| \leq C_A A^{|\alpha|} |\alpha|!^s \text{ for } x \in \mathbb{R}^n, \quad \alpha \in \mathbb{N}^n.$$

There are several papers on the Cauchy problem for degenerate parabolic equations published in the 1970's. M. Miyake in [9] and K. Igari in [2] gave necessary conditions to be H^{∞} -wellposed in the case of first order in ∂_t . K. Shinkai in [10] constructed the fundamental solution of the Cauchy problem for a single operator of higher order. Recently S. Gindikin and L. R. Volevich in [1] treated the equations with constant coefficients using the method of Newton's polygon.

DEFINITION 1. Let $\mathbb{R}^2_+ = [0, \infty)$ and let $\tau(P) = \{(j, \alpha) \in \mathbb{N}^{n+1}; b_{j\alpha}(0, x) \neq 0\}$ and $\nu(P) = \{(1 + \sigma(j\alpha)/j, |\alpha|/j) \in \mathbb{R}^2_+; (j\alpha) \in \tau(P)\}$. Denote by N(P) the smallest convex polygon in \mathbb{R}^2_+ possessing following properties:

(i)
$$\nu(P) \subset N(P)$$
,

(ii) if $(q, r) \in \mathbb{R}^2_+$, $(q', r') \in N(P)$, $q' \le q$ and $r \le r'$, then $(q, r) \in N(P)$.

N(P) is called the Newton's polygon associated with P.

For a number $r_0 \ge 0$ let L_{r_0} be the line passing through the point $Q_0 = (0, r_0)$ which is tangent to the Newton's polygon N(P). Denote by $Q_1 = (1+q_1, r_1) \in L_{r_0}$ the vertex of N(P) such that $q_1 \ge q$ and $r_1 \ge r$ hold if (1 + q, r) belongs to N(P) and L_{r_0} and denote by $Q_1 = (1 + q_1, r_1), \ldots$ and $Q_l = (1 + q_l, r_l)$, the vertices of N(P) indexed in the clockwise direction beginning with Q_1 . For $i = 1, \ldots, l - 1$ the sides joining the two vertices Q_i, Q_{i+1} will be denoted as Γ_i and let $\Gamma = \bigcup_{i=1}^{l-1} \Gamma_i$ if $l \ge 2$ and $\Gamma = Q_1$ if l = 1. It is evident that the choice of Q_1 depends only r_0 . Moreover denote by $\Gamma' = Q'_1 Q_1 \cup \Gamma$ if there is a vertex $Q'_1 = (1 + q'_1, r'_1)$ of N(P) except Q_1 in the line L_{r_0} and $\Gamma' = \Gamma$ if it is not so.

Property (ii) of the Newton's polygon N(P) implies that the vertices $Q_i = (1 + q_i, r_i), i = 1, ..., l$ must satisfy the inequalities

$$0 \leq q_1 < \cdots < q_l, \quad r_0 < r_1 < \cdots < r_l.$$

We shall define the principal part of *P* associated with the Newton's polygon N(P). For each vertex Q_i , for each vertical side Γ_i and for Γ the union of vertical sides Γ_i (i = 1, ..., l - 1) we define respectively

(6)
$$P_{Q_i} = \lambda^m + \sum_{\left(1 + \frac{\sigma(j\alpha)}{j}, \frac{|\alpha|}{j}\right) \in Q_i} t^{\sigma(j\alpha)} b_{j\alpha}(0, x) \xi^{\alpha} \lambda^{m-j}, \quad i = 1, \dots, l,$$

(7)
$$P_{\Gamma_i} = \lambda^m + \sum_{\left(1 + \frac{\sigma(j\alpha)}{j}, \frac{|\alpha|}{j}\right) \in \Gamma_i} t^{\sigma(j\alpha)} b_{j\alpha}(0, x) \xi^{\alpha} \lambda^{m-j}, \quad i = 1, \dots, l-1,$$

(8)
$$P_{\Gamma} = \lambda^{m} + \sum_{\left(1 + \frac{\sigma(j\alpha)}{j}, \frac{|\alpha|}{j}\right) \in \Gamma} t^{\sigma(j\alpha)} b_{j\alpha}(0, x) \xi^{\alpha} \lambda^{m-1}.$$

We define a weight function associated with N(P) as follows:

(9)
$$w_{\Gamma}(t,\xi) = \sum_{i=1}^{l} t^{q_i} |\xi|^{r_i} .$$

DEFINITION 2. The operator P is said to be Γ -parabolic at t = 0 if P_{Γ} satisfies the inequality below

(10)
$$\left|P_{\Gamma}(t,x,\lambda,\xi)\right| \geq c_0 \left(|\lambda| + w_{\Gamma}\right)^m \quad (c_0 > 0),$$

for $t \ge 0$, $x, \xi \in \mathbb{R}^n$ and $\lambda \in C$ with $\operatorname{Re} \lambda \ge 0$.

We shall introduce the functional spaces in which we consider the Cauchy problem (1)-(2). For $s \ge 1$ denote by $H^{(s)}$ (respectively $H^{(s)}$) the set of functions of which element u(x) defined in \mathbb{R}^n satisfies that $e^{\rho|\xi|^{1/s}} \hat{u}(\xi) \in L^2(\mathbb{R}^n_{\xi})$ for any $\rho > 0$ (respectively $\exists \rho > 0$), where $\hat{u}(\xi)$ means a Fourier transform of u. For sake of convenience denote by $H^{(\infty)}$ the usual Sobolev space $H^{\infty} = \bigcap_{s \ge 0} H^s$ and $\gamma^{(\infty)} = \mathcal{B}^{\infty}$ which means the set of functions of which all derivatives are bounded in \mathbb{R}^n .

In this paper we prove:

THEOREM 3. For a differential operator P satisfying (4) we assume that $1 < s_0 \le s \le r_0^{-1}$ if $r_0 > 0$ and $1 < s_0 \le s \le \infty$ if $r_0 = 0$ (respectively $1 \le s_0 \le s \le r_0^{-1} < \infty$), the coefficients $b_{j\alpha}(t, x)$ belong to $C^{\infty}([0, T_0]; \gamma^{(s_0)})$ (respectively $C^{\infty}([0, T_0]; \gamma^{(s_0)})$) ($T_0 > 0$) and P is Γ (respectively Γ')-parabolic at t = 0. Then there is T > 0 ($T \le T_0$) such that for any $u_j \in H^{(s)}$ (respectively $H^{(s)}$) and $f \in C^{\infty}([0, T]; H^{(s)})$ (respectively $C^{\infty}([0, T]; H^{(s)})$) there exists a unique solution $u \in C^{\infty}([0, T]; H^{(s)})$ (respectively $C^{\infty}([0, T]; H^{(s)})$) of the Cauchy problem (1)-(2).

This theorem will be proved in Section 4.

Let λ_{Q_ik} , λ_{Γ_ik} and $\lambda_{\Gamma k}$ (k = 1, ..., m) be the zeros with respect to λ of P_{Q_i} , P_{Γ_i} and P_{Γ} respectively. Then we can easily see that P is Γ -parabolic at t = 0 if and only if there is $\delta > 0$ such that all the zeros of P_{Γ} satisfy

(11)
$$\operatorname{Re} \lambda_{\Gamma k}(t, x, \xi) \leq -\delta w_{\Gamma}(t, \xi), \quad k = 1, \ldots, m,$$

for $t \ge 0$, and $x, \xi \in \mathbb{R}^n$. The inequalities (11) hold if and only if there is $\delta > 0$ such that the following inequalities are verified:

(12) $\operatorname{Re} \lambda_{Q_i k}(t, x, \xi) \leq -\delta t^{q_i} |\xi|^{r_i}, \quad i = 1, \dots, l, \qquad k = 1, \dots, m,$

(13)
$$\operatorname{Re} \lambda_{\Gamma_i k}(t, x, \xi) \leq -\delta t^{q_i} |\xi|^{r_i}, \quad i = 1, \dots, l-1, \quad k = 1, \dots, m,$$

for $t \ge 0$ and $x, \xi \in \mathbb{R}^n$. This fact will be proved later in Proposition 5.

REMARK. K. Kitagawa in [5], [6] derived the following two necessary conditions weaker than the inequalities (12) and (13) in order that the Cauchy problem (1)-(2) is well posed in $H^{(s)}$ ($s \ge 1$):

(14) $\operatorname{Re} \lambda_{O_i k}(t, x, \xi) \leq 0, \quad i = 1, \dots, l, \qquad k = 1, \dots, m,$

(15)
$$\operatorname{Re} \lambda_{\Gamma_i k}(t, x, \xi) \leq 0, \quad i = 1, \dots, l-1, \quad k = 1, \dots, m$$

for $t \ge 0$ and $x, \xi \in \mathbb{R}^n$. Moreover M. Mikami in [8] proved that when the coefficients of P are independent of the space variable x, the homogeneous Cauchy problem for P is well posed in H^{∞} under the assumption (12) and (15) and the non-homogeneous Cauchy problem for P is well posed in H^{∞} under the assumption (12) and (13).

NOTATION. We use the following notation in this paper:

$$\begin{aligned} x &= (x_1, \dots, x_n) \in \mathbb{R}^n, \ \xi = (\xi_1, \dots, \xi_n) \in \mathbb{R}^n, \ |\xi| = \sqrt{\xi_1^2 + \dots + \xi_n^2}, \ \partial t = \frac{\partial}{\partial t}, \\ \partial_{x_j} &= \frac{\partial}{\partial x_j}, \ \alpha = (\alpha_1, \alpha_2, \dots, \alpha_n) \in \mathbb{N}^n, \ \mathbb{N} = \{0, 1, 2, \dots\}, \ |\alpha| = \alpha_1 + \dots + \alpha_n, \\ \partial_x^\alpha &= \partial_{x_1}^{\alpha_1} \cdots \partial_{x_n}^{\alpha_n}, \\ H^s &= \left\{ f(x) \in L^2(\mathbb{R}^n_x); \langle \xi \rangle^s \hat{f}(\xi) \in L^2(\mathbb{R}^n_\xi) \right\} \quad (s \ge 0), \end{aligned}$$

 $C^m(I; X)$ denotes the set of *m* times continuously differentiable functions of $t \in I$ with value in X.

2. – Γ -parabolic polynomials

In this section our aim is to show Proposition 4 mentioned later. For the sake of convenience put $q_0 = -1$, $q_{l+1} = \infty$ and $r_{l+1} = r_l$. Let σ_i (i = 0, ..., l) stand for the slopes of the sides $Q_i Q_{i+1}$, i.e.

(16)
$$\sigma_i = \frac{r_{i+1} - r_i}{q_{i+1} - q_i}, \quad \sigma_0 > \cdots > \sigma_l = 0.$$

Putting $\langle \xi \rangle_h = \sqrt{h^2 + |\xi|^2}$, we have $\langle \xi \rangle_h^{-\sigma_0} \leq \cdots \leq \langle \xi \rangle_h^{-\sigma_l}$ for $h \geq 1$ and $\xi \in \mathbb{R}^n$. Let $f = f(t,\xi) = (t + \langle \xi \rangle_h^{-\sigma_0})^{-(\sigma_0 + r_0)/\sigma_0}$ and

(17)
$$w_{\Gamma,h}(t,\xi) = \sum_{i=1}^{l} \varphi(t)^{q_i} \langle \xi \rangle_h^{r_i},$$

where

$$\varphi(t) = \begin{cases} t, & 0 \le t \le T \\ T+1, & t \ge T+1, \end{cases}$$

 $\varphi(t)$ belongs to $C^{\infty}([0, \infty))$ and is monotone increasing function. The constant T > 0 is sufficient small and will be determined later.

PROPOSITION 4. Assume that P is Γ (respectively Γ')-parabolic at t = 0. Then there are $c_0 > 0$, $M_0 \gg 1$ (respectively $0 < M_0 \ll 1$), $h_0 \gg 1$ and $0 < T \ll 1$ such that

(18)
$$c_0^{-1}(|\lambda| + Mf + w_{\Sigma,h})^m \leq |P(t, x, \lambda + Mf, \xi)| \leq c_0(|\lambda| + Mf + w_{\Sigma,h})^m$$
,

for $0 \le t \le T$, $x, \xi \in \mathbb{R}^n$, $M \ge M_0$ (respectively $0 < M \le M_0$), $\Sigma = \Gamma$ (respectively $\Sigma = \Gamma'$) and $\lambda \in \mathbb{C}$ (Re $\lambda \ge h^{r_l}$, $h \ge h_0$ (respectively $h \ge h_0(M)$)) and there is $C_{ij\alpha\beta}$ such that

(19)
$$\left| \partial_t^j \partial_x^\beta \partial_\lambda^i \partial_\xi^\alpha P(t, x, \lambda + Mf, \xi) \right| \le C_{ij\alpha\beta} \left(|\lambda| + Mf + w_{\Sigma,h} \right)^{m-i} \times \left(t + \langle \xi \rangle_h^{-\sigma_0} \right)^{-j} \langle \xi \rangle_h^{-|\alpha|},$$

for $i, j \in \mathbb{N}$, $\alpha, \beta \in \mathbb{N}^n$, $0 \le t \le T$, $x, \xi \in \mathbb{R}^n$, $\lambda \in \mathbb{C}$ and $h \ge 1$.

In the proposition above we should remark that the constant $C_{ij\alpha\beta}$ if independent of M.

PROPOSITION 5. There are A > 0 and h > 0 such that when $t \ge A^{-1}|\xi|^{-\sigma_0}$ and $|\xi| \ge h$, the inequalities (11) hold if and only if the inequalities (12) and (13) are verified.

Proposition 4 and Proposition 5 will be proved after the proof of Lemma 10.

LEMMA 6. Assume that P is Γ -parabolic at t = 0. Then there is $c_1 > 0$ such that

(20)
$$\left| P_{\Gamma}(t, x, \lambda, \xi) \right| \ge c_1 \left(|\lambda| + w_{\Gamma, h} \right)^m$$

for $t \ge 0$, $x, \xi \in \mathbb{R}^n$, $\lambda \in \mathbb{C}$ (Re $\lambda \ge h^{r_l}$) and $h \ge 1$.

PROOF. It is sufficient to show that there is $\delta > 0$ such that

(21)
$$|\lambda| + w_{\Gamma} \ge \delta(|\lambda| + w_{\Gamma,h}),$$

for $t \ge 0$, $x, \xi \in \mathbb{R}^n$, $\lambda \in \mathbb{C}$ (Re $\lambda \ge h^{r_l}$) and $h \ge 1$. In fact, $|\xi| \ge \langle \xi \rangle_h/2$ if $|\xi| \ge h$, then (21) holds. Besides $\varphi(t)^{q_i} \langle \xi \rangle_h^{r_i} \le (T+1)^{q_l} 2^{r_l/2} |\lambda|$ if Re $\lambda \ge h^{r_l}$ and $|\xi| \le h$, then (21) also holds. We note that (20) holds for Γ' .

By simple computation we get:

LEMMA 7. Let i = 1, ..., l, $(1 + \sigma(j\alpha)/j, |\alpha|/j) \in N(P)$ and A > 0.

(i) If $A^{-1}\langle \xi \rangle_h^{-\sigma_{i-1}} \le t$, $\sigma(j\alpha) \le jq_i$ and $\tau_i(j\alpha) = \sigma_{i-1}(\sigma(j\alpha) - jq_i) + jr_i - |\alpha| \ge 0$, then

(22)
$$t^{\sigma(j\alpha)}\langle\xi\rangle_h^{|\alpha|} \le A^{jq_i-\sigma(j\alpha)}h^{-\tau_i(j\alpha)}\left(t^{q_i}\langle\xi\rangle_h^{r_i}\right)^j.$$

for $t \ge 0$, $x, \xi \in \mathbb{R}^n$ and $h \ge 1$.

(ii) If $0 \le t \le A\langle \xi \rangle_h^{-\sigma_i}$, $\sigma(j\alpha) \ge jq_i$ and $\tilde{\tau}_i(j\alpha) = \sigma_i(\sigma(j\alpha) - jq_i) + jr_i - |\alpha| \ge 0$, then

(23)
$$t^{\sigma(j\alpha)}\langle\xi\rangle_h^{|\alpha|} \le A^{\sigma(j\alpha)-jq_i}h^{-\tilde{\tau}_i(j\alpha)}\left(t^{q_i}\langle\xi\rangle_h^{r_i}\right)^j,$$

for $t \ge 0$, $x, \xi \in \mathbb{R}^n$ and $h \ge 1$.

PROOF. (i) By assumption it follows that

$$\begin{split} t^{\sigma(j\alpha)}\langle\xi\rangle_{h}^{|\alpha|} &= t^{\sigma(j\alpha)}\langle\xi\rangle_{h}^{\sigma_{i-1}(\sigma(j\alpha)-jq_{i})+jr_{i}-\tau_{i}(j\alpha)} \\ &= A^{-\sigma(j\alpha)} \left(At\langle\xi\rangle_{h}^{\sigma_{i-1}}\right)^{\sigma(j\alpha)}\langle\xi\rangle_{h}^{(r_{i}-\sigma_{i-1}q_{i})j-\tau_{i}(j\alpha)} \\ &\leq A^{-\sigma(j\alpha)} \left(At\langle\xi\rangle_{h}^{\sigma_{i-1}}\right)^{jq_{i}}\langle\xi\rangle_{h}^{(r_{i}-\sigma_{i-1}q_{i})j-\tau_{i}(j\alpha)} \\ &\leq A^{jq_{i}-\sigma(j\alpha)}h^{-\tau_{i}(j\alpha)} \left(t^{q_{i}}\langle\xi\rangle_{h}^{r_{i}}\right)^{j}. \end{split}$$

(ii) In the same way it follows that

$$t^{\sigma(j\alpha)} \langle \xi \rangle_{h}^{|\alpha|} = t^{\sigma(j\alpha)} \langle \xi \rangle_{h}^{\sigma_{i}(\sigma(j\alpha) - jq_{i}) + jr_{i} - \tilde{\tau}_{i}(j\alpha)}$$

$$= (t \langle \xi \rangle_{h}^{\sigma_{i}})^{\sigma(j\alpha) - jq_{i}} (t^{q_{i}} \langle \xi \rangle_{h}^{r_{i}})^{j} \langle \xi \rangle_{h}^{-\tilde{\tau}_{i}(j\alpha)}$$

$$\leq A^{\sigma(j\alpha) - jq_{i}} h^{-\tilde{\tau}_{i}(j\alpha)} (t^{q_{i}} \langle \xi \rangle_{h}^{r_{i}})^{j} . \square$$

We investigate the properties of the characteristic polynomial $P(t, x, \lambda, \xi)$. First we consider the case $A^{-1}\langle \xi \rangle_h^{-\sigma_0} \le t \le T$. **PROPOSITION 8.** Assume that P is Γ -parabolic at t = 0. Then there are $c_0 > 0$, $0 < T \ll 1, 0 < A \ll 1$ and $h_0 \gg 1$ such that

(24)
$$c_0^{-1}(|\lambda| + w_{\Gamma,h})^m \le |P(t, x, \lambda, \xi)| \le c_0(|\lambda| + w_{\Gamma,h})^m,$$

for $A^{-1}\langle\xi\rangle_h^{-\sigma_0} \leq t \leq T$, $\lambda \in \mathbb{C}$ (Re $\lambda \geq h^{r_l}$, $h \geq h_0$), and $x, \xi \in \mathbb{R}^n$.

PROOF. Decompose P as follows:

$$P(t, x, \lambda, \xi) = P_{\Gamma}(t, x, \lambda, \xi) + \sum_{\substack{\left(1 + \frac{\sigma(j\alpha)}{j}, \frac{|\alpha|}{j}\right) \notin \Gamma}} t^{\sigma(j\alpha)} b_{j\alpha}(t, x) \xi^{\alpha} \lambda^{m-j} + \sum_{\substack{\left(1 + \frac{\sigma(j\alpha)}{j}, \frac{|\alpha|}{j}\right) \in \Gamma}} t^{\sigma(j\alpha)} \left(b_{j\alpha}(t, x) - b_{j\alpha}(0, x)\right) \xi^{\alpha} \lambda^{m-j}.$$

It is obvious that the first term $P_{\Gamma}(t, x, \lambda, \xi)$ satisfy (24). When $(1 + \sigma(j\alpha)/j, |\alpha|/j) \notin \Gamma$, it follows that $\tau_i(j\alpha) > 0$ and $\tilde{\tau}_i(j\alpha) > 0$ for i = 1, ..., l if $\sigma(j\alpha)/j \ge q_1$. If $t \ge A^{-1}\langle \xi \rangle_h^{-\sigma_0}$, there are three cases as follows:

- $1^* A^{-1} \langle \xi \rangle_h^{-\sigma_0} \le t \le \langle \xi \rangle_h^{-\sigma_1},$
- 2* there is $k(2 \le k \le l)$ such that $\langle \xi \rangle_h^{-\sigma_{k-1}} \le t \le \langle \xi \rangle_h^{-\sigma_k}$, 3* $t \ge \langle \xi \rangle_h^{-\sigma_l}$.
- (i) In the case $\sigma(j\alpha) \ge jq_1$:

In the case 1*, 2* and 3* by Lemma 7 we have $t^{\sigma(j\alpha)}\langle\xi\rangle_h^{|\alpha|} \leq h^{-\tilde{\tau}_1(j\alpha)}(t^{q_1}\langle\xi\rangle_h^{r_1})^j$, $t^{\sigma(j\alpha)}\langle\xi\rangle_h^{|\alpha|} \leq h^{-\tilde{\tau}_k(j\alpha)}(t^{q_k}\langle\xi\rangle_h^{r_k})^j$ and $t^{\sigma(j\alpha)}\langle\xi\rangle_h^{|\alpha|} \leq h^{-\tau_l(j\alpha)}(t^{q_l}\langle\xi\rangle_h^{r_l})^j$ respectively. Putting $\tau_0 = \inf_i\{\tau_i(j\alpha), \tilde{\tau}_i(j\alpha)\} > 0$ we have

(25)
$$t^{\sigma(j\alpha)} \langle \xi \rangle_h^{|\alpha|} \le h^{-\tau_0} (w_{\Gamma,h})^j.$$

(ii) In the case $\sigma(j\alpha) < jq_1$:

By the same way of (i) we have

(26)
$$t^{\sigma(j\alpha)}\langle\xi\rangle_h^{|\alpha|} \leq A(w_{\Gamma,h})^j.$$

Thus from (25), (26), $0 < A \ll 1$ and $h_0 \gg 1$ we have

$$\left|\sum_{\left(1+\frac{\sigma}{j},\frac{|\alpha|}{j}\right)\notin\Gamma}t^{\sigma(j\alpha)}b_{j\alpha}(t,x)\xi^{\alpha}\lambda^{m-j}\right|\leq \frac{c_0}{4}(|\lambda|+w_{\Gamma,h})^m.$$

And from $0 < T \ll 1$ we get

.

$$\left|\sum_{\left(1+\frac{\sigma}{j},\frac{|\alpha|}{j}\right)\in\Gamma}t^{\sigma(j\alpha)}\left(b_{j\alpha}(t,x)-b_{j\alpha}(0,x)\right)\xi^{\alpha}\lambda^{m-j}\right|\leq \frac{c_0}{4}\left(|\lambda|+w_{\Gamma,h}\right)^m,$$

hence we obtain (24).

We note that (24) is valid for Γ' .

PROPOSITION 9. There are $C_{ij\alpha\beta} > 0$ and $0 < A \ll 1$ such that

(27)
$$\left|\partial_t^j \partial_\lambda^\beta \partial_\lambda^i \partial_\xi^\alpha P(t, x, \lambda, \xi)\right| \le C_{ij\alpha\beta} \left(|\lambda| + w_{\Gamma,h}\right)^{m-i} \langle \xi \rangle_h^{\sigma_0 j - |\alpha|},$$

for $i, j \in \mathbb{N}$, $\alpha, \beta \in \mathbb{N}^n$, $A^{-1}\langle \xi \rangle_h^{-\sigma_0} \leq t \leq T$, $x, \xi \in \mathbb{R}^n$, $\lambda \in \mathbb{C}$ and $h \geq 1$.

PROOF. Noting $|\partial_t^j \partial_x^\beta \partial_\lambda^i \partial_\xi^\alpha \lambda^m| \leq C_i |\lambda|^{m-i}$ and $|\partial_t^j \partial_x^\beta a_{k\gamma}(t, x)| \leq C_{j\beta} t^{\sigma(k\gamma)-j}$, from Lemma 7 we have

$$\begin{split} \left|\partial_{t}^{j}\partial_{x}^{\beta}\partial_{\lambda}^{i}\partial_{\xi}^{\alpha}P(t,x,\lambda,\xi)\right| &\leq \left|\partial_{t}^{j}\partial_{x}^{\beta}\partial_{\lambda}^{i}\partial_{\xi}^{\alpha}\lambda^{m}\right| \\ &+ \sum_{k=1}^{m}\sum_{\gamma:\text{finite}}\left|\partial_{t}^{j}\partial_{x}^{\beta}a_{k\gamma}(t,x)\partial_{\xi}^{\alpha}\xi^{\gamma}\partial_{\lambda}^{i}\lambda^{m-k}\right|, \\ &\leq C_{ij\alpha\beta}\left(|\lambda|+w_{\Gamma,h}\right)^{m-i}\langle\xi\rangle_{h}^{\sigma_{0}j-|\alpha|}. \end{split}$$

Next we consider the case $0 \le T \le A^{-1} \langle \xi \rangle_h^{-\sigma_0}$.

LEMMA 10. Let $0 < A \le 1$. If $|\alpha|/j \le \sigma_0(\sigma(j\alpha)/j - q_0) + r_0$, there is $M_0 = M(A) > 0$ such that

(28)
$$t^{\sigma(j\alpha)}\langle\xi\rangle_h^{|\alpha|} \le (M_0 f)^j h^{-\tilde{\tau}_0(j\alpha)},$$

for $0 \le t \le A^{-1} \langle \xi \rangle_h^{-\sigma_0}, \xi \in \mathbb{R}^n, h \ge 1.$

PROOF. By assumption and $\sigma(j\alpha) \leq jq_l$

$$t^{\sigma(j\alpha)}\langle\xi\rangle_{h}^{|\alpha|} \leq \left(A^{-q_{l}}\langle\xi\rangle_{h}^{r_{0}+\sigma_{0}}\right)^{j}h^{-\tilde{\tau}_{0}(j\alpha)}$$

Since $\sigma_0 = (r_1 - r_0)/(q_1 + 1)$ the inequality below

$$A^{-q_l}\langle\xi\rangle_h^{r_0+\sigma_0} \le Mf$$

is equivalent to

$$t\langle\xi\rangle_h^{\sigma_0}+1\leq (MA^{q_l})^{\frac{\sigma_0}{\sigma_0+r_0}},$$

for $t\langle\xi\rangle_h^{\sigma_0} \leq A^{-1}$. Thus we can choose the constant

$$M_0 = (A^{-1} + 1)^{\frac{\sigma_0 + r_0}{\sigma_0}} A^{-q_l},$$

satisfying this lemma.

Now we shall prove Proposition 4 and Proposition 5.

PROOF OF PROPOSITION 4. In the case $A^{-1}\langle \xi \rangle_h^{-\sigma_0} \leq t \leq T$ we can easily see that (18) and (19) hold by (24) and (27) respectively, so we only prove in the case $0 \leq t \leq A^{-1}\langle \xi \rangle_h^{-\sigma_0}$. First, we prove (18) when $0 \leq t \leq A^{-1}\langle \xi \rangle_h^{-\sigma_0}$. It is obvious that $P_{\Gamma}(t, x, \lambda + Mf, \xi)$ satisfy (18). There is $M_1 \gg 1$ (respectively $h_0(M) > 0$ for M > 0) such that

(29)
$$\left|\sum_{\left(1+\frac{\sigma(j\alpha)}{j},\frac{|\alpha|}{j}\right)\notin\Gamma}t^{\sigma(j\alpha)}b_{j\alpha}(t,x)\xi^{\alpha}\lambda^{m-j}\right| \leq \frac{c_0^{-1}}{2}(|\lambda|+Mf)^m,$$

for $\forall M \ge M_1$ (respectively $\forall h \ge h_0(M)$). In fact, by Lemma 10, putting $K = \max_{j \neq x} |b_{j \neq j}(0, x)|$ we have

$$\left|t^{\sigma(j\alpha)}b_{j\alpha}(0,x)\xi^{\alpha}\lambda^{m-j}\right| \leq \frac{M_0K}{M}(Mf)^j|\lambda|^{m-j}h^{-\tilde{\tau}_0(j\alpha)}$$

Thus taking $M_1 = 2M_0Kc_0$ (respectively $h_0(M) = (2M_0Kc_0/M)^{1/\tau_0}$, where $\tau_0 = \inf \tilde{\tau}_0(j\alpha) > 0$, since P is Γ' -parabolic at t = 0) we obtain (29), implying (18) in $0 \le t \le A^{-1} \langle \xi \rangle_h^{-\sigma_0}$.

Next, we prove (19) in $0 \le t \le A^{-1} \langle \xi \rangle_h^{-\sigma_0}$.

 $\left|\partial_t^j \partial_x^\beta \partial_\lambda^i \partial_\xi^\alpha P(t, x, \lambda + Mf, \xi)\right|$

$$(30) \qquad \leq \left|\partial_{t}^{j}\partial_{x}^{\beta}\partial_{\lambda}^{i}\partial_{\xi}^{\alpha}(\lambda+Mf)^{m}\right| \\ +\sum_{k=1}^{m}\sum_{\gamma:\text{finite}}\left|\partial_{t}^{j}\partial_{x}^{\beta}a_{k\gamma}(t,x)\partial_{\xi}^{\alpha}\xi^{\gamma}\partial_{\lambda}^{i}(\lambda+Mf)^{m-k}\right| \\ \leq C_{ij\alpha}(|\lambda|+Mf+w_{\Gamma,h})^{m-i}(t+\langle\xi\rangle_{h}^{-\sigma_{0}})^{-j}\langle\xi\rangle_{h}^{-|\alpha|} \\ +\sum_{k=1}^{m}\sum_{\sigma(k\gamma)\geq j}C_{\alpha\beta ij}t^{\sigma(k\gamma)-j}\langle\xi\rangle_{h}^{|\gamma|-|\alpha|}(|\lambda|+Mf)^{m-k-i}.$$

Here from $0 \le t \le A^{-1} \langle \xi \rangle_h^{-\sigma_0}$ we have

(31)
$$t^{\sigma(k\gamma)-j}\langle\xi\rangle_{h}^{|\gamma|-|\alpha|}(|\lambda|+Mf)^{m-k-i} \leq C\langle\xi\rangle_{h}^{|\gamma|-|\alpha|+\sigma(j-\sigma(k\gamma))}(|\lambda|+Mf+w_{\Gamma,h})^{m-k-i}.$$

Besides from $|\gamma|/k - \sigma(1 + \sigma(k\gamma)/k) \le r_0$ we have

(32)
$$\langle \xi \rangle_{h}^{|\gamma| + \sigma(j - \sigma(k\gamma))} \left(t + \langle \xi \rangle_{h}^{-\sigma} \right)^{j} \leq C \left(|\lambda| + Mf + w_{\Gamma,h} \right)^{k}.$$

Hence (19) is proved in $0 \le t \le A^{-1} \langle \xi \rangle_h^{-\sigma_0}$ from (30), (31) and (32).

PROOF OF PROPOSITION 5. First remark that $\langle \xi \rangle_h \leq |\xi| \leq 2 \langle \xi \rangle_h$ if $|\xi| \geq h$. If $t \geq A^{-1} |\xi|^{-\sigma_0}$ (0 < A < 1), then there is $i \geq 1$ such that there are three cases as follows:

(i) $A^{-1}\langle\xi\rangle_h^{-\sigma_{i-1}} \le t \le A\langle\xi\rangle_h^{-\sigma_i}$, (ii) $A\langle\xi\rangle_h^{-\sigma_i} \le t \le A^{-1}\langle\xi\rangle_h^{-\sigma_i}$, (iii) $t \ge A^{-1}\langle\xi\rangle_h^{\sigma_l}$.

(i) In the case $A^{-1}\langle\xi\rangle_h^{-\sigma_{i-1}} \le t \le A\langle\xi\rangle_h^{-\sigma_i}$: It follows that

(33)
$$t^{q_i} \langle \xi \rangle_h^{r_i} \le \sum_{j=1}^l t^{q_j} \langle \xi \rangle_h^{r_j} \le \left(1 + \sum_{1 \le j \ne i} A^{q_{j+1}-q_j}\right) t^{q_i} \langle \xi \rangle_h^{r_i},$$

for $h \ge 1$. Therefore there exists $0 < A \ll 1$ such that

(34)
$$t^{q_i} \langle \xi \rangle_h^{r_i} \le \sum_{j=1}^l t^{q_j} \langle \xi \rangle_h^{r_j} \le \frac{3}{2} t^{q_i} \langle \xi \rangle_h^{r_i}$$

Moreover it is obvious that

(35)

$$\left|P_{\Gamma}(t,x,\lambda,\xi)-P_{Q_{i}}(t,x,\lambda,\xi)\right| \leq \sum_{\left(1+\frac{\sigma}{j},\frac{|\alpha|}{j}\right)\in\Gamma\setminus Q_{i}} t^{\sigma(j\alpha)} \left|b_{j\alpha}(0,x)\right| |\xi^{\alpha}||\lambda|^{m-j}.$$

We have then from Lemma 7

$$t^{\sigma(j\alpha)}|\xi^{\alpha}| \leq \begin{cases} A^{jq_i-\sigma(j\alpha)}h^{-\tau_i(j\alpha)}\left(t^{q_i}\langle\xi\rangle_h^{r_i}\right)^j, & jq_i-\sigma(j\alpha)>0\\ A^{\sigma(j\alpha)-jq_i}h^{-\tilde{\tau}_i(j\alpha)}\left(t^{q_i}\langle\xi\rangle_h^{r_i}\right)^j, & jq_i-\sigma(j\alpha)<0. \end{cases}$$

If $\left(1+\frac{\sigma(j\alpha)}{j},\frac{|\alpha|}{j}\right)\in\Gamma\setminus Q_i$,

$$\left\{ \begin{array}{ll} \left(jq_i - \sigma(j\alpha)\right)\tau_i(j\alpha) \neq 0, & jq_i - \sigma(j\alpha) \leq 0\\ \left(\sigma(j\alpha) - jq_i\right)\tilde{\tau}_i(j\alpha) \neq 0, & jq_i - \sigma(j\alpha) \geq 0, \end{array} \right.$$

and then there is $A = A_{\varepsilon} > 0$ or $h = h_{\varepsilon} > 0$ for any $\varepsilon > 0$ such that

(36)
$$t^{\sigma(j\alpha)}|\xi^{\alpha}| \leq \varepsilon \left(t^{q_i} \langle \xi \rangle_h^{r_i}\right)^j$$

for $t \in [A^{-1}\langle \xi \rangle_h^{-\sigma_{i-1}}, A\langle \xi \rangle_h^{-\sigma_i}]$. We have then from (35) and (36)

$$|P_{\Gamma}(t, x, \lambda, \xi) - P_{Q_{i}}(t, x, \lambda, \xi)| \leq \text{const.} \sum_{\left(1+\frac{\sigma}{j}, \frac{|\alpha|}{j}\right) \in \Gamma \setminus Q_{i}} t^{\sigma(j\alpha)} \langle \xi \rangle_{h}^{|\alpha|} |\lambda|^{m-j}$$

$$\leq \text{const.} \varepsilon \sum_{j=1}^{m} \left(t^{q_{i}} \langle \xi \rangle_{h}^{r_{i}}\right)^{j} |\lambda|^{m-j}$$

$$\leq \text{const.} \varepsilon \left(|\lambda| + t^{q_{i}} \langle \xi \rangle_{h}^{r_{i}}\right)^{m}$$

$$\leq \text{const.} \varepsilon \left(|\lambda| + \sum_{j=1}^{l} t^{q_{j}} \langle \xi \rangle_{h}^{r_{j}}\right)^{m}.$$

Then, from (10), it follows that for sufficiently small $\varepsilon > 0$

$$\begin{aligned} \left| P_{Q_i}(t, x, \lambda, \xi) \right| &\leq \left| P_{\Gamma}(t, x, \lambda, \xi) \right| + \left| P_{\Gamma}(t, x, \lambda, \xi) - P_{Q_i}(t, x, \lambda, \xi) \right| \\ &\leq \left| P_{\Gamma}(t, x, \lambda, \xi) \right| + \text{const.} \varepsilon \left| P_{\Gamma}(t, x, \lambda, \xi) \right| \\ &\leq 2 \left| P_{\Gamma}(t, x, \lambda, \xi) \right|, \end{aligned}$$

for $\operatorname{Re} \lambda \geq 0$. In the same way it follows that

$$\left|P_{Q_i}(t, x, \lambda, \xi)\right| \geq \frac{1}{2} \left|P_{\Gamma}(t, x, \lambda, \xi)\right|,$$

for $\operatorname{Re} \lambda \geq 0$. Thus

(38)
$$\frac{1}{2} |P_{\Gamma}(t, x, \lambda, \xi)| \leq |P_{Q_i}(t, x, \lambda, \xi)| \leq 2 |P_{\Gamma}(t, x, \lambda, \xi)|$$

for $\operatorname{Re} \lambda \geq 0$. Hence we see that the inequalities (11) hold if and only if the inequalities (12) and (13) are verified when $A^{-1}\langle \xi \rangle_h^{-\sigma_i-1} \leq t \leq A \langle \xi \rangle_h^{-\sigma_i}$. (ii) In the case $A \langle \xi \rangle_h^{-\sigma_i} \leq t \leq A^{-1} \langle \xi \rangle_h^{-\sigma_i}$: It is obvious that there is $C = C_A > 0$ such that

(39)
$$t^{q_i} \langle \xi \rangle_h^{r_i} \leq \sum_{j=1}^l t^{q_j} \langle \xi \rangle_h^{r_j} \leq C t^{q_i} \langle \xi \rangle_h^{r_i} .$$

Note that $\left(1 + \frac{\sigma(j\alpha)}{j}, \frac{|\alpha|}{j}\right) \in \Gamma \setminus \Gamma_i$ is equivalent to that $|\alpha|/j < \sigma_i(\sigma(j\alpha)/j - q_i) + r_i$ (i.e. $\tilde{\tau}_i(j\alpha) = \sigma_i(\sigma(j\alpha) - jq_i) + jr_i - |\alpha| > 0$). In the same way as (i)

we obtain the following, remarking that $A \le t \langle \xi \rangle_h^{\sigma_i} \le A^{-1}$:

$$|P_{\Gamma}(t, x, \lambda, \xi) - P_{\Gamma_{i}}(t, x, \lambda, \xi)| \leq \sum_{\left(1+\frac{\alpha}{j}, \frac{|\alpha|}{j}\right) \in \Gamma \setminus \Gamma_{i}} t^{\sigma(j\alpha)} |b_{j\alpha}(0, x)| |\xi^{\alpha}||\lambda|^{m-j}$$

$$\leq \text{const.} \sum_{\left(1+\frac{\alpha}{j}, \frac{|\alpha|}{j}\right) \in \Gamma \setminus \Gamma_{i}} t^{\sigma(j\alpha)} \langle \xi \rangle_{h}^{|\alpha|} |\lambda|^{m-j}$$

$$= \text{const.} \sum_{\left(1+\frac{\alpha}{j}, \frac{|\alpha|}{j}\right) \in \Gamma \setminus \Gamma_{i}} t^{\sigma(j\alpha)} \langle \xi \rangle_{h}^{\sigma_{i}(\sigma(j\alpha)-jq_{i})+jr_{i}-\tilde{\tau}_{i}(j\alpha)} |\lambda|^{m-j}$$

$$\leq \text{const.} \sum_{\left(1+\frac{\alpha}{j}, \frac{|\alpha|}{j}\right) \in \Gamma \setminus \Gamma_{i}} A^{-|\sigma(j\alpha)-jq_{i}|} h^{-\tilde{\tau}_{i}(j\alpha)} \left(t^{q_{i}} \langle \xi \rangle_{h}^{r_{i}}\right)^{j} |\lambda|^{m-j}$$

$$\leq \text{const.} \sum_{\left(1+\frac{\alpha}{j}, \frac{|\alpha|}{j}\right) \in \Gamma \setminus \Gamma_{i}} A^{-|\sigma(j\alpha)-jq_{i}|} h^{-\tilde{\tau}_{i}(j\alpha)} \left(t^{q_{i}} \langle \xi \rangle_{h}^{r_{i}}\right)^{j} |\lambda|^{m-j}$$

$$\leq \varepsilon \sum_{j=1}^{m} \left(t^{q_{i}} \langle \xi \rangle_{h}^{r_{i}}\right)^{j} |\lambda|^{m-j}$$

$$\leq \varepsilon \left(|\lambda| + t^{q_{i}} \langle \xi \rangle_{h}^{r_{i}}\right)^{m}$$

$$\leq \varepsilon \left(|\lambda| + \sum_{j=1}^{l} t^{q_{j}} \langle \xi \rangle_{h}^{r_{j}}\right)^{m},$$

for any $\varepsilon > 0$ and $h = h(\varepsilon, A) > 0$. Thus in the same way as (i) we get

(41)
$$\frac{1}{2} |P_{\Gamma}(t, x, \lambda, \xi)| \leq |P_{\Gamma_i}(t, x, \lambda, \xi)| \leq 2 |P_{\Gamma}(t, x, \lambda, \xi)|.$$

Hence we see that the inequalities (11) hold if and only if the inequalities (12) and (13) are verified when $A\langle\xi\rangle_h^{-\sigma_i} \le t \le A^{-1}\langle\xi\rangle_h^{-\sigma_i}$. (iii) In the case $t \ge A^{-1}\langle\xi\rangle_h^{-\sigma_i}$: We have $t \ge A^{-1}$ since $\tau = 0$. If $(1 + \frac{\sigma(j\alpha)}{2} - \frac{|\alpha|}{2}) \in \Gamma \setminus O$, then $\tau(j\alpha) = i\alpha < 0$.

We have $t \ge A^{-1}$ since $\sigma_l = 0$. If $\left(1 + \frac{\sigma(j\alpha)}{j}, \frac{|\alpha|}{j}\right) \in \Gamma \setminus Q_l$ then $\sigma(j\alpha) - jq_l < 0$ and $|\alpha| \le jr_l$. Then it is obvious that there is $C = C_A > 0$ such that

(42)
$$t^{q_l} \langle \xi \rangle_h^{r_l} \leq \sum_{j=1}^l t^{q_j} \langle \xi \rangle_h^{r_j} \leq C t^{q_l} \langle \xi \rangle_h^{r_l}.$$

Thus there exists $0 < A \ll 1$ for any $\varepsilon > 0$ such that

$$|P_{\Gamma}(t, x, \lambda, \xi) - P_{\Gamma_{l}}(t, x, \lambda, \xi)| \leq \sum_{\left(1+\frac{\sigma}{j}, \frac{|\alpha|}{j}\right) \in \Gamma \setminus Q_{l}} t^{\sigma(j\alpha)} |b_{j\alpha}(0, x)| |\xi^{\alpha}| |\lambda|^{m-j}$$

$$\leq \text{const.} \sum_{\left(1+\frac{\sigma}{j}, \frac{|\alpha|}{j}\right) \in \Gamma \setminus Q_{l}} t^{\sigma(j\alpha)-jq_{l}} |\xi\rangle_{h}^{|\alpha|} |\lambda|^{m-j}$$

$$\leq \text{const.} \sum_{\left(1+\frac{\sigma}{j}, \frac{|\alpha|}{j}\right) \in \Gamma \setminus Q_{l}} t^{\sigma(j\alpha)-jq_{l}} (t^{q_{l}} \langle\xi\rangle_{h}^{r_{l}})^{j} |\lambda|^{m-j}$$

$$\leq \text{const.} \sum_{\left(1+\frac{\sigma}{j}, \frac{|\alpha|}{j}\right) \in \Gamma \setminus Q_{l}} A^{jq_{l}-\sigma(j\alpha)} (t^{q_{l}} \langle\xi\rangle_{h}^{r_{l}})^{j} |\lambda|^{m-j}$$

$$\leq \varepsilon \sum_{j=1}^{m} (t^{q_{l}} \langle\xi\rangle_{h}^{r_{l}})^{j} |\lambda|^{m-j}$$

$$\leq \varepsilon (|\lambda| + t^{q_{l}} \langle\xi\rangle_{h}^{r_{l}})^{m}$$

$$\leq \varepsilon \left(|\lambda| + \sum_{j=1}^{l} t^{q_{j}} \langle\xi\rangle_{h}^{r_{j}}\right)^{m},$$

In the same way as (i) it follows that

(44)
$$\frac{1}{2} |P_{\Gamma}(t, x, \lambda, \xi)| \leq |P_{Q_l}(t, x, \lambda, \xi)| \leq 2 |P_{\Gamma}(t, x, \lambda, \xi)|,$$

for $\operatorname{Re} \lambda \geq 0$. Thus we see that the inequalities (11) hold if and only if the inequalities (12) and (13) are verified when $t \geq A^{-1} \langle \xi \rangle_h^{-\sigma_l}$.

3. - Construction of parametrix

Write $\sigma = \sigma_0$. Let

$$\chi(t) = \begin{cases} 1, & 0 \le t \le T/2 \\ 0, & t \ge T \end{cases},$$

 $\chi(t)$ belongs to $C^{\infty}([0,\infty))$ and is monotone increasing function. Let

$$\widetilde{P}(t, x, \partial_t, D_x) = \partial_t^m + \sum_{j\alpha} \widetilde{a}_{j\alpha}(t, x) D_x^{\alpha} \partial_t^{m-j},$$

where

$$\tilde{a}_{j\alpha}(t,x) = \varphi(t)^{\sigma(j\alpha)} b_{j\alpha}(0,x) + \chi(t) t^{\sigma(j\alpha)} (b_{j\alpha}(t,x) - b_{j\alpha}(0,x)).$$

From Proposition 4 it follows immediately that:

PROPOSITION 11. Assume that P is Γ (respectively Γ')-parabolic at t = 0, then

(45)
$$\left| \partial_t^j \partial_x^\beta \partial_\lambda^i \partial_\xi^\alpha \widetilde{P}(t, x, \lambda + Mf, \xi)^{\pm 1} \right| \leq C_{ij\alpha\beta} \left(|\lambda| + Mf + w_{\Gamma,h} \right)^{\pm m - i} \times \left(t + \langle \xi \rangle_h^{-\sigma} \right)^{-j} \langle \xi \rangle_h^{-|\alpha|},$$

for $i, j \in \mathbb{N}$, $\alpha, \beta \in \mathbb{N}^n$, $t \ge 0$, $x, \xi \in \mathbb{R}^n$, $\lambda \in \mathbb{C}$ (Re $\lambda \ge h^{r_l}$), $M \ge M_1$ and $h \ge 1$ (respectively $h \ge h_0(M)$ and M > 0). ($C_{ij\alpha\beta}$ is independent of M.)

Consider the Cauchy problem for the operator \widetilde{P} instead of the operator P, that is,

(46)
$$\widetilde{P}(t, x, \partial_t, D_x)u(t, x) = f(t, x), \quad (t, x) \in (0, \infty) \times \mathbb{R}^n,$$

(47)
$$\partial_t^j u(0, x) = u_j(x), \quad j = 0, \dots, m-1.$$

Note that $\tilde{P} = P$ for $0 \le t \le T/2$. Translate the problem above into another one by the following reduction. Let

(48)
$$\Lambda(t,\xi) = \begin{cases} -M \{ \log(t + \langle \xi \rangle_h^{-\sigma}) + \log\langle \xi \rangle_h \}, & r_0 = 0 \\ -\frac{\sigma M}{r_0} \{ (t + \langle \xi \rangle_h^{-\sigma})^{-\frac{r_0}{\sigma}} + \langle \xi \rangle_h^{1/s} \}, & r_0 > 0 \quad (s \le r_0^{-1}). \end{cases}$$

Remark that $\partial_t \Lambda = Mf$. It follows evidently that

(49)
$$\left|\partial_t^j \partial_{\xi}^{\alpha} \Lambda(t,\xi)\right| \leq \begin{cases} C_{j\alpha} M \left(t + \langle \xi \rangle_h^{-\sigma}\right)^{-j} \langle \xi \rangle_h^{-|\alpha|}, & r_0 = 0\\ C_j M \left(t + \langle \xi \rangle_h^{-\sigma}\right)^{-j} \langle \xi \rangle_h^{1/s - |\alpha|} A_0^{|\alpha|} |\alpha|!, & r_0 > 0, \end{cases}$$

for $j \in \mathbb{N}$, $\alpha \in \mathbb{N}^n$, $t \ge 0$, $x, \xi \in \mathbb{R}^n$ and $h \ge 1$. $(C_j \text{ and } A_0 > 0 \text{ are independent of } \alpha, \xi \text{ and } h.)$

From [3, Section 6] and [4, Proposition 2.3] we have

LEMMA 12. Assume that Λ satisfies (49) and $a(x, \xi)$ satisfies that for any A > 0 there are $C_A > 0$, $\kappa \ge 1$ and $s \ge \kappa^{-1}$ such that

(50)
$$\left|a_{(\beta)}^{(\alpha)}(x,\xi)\right| \leq C_A A^{|\alpha+\beta|} |\alpha+\beta|!^{\kappa} \langle \xi \rangle_h^{m-|\alpha|},$$

for $\alpha, \beta \in \mathbb{N}^n$, $x, \xi \in \mathbb{R}^n$ and $h \ge 1$, where $a_{(\beta)}^{(\alpha)} = \partial_{\xi}^{\alpha} D_x^{\beta} a$. Then

(51)
$$e^{-\Lambda(t,D)}a(x,D)e^{\Lambda(t,D)} = a(x,D) + a_1(t,x,D)$$

with

(52)
$$\left|\partial_t^j a_{1(\beta)}^{(\alpha)}(t,x,\xi)\right| \le C_{j\alpha\beta M} \left(t + \langle \xi \rangle_h^{-\sigma}\right)^{-j} \langle \xi \rangle_h^{m-|\alpha|-(1-1/s)}$$

for $j \in \mathbb{N}$, α , $\beta \in \mathbb{N}^n$, $t \ge 0$, $x, \xi \in \mathbb{R}^n$ and $h \ge 1$, where $e^{\pm \Lambda(t,D)}$ stand for the pseudo-differential operators with their symbols $e^{\pm \Lambda(t,\xi)}$ respectively. In particular if $0 < M \ll 1$ we can take $C_{j\alpha\beta M} = MC_{j\alpha\beta}$.

Change unknown function u(t, x) for (46)-(47) as $v(t, x) = e^{-\Lambda(t,D)}u(t, x)$. Remarking that $\partial_t u(t, x) = e^{\Lambda(t,D)}(\partial_t + \Lambda_t)v(t, x)$, we have

(53)

$$\widetilde{P}(t, x, \partial_t, D_x)u(t, x) = \left(\partial_t^m + \sum_{j\alpha} \widetilde{a}_{j\alpha}(t, x)D_x^{\alpha}\partial_t^{m-j}\right) \left(e^{\Lambda(t,D)}v(t, x)\right) = e^{\Lambda(t,D)} \left\{ (\partial_t + \Lambda_t)^m + \sum_{j\alpha} \widetilde{a}_{j\alpha\Lambda}(t, x, D)D_x^{\alpha}(\partial_t + \Lambda_t)^{m-j} \right\} v(t, x) = e^{\Lambda(t,D)} \widetilde{P}_{\Lambda}(t, x, \partial_t, D_x)v(t, x),$$

where

(54)
$$\Lambda_t(t,\xi) = \partial_t \Lambda(t,\xi) ,$$

(55)
$$\tilde{a}_{j\alpha\Lambda}(t,x,D) = e^{-\Lambda(t,D)}\tilde{a}_{j\alpha}(t,x)e^{\Lambda(t,D)}.$$

Hereafter we shall consider the following Cauchy problem instead of (46)-(47):

(56)
$$\widetilde{P}_{\Lambda}(t, x, \partial_t, D_x)v(t, x) = e^{-\Lambda(t, D)}f(t, x), \quad t > 0, \ x \in \mathbb{R}^n,$$

(57)
$$(\partial_t + \Lambda_t)^j v(0, x) = e^{-\Lambda(t, D)} u_j(x), \quad j = 0, \dots, m-1.$$

LEMMA 13. Let $\sigma(a(\partial_t, D))$ stands for the symbol of a; $a(\lambda, \xi)$, then it follows that

(58)
$$\sigma\left((\partial_t + \Lambda_t)^j\right) = \begin{cases} \lambda + \Lambda_t, & j = 1\\ (\lambda + \Lambda_t)^j + \sum_{i=2}^j b_i^{(j)}(t,\xi)(\lambda + \Lambda_t)^{j-i}, & j \ge 2 \end{cases}$$

with $b_j^{(j)} = \partial_t^j \Lambda$ and

(59)
$$\left|\partial_t^k \partial_{\xi}^{\alpha} b_i^{(j)}(t,\xi)\right| \leq C_{k\alpha} \sum_{l=1}^{i-1} \left(t + \langle \xi \rangle_h^{-\sigma}\right)^{-(i-l)-k} \langle \xi \rangle_h^{-|\alpha|}, \quad i=2,\ldots,j,$$

for $k \in \mathbb{N}$, $\alpha \in \mathbb{N}^n$, $t \ge 0$, $\xi \in \mathbb{R}^n$ and $h \ge 1$.

PROOF. We use induction on j. The claim is trivial for j = 1, ..., 4; assume it is true for j - 1 $(j \ge 5)$. Let $Q_j(t, \lambda, \xi) = \sigma((\partial_t + \Lambda_t)^j)$. Then

$$Q_{j}(t,\lambda,\xi) = (\lambda + \Lambda_{t})Q_{j-1} + \partial_{t}Q_{j-1}$$

$$= (\lambda + \Lambda_{t})\left\{ (\lambda + \Lambda_{t})^{j-1} + \sum_{i=2}^{j-1} b_{i}^{(j-1)}(\lambda + \Lambda_{t})^{j-1-i} \right\}$$

$$+ \partial_{t} \left\{ (\lambda + \Lambda_{t})^{j-1} + \sum_{i=2}^{j-1} b_{i}^{(j-1)}(\lambda + \Lambda_{t})^{j-1-i} \right\}$$

$$= (\lambda + \Lambda_{t})^{j} + \{(j-1)\Lambda_{tt} + b_{2}^{(j-1)}\}(\lambda + \Lambda_{t})^{j-2}$$

$$+ \{b_{3}^{(j-1)} + \partial_{t}b_{2}^{(j-1)}\}(\lambda + \Lambda_{t})^{j-3}$$

$$+ \sum_{i=4}^{j-1} \{b_{i}^{(j-1)} + \partial_{t}b_{i-1}^{(j-1)} + (j+1-i)\Lambda_{tt}b_{i-2}^{(j-1)}\}(\lambda + \Lambda_{t})^{j-i} + b_{j}^{(j)}.$$

Thus putting

$$\begin{split} b_2^{(k)} &= (k-1)\Lambda_{tt} + b_2^{(k-1)}, \\ b_3^{(k)} &= b_3^{(k-1)} + \partial_t b_2^{(k-1)}, \\ b_l^{(k)} &= b_l^{(k-1)} + \partial_t b_{l-1}^{(k-1)} + (k+1-l)\Lambda_{tt} b_{l-2}^{(k-1)}, \ l = 4, \dots, j, \\ k = l+1, \dots, j, \end{split}$$

we have (58) and (59) inductively.

From (53) we can write

$$\begin{split} \sigma(\widetilde{P}_{\Lambda})(t,x,\lambda,\xi) &= \widetilde{P}(t,x,\lambda+\Lambda_t,\xi) \\ &+ \sum_{i=2}^{m} b_i^{(m)}(t,\xi)(\lambda+\Lambda_t)^{m-i} \\ &+ \sum_{j\alpha} \widetilde{a}_{j\alpha,1}(t,x,\xi)\xi^{\alpha}\sigma\left((\partial_t+\Lambda_t)^{m-j}\right) \\ &+ \sum_{j\alpha} \widetilde{a}_{j\alpha}(t,x,\xi)\xi^{\alpha}\sum_{i=2}^{m-j} b_i^{(m-j)}(t,\xi)(\lambda+\Lambda_t)^{m-j-i} \\ &\equiv \widetilde{P}+I_1+I_2+I_3\,, \end{split}$$

where $\tilde{a}_{j\alpha,1}(t, x, \xi) = \tilde{a}_{j\alpha\Lambda}(t, x, \xi) - \tilde{a}_{j\alpha}(t, x)$. Here estimate I_1 , I_2 and I_3 in turn. If $t + \langle \xi \rangle_h^{-\sigma} \ge \varepsilon$ ($0 < \varepsilon \gg 1$), then taking $\operatorname{Re} \lambda \ge h^{r_l}$ with $h \ge h_0 \ll 1$

we have

$$|I_{1}| \leq C \sum_{i=2}^{m} \sum_{l=1}^{i-1} \Lambda_{t}^{l} (t + \langle \xi \rangle_{h}^{-\sigma})^{-(i-l)} (|\lambda| + \Lambda_{t})^{m-i}$$

$$\leq C \varepsilon^{-m} (|\lambda| + \Lambda_{t})^{m-1}$$

$$\leq C \varepsilon^{-m} h^{-1} (|\lambda| + \Lambda_{t})^{m}$$

and if $t + \langle \xi \rangle_h^{-\sigma} \leq \varepsilon$, then

$$\begin{aligned} |I_1| &\leq C \sum_{i=2}^m \sum_{l=1}^{i-1} \left(t + \langle \xi \rangle_h^{-\sigma} \right)^{\frac{r_0}{\sigma}(i-l)} M^{-(i-l)} \Lambda_t^i \left(|\lambda| + \Lambda_t \right)^{m-i} \\ &\leq C \left(1 + M^{-1} \right)^m \varepsilon \left(|\lambda| + \Lambda_t \right)^m. \end{aligned}$$

Hence taking $\varepsilon = h^{-\delta}$ and choosing $\delta > 0$ suitably we can obtain

$$|I_1| \leq \frac{1}{6} \left| \widetilde{P}(t, x, \lambda, \xi) \right|.$$

From Lemma 7, (28) and Lemma 12 it follows that if s > 1

$$\begin{aligned} |I_2| &\leq C_M \sum_{j\alpha} t^{\sigma(j\alpha)} \langle \xi \rangle_h^{|\alpha|+1/s-1} \big(|\lambda| + \Lambda_r \big)^{m-j} \\ &\leq C_M h^{1/s-1} \sum_{j=1}^m (Mf + w_{\Gamma,h})^j \big(|\lambda| + \Lambda_t \big)^{m-j} \\ &\leq C_M h^{1/s-1} \big(|\lambda| + Mf + w_{\Gamma,h} \big)^m \\ &\leq \frac{1}{6} \big| \widetilde{P}(t, x, \lambda, \xi) \big| \,. \end{aligned}$$

If s = 1 and $0 < M \ll 1$, Lemma 12 implies

$$|I_2| \leq CM (|\lambda| + Mf + w_{\Gamma',h})^m \leq \frac{1}{6} |\widetilde{P}(t, x, \lambda, \xi)|.$$

In the same way as I_1

$$\begin{split} |I_{3}| &\leq C \sum_{i} \sum_{l} \left(t + \langle \xi \rangle_{h}^{-\sigma} \right)^{-(i-l)} \left(|\lambda| + \Lambda_{t} \right)^{m-j-i} \\ &\leq \frac{1}{6} \left| \widetilde{P}(t, x, \lambda, \xi) \right|. \end{split}$$

Hence $\tilde{P}_{\Lambda}(t, x, \lambda, \xi)$ satisfies Proposition 11 if we take M_1 (respectively $h_0(M)$) since $\tilde{P}(t, x, \lambda + \Lambda_t, \xi)$ satisfies Proposition 11. Thus we have

PROPOSITION 14. Assume that P is Γ (respectively Γ')-parabolic at t = 0, then

(60)
$$\left| \partial_{t}^{j} \partial_{x}^{\beta} \partial_{\lambda}^{i} \partial_{\xi}^{\alpha} \widetilde{P}_{\Lambda}(t, x, \lambda, \xi)^{\pm 1} \right| \leq C_{ij\alpha\beta} \left(|\lambda| + Mf + w_{\Gamma, h} \right)^{\pm m - i} \times \left(t + \langle \xi \rangle_{h}^{-\sigma} \right)^{-j} \langle \xi \rangle_{h}^{-|\alpha|},$$

for $i, j \in \mathbb{N}$, $\alpha, \beta \in \mathbb{N}^n$, $t \ge 0$, $x, \xi \in \mathbb{R}^n$, $M \ge M_1$ (respectively $h \ge h_0(M)$ and M > 0) and $\lambda \in \mathbb{C}$ (Re $\lambda \ge h^{r_l}$, $h \ge h_0$).

Now we shall defined a Riemannian metric g as follows:

$$g = g(dt, dx, d\lambda, d\xi) = \left(t + \langle \xi \rangle_h^{-\sigma}\right)^{-2} dt^2 + dx^2 + \left(|\lambda| + Mf + w_{\Gamma,h}\right)^{-2} d\lambda^2 + \langle \xi \rangle_h^{-2} d\xi^2.$$

We use notation in [7, Section 18.4].

DEFINITION 15. Denote by S(m, g) the set of functions $a(t, x, \lambda, \xi)$ which is holomorphic with respect to λ in Re $\lambda \ge h_1$ and satisfies

(61)
$$\frac{\left|\partial_{t}^{j}\partial_{x}^{\beta}\partial_{\lambda}^{i}\partial_{\xi}^{\alpha}a(t,x,\lambda,\xi)\right| \leq C_{ij\alpha\beta}m(t,x,\lambda,\xi)\left(|\lambda|+Mf+w_{\Gamma,h}\right)^{-i}}{\times \left(t+\langle\xi\rangle_{h}^{-\sigma}\right)^{-j}\langle\xi\rangle_{h}^{-|\alpha|}},$$

for $i, j \in \mathbb{N}$, $\alpha, \beta \in \mathbb{N}^n$, $t \ge 0$, $x, \xi \in \mathbb{R}^n$, $\lambda \in \mathbb{C}(\operatorname{Re} \lambda \ge h_1)$ and $h \ge h_1$, where $h_1 > 0$ and $m(t, x, \lambda, \xi)$ is a weight function with respect to g defined later. (Definition 17).

For $u(t, x) \in L^1([0, \infty) \times \mathbb{R}^n)$ define Fourier-Laplace transformation

(62)
$$\hat{u}(\lambda,\xi) = \int_0^\infty \int_{\mathbb{R}^n} e^{-\lambda t - ix \cdot \xi} u(t,x) dx dt$$

Besides for $a(t, x, \lambda, \xi) \in S(m, g)$ and $u(t, x) \in S(\mathbb{R}^{n+1})$ with $supp[u] \subset [0, \infty) \times \mathbb{R}^n$ define

(63)
$$a(t, x, \partial_t, D_x)u(t, u) = \int_{\operatorname{Re}\lambda = h_1} \int_{\mathbb{R}^n} e^{\lambda t + ix \cdot \xi} a(t, x, \lambda, \xi) \hat{u}(\lambda, \xi) d\xi \, d\lambda \,,$$

where $\bar{d}\xi = d\xi/(2\pi)^n$ and $\tilde{d}\lambda = d\lambda/(2\pi i)$. Note that $\operatorname{supp}[au] \subset [0, \infty) \times \mathbb{R}^n$. For $z = (t, x, \lambda, \xi) \in \mathbb{R}_+ \times \mathbb{R}^n \times \mathbb{C} \times \mathbb{R}^n$ denote

$$g_{z}(s, y, \tau, \eta) = (t + \langle \xi \rangle_{h}^{-\sigma})^{-2}s^{2} + |y|^{2} + (|\lambda| + Mf + w_{\Gamma,g})^{-2}|\tau|^{2} + \langle \xi \rangle_{h}^{-2}|\eta|^{2},$$

$$g_{z}^{\sigma}(s, y, \tau, \eta) = (|\lambda| + Mf + w_{\Gamma,h})^{2}s^{2} + \langle \xi \rangle_{h}^{2}|y|^{2} + (t + \langle \xi \rangle_{h}^{-\sigma})^{2}|\tau|^{2} + |\eta|^{2},$$

$$H(z) = \sqrt{\sup_{(s, y, \tau, \eta)} \frac{g_{z}(s, y, \tau, \eta)}{g_{z}^{\sigma}(s, y, \tau, \eta)}}.$$

DEFINITION 16. (i) A function $m(t, x, \lambda, \xi)$ is called slowly varying with respect to g if there are C > 0 and $c_0 > 0$ such that

 $m(t, x, \lambda, \xi)/C \leq m(t+s, x+y, \lambda+\tau, \xi+\eta) \leq Cm(t, x, \lambda, \xi),$

for (t, x, λ, ξ) , $(s, y, \tau, \eta) \in \mathbb{R}_+ \times \mathbb{R}^n \times \mathbb{C} \times \mathbb{R}^n$ (Re λ , Re $\tau \ge h_1$) if $g_z(s, y, \tau, \eta) < c_0$.

(ii) A function $m(t, x, \lambda, \xi)$ is called σ -g temperate if there are C > 0 and $N \ge 0$ such that

$$m(t+s, x+y, \lambda+\tau, \xi+\eta) \leq Cm(t, x, \lambda, \xi) \left(1+g_z^{\sigma}(s, y, \tau, \eta)\right)^N,$$

for (t, x, λ, ξ) , $(s, y, \tau, \eta) \in \mathbb{R}_+ \times \mathbb{R}^n \times \mathbb{C} \times \mathbb{R}^n$ (Re λ , Re $\tau \ge h_1$).

DEFINITION 17. A positive real-valued function $m(t, x, \lambda, \xi)$ is called a weight with respect to g if (i) and (ii) in Definition 16 are valid.

LEMMA 18. There exists $h_0 \ge 1$ and $\delta > 0$ such that

(64)
$$H(t, x, \lambda, \xi) \leq \begin{cases} M^{-1}, & r_0 = 0\\ h^{-\delta}, & r_0 > 0, \end{cases}$$

for $t \ge 0$, $x, \xi \in \mathbb{R}^n$, $\lambda \in \mathbb{C}$ and $h \ge h_0$.

PROOF. Since

$$\frac{g_{z}(s, y, \tau, \eta)}{g_{z}^{\sigma}(s, y, \tau, \eta)} = \left(\frac{(t + \langle \xi \rangle_{h}^{-\sigma})^{-1}}{|\lambda| + Mf + w_{\Gamma,h}}\right)^{2} + \frac{(1 - (|\lambda| + Mf + w_{\Gamma,h})^{-2}(t + \langle \xi \rangle_{h}^{-\sigma})^{-2}\langle \xi \rangle_{h}^{2})(|y|^{2} + \langle \xi \rangle_{h}^{-2}|\eta|^{2})}{(|\lambda| + Mf + w_{\Gamma,h})^{2}s^{2} + \langle \xi \rangle_{h}^{2}|y|^{2} + (t + \langle \xi \rangle_{h}^{-\sigma})^{2}|\tau|^{2} + |\eta|^{2}} \\ \leq \begin{cases} \left(\frac{(t + \langle \xi \rangle_{h}^{-\sigma})^{-1}}{|\lambda| + Mf + w_{\Gamma,h}}\right)^{2}, & \text{if } \frac{(t + \langle \xi \rangle_{h}^{-\sigma})^{-1}}{|\lambda| + Mf + w_{\Gamma,h}} \geq \langle \xi \rangle_{h}^{-1} \\ 2\langle \xi \rangle_{h}^{-2}, & \text{if } \frac{(t + \langle \xi \rangle^{-\sigma})^{-1}}{|\lambda| + Mf + w_{\Gamma,h}} \leq \langle \xi \rangle_{h}^{-1}, \end{cases}$$

it follows that

$$H(t, x, \lambda, \xi) \le \max\left\{\frac{\left(t + \langle \xi \rangle_h^{-\sigma}\right)^{-1}}{|\lambda| + Mf + w_{\Gamma,h}}, 2\langle \xi \rangle_h^{-1}\right\}.$$

Hence from

$$\frac{\left(t+\langle\xi\rangle_{h}^{-\sigma}\right)^{-1}}{|\lambda|+Mf+w_{\Gamma,h}} \leq \begin{cases} \frac{\left(t+\langle\xi\rangle_{h}^{-\sigma}\right)^{-1}}{Mf} \leq M^{-1}h^{-\frac{r_{0}}{\sigma}}, & \text{if } t+\langle\xi\rangle_{h}^{-\sigma} \leq 1\\ \frac{\left(t+\langle\xi\rangle_{h}^{-1}\right)^{-1}}{|\lambda|} \leq h^{-1}, & \text{if } t+\langle\xi\rangle_{h}^{-\sigma} \geq 1, \end{cases}$$

(64) is verified.

LEMMA 19. Let $m(t, \lambda, \xi) = |\lambda| + Mf + w_{\Gamma,h}$. Then *m* is a weight with respect to *g*, if $M \ge 1$ ($r_0 = 0$) and $h \ge h_1(M)$ ($r_0 > 0$).

PROOF. First we shall prove that *m* is slowly varying with respect to *g*. Assume $g_z(s, y, \tau, \eta) < c_0$, then it follows that $s \le c_0(t + \langle \xi \rangle_h^{-\sigma})$, $|\tau| \le c_0 m(t, \lambda, \xi)$ and $|\eta| \le c_0 \langle \xi \rangle_h$. Then from $\langle \xi \rangle_h / C \le \langle \xi + \eta \rangle_h \le C \langle \xi \rangle_h$ we have

$$\begin{aligned} |\lambda + \tau| &\leq |\lambda| + c_0 m(t, \lambda, \xi) \leq C m(t, \lambda, \xi) ,\\ M(t + s + \langle \xi + \eta \rangle_h^{-\sigma})^{-1 - \frac{r_0}{\sigma}} &\leq C M(t + \langle \xi \rangle_h^{-\sigma})^{-1 - \frac{r_0}{\sigma}} \leq C m(t, \lambda, \xi) ,\\ \sum_{i=1}^l (t + s)^{q_i} \langle \xi + \eta \rangle_h^{r_i} &\leq C \sum_{i=1}^l (t + \langle \xi \rangle_h^{-\sigma})^{q_i} \langle \xi \rangle_h^{r_i} \leq C m(t, \lambda, \xi) \end{aligned}$$

•

Hence $m(t+s, \lambda+\tau, \xi+\eta) \le Cm(t, \lambda, \xi)$, where C is independent of M and h. Besides we have

1

$$\begin{aligned} |\lambda| &\leq |\lambda + \tau| + |\tau| \leq m(t + s, \lambda + \tau, \xi + \eta) + c_0 m(t, \lambda, \xi), \\ M(t + \langle \xi \rangle_h^{-\sigma})^{-1 - \frac{r_0}{\sigma}} &\leq C M(t + s + \langle \xi + \eta \rangle_h^{-\sigma})^{-1 - \frac{r_0}{\sigma}} \leq C m(t + s, \lambda + \tau, \xi + \eta), \\ \sum_{i=1}^l t^{q_i} \langle \xi \rangle_h^{r_i} &\leq C \sum_{i=1}^l (t + s)^{q_i} \langle \xi + \eta \rangle_h^{r_i} \leq C m(t + s, \lambda + \tau, \xi + \eta). \end{aligned}$$

Hence $m(t, \lambda, \xi)/C \le m(t + s, \lambda + \tau, \xi + \eta)$, where C is independent of M and h.

Next we shall show that *m* is σ -*g* temperate. Since $|\tau| \le m(t, \lambda, \xi) \sqrt{g_z}$ and $g_z \le g_z^{\sigma}$ by Lemma 18, we obtain

$$|\lambda + \tau| \leq |\lambda| + |\tau| \leq Cm(t, \lambda, \xi)(1 + g_z^{\sigma})^{1/2}.$$

By $\langle \xi + \eta \rangle_h \le 2 \langle \xi \rangle_h (1 + |\eta|)$ and $|\eta| \le \sqrt{g_z^{\sigma}}$ we get

$$\begin{split} M\big(t+s+\langle\xi+\eta\rangle_h^{-\sigma}\big)^{-1-\frac{r_0}{\sigma}} &\leq CM(1+|\eta|)^{\sigma+r_0}\big(t+\langle\xi\rangle_h^{-\sigma}\big)^{-1-\frac{r_0}{\sigma}} \\ &\leq Cm(t,\lambda,\xi)(1+g_z^{\sigma})^{\frac{\sigma+r_0}{2}}. \end{split}$$

Next we show

$$w_{\Gamma,h}(t+s,\xi+\eta) \le Cm(t,\xi) \left(1+\sqrt{g_z^{\sigma}}\right)^{r_l+q_l}$$

In fact, since $\varphi(t+s) \ge T$ and $\varphi(t) \ge T$ fold for $t \ge T$, we can see

$$\begin{split} w_{\Gamma,h}(t+s,\xi+\eta) &\leq \sum_{i} C \langle \xi+\eta \rangle_{h}^{r_{i}} \leq C \sum_{i} \langle \xi \rangle_{h}^{r_{i}} \left(1+\sqrt{g_{z}^{\sigma}}\right)^{r_{i}} \\ &\leq C w_{\Gamma,h}(t,\xi) \left(1+\sqrt{g_{z}^{\sigma}}\right)^{r_{l}}. \end{split}$$

When $t \leq T$, noting $s \leq (t + \langle \xi \rangle_h^{-\sigma}) \sqrt{g_z^{\sigma}}$, $\varphi(t) = t$ and $\varphi(t+s) \leq \varphi(t) + s$, we get

$$w_{\Gamma,h}(t+s,\xi+\eta) \leq \sum_{i} \left(\varphi(t) + \langle \xi \rangle_{h}^{-\sigma}\right)^{q_{i}} \langle \xi \rangle_{h}^{r_{i}} \left(1 + \sqrt{g_{z}^{\sigma}}\right)^{r_{i}+q_{i}}$$

If $\langle \xi \rangle_h^{-\sigma} \leq \varphi(t)$, we have

$$\left(\varphi(t)+\langle\xi\rangle_h^{-\sigma}\right)^{q_i}\langle\xi\rangle_h^{r_i}\leq Cw_{\Gamma,h}(t,\xi)\leq Cm(t,\xi)$$

and if $\langle \xi \rangle_h^{-\sigma} \ge \varphi(t)$,

$$\left(\varphi(t) + \langle \xi \rangle_h^{-\sigma}\right)^{q_i} \langle \xi \rangle_h^{r_i} \le C \langle \xi \rangle_h^{r_i - q_i \sigma}$$

holds. Furthermore, from the definition of σ it follows that $r_i - q_i \sigma \leq \sigma$ for $\forall i$, and $m(t,\xi) \geq Mf(t,\xi) \geq M\langle \xi \rangle_h^{\sigma} h^{r_0}$ holds. Hence we can get

$$\left(\varphi(t)+\langle\xi\rangle_h^{-\sigma}\right)^{q_i}\langle\xi\rangle_h^{r_i}\leq C\langle\xi\rangle_h^{\sigma}\leq \frac{C}{Mh^{r_0}}m(t,\xi)\,.$$

Thus we obtain

$$m(t+s, x+y, \lambda+\tau, \xi+\eta) \leq Cm(t, x, \lambda, \xi)(1+g_z^{\sigma})^N,$$

where $N = \max\{1/2, (\sigma + r_0)/2, (r_l + q_l)/2\}$ and C is independent of M and h. Therefore m is σ -g temperate.

From [3, Section 6] and Paley-Winner theorem for Fourier-Laplace transformation we have

LEMMA 20. (i) Let $a_i \in S(m_i, g)$, i = 1, 2 and

$$b(t, x, \partial_t, D_x) = a_1(t, x, \partial_t, D_x)a_2(t, x, \partial_t, D_x),$$

then

$$b(t, x, \lambda, \xi) - \sum_{|\alpha|+i < N} \frac{1}{\alpha! i!} \left\{ \partial_{\lambda}^{i} \partial_{\xi}^{\alpha} a_{1}(t, x, \lambda, \xi) \right\} \left\{ \partial_{t}^{i} D_{x}^{\alpha} a_{2}(t, x, \lambda, \xi) \right\}$$

$$\in S(m_{1}m_{2}H^{N}, g),$$

for N = 0, 1, 2, ...(ii) Let $a \in S(1, g)$. Then

$$au \in L^2(\mathbb{R}^{n+1}), \quad \operatorname{supp}[au] \subset [0,\infty) \times \mathbb{R}^n, \quad \|au\|_{L^2(\mathbb{R}^{n+1})} \le C \|u\|_{L^2(\mathbb{R}^{n+1})}$$

if $u \in L^2(\mathbb{R}^{n+1})$ with supp $[u] \subset [0, \infty) \times \mathbb{R}^n$. (ii)' It follows that

$$\partial_t^k(au) \in L^2(\mathbb{R}^{n+1}), \quad \sup\left[\partial_t^k(au)\right] \subset [0,\infty) \times \mathbb{R}^n, \quad k = 0, \dots, m$$

if $\partial_t^k u \in L^2(\mathbb{R}^{n+1})$ with $\operatorname{supp}[\partial_t^k u] \subset [0,\infty) \times \mathbb{R}^n$ $(k = 0, \dots, m).$

From Proposition 14, Lemma 18 and Lemma 20 we get

PROPOSITION 21. (i) $\widetilde{P}_{\Lambda}(t, x, \lambda, \xi)^{\pm 1} \in S(|\lambda| + Mf + w_{\Gamma,h})^{\pm m}, g)$. (ii) Let $Q(t, x, \lambda, \xi) = \widetilde{P}_{\Lambda}(t, x, \lambda, \xi)^{-1}, R(t, x, \partial_t, D_x) = (\widetilde{P}_{\Lambda}Q)(t, x, \partial_t, D_x) - I$ and $R'(t, x, \partial_t, D_x) = (Q\widetilde{P}_{\Lambda})(t, x, \partial_t, D_x) - I$, then

$$\sigma(R)(t, x, \lambda, \xi), \quad \sigma(R')(t, x, \lambda, \xi) \in S(H, g).$$

REMARK. From Lemma 18 we have

$$\sigma(R)(t, x, \lambda, \xi), \ \sigma(R')(t, x, \lambda, \xi) \in \begin{cases} S(M^{-1}, g), & \text{if } r_0 = 0\\ S(h^{-\delta}, g), & \text{if } r_0 > 0. \end{cases}$$

PROPOSITION 22. Let

$$L^2_+(\mathbb{R}^{n+1}) = \left\{ u(t,x) \in L^2(\mathbb{R}^{n+1}); \operatorname{supp}[u] \subset [0,\infty) \times \mathbb{R}^n \right\} and$$
$$D(\widetilde{P}) = \left\{ u(t,x) \in L^2_+(\mathbb{R}^{n+1}); \, \widetilde{P}_{\Lambda} u \in L^2_+(\mathbb{R}^{n+1}) \right\}.$$

Then $\widetilde{P}_{\Lambda}(t, x, \partial_t, D_x)$ is one-to-one and onto mapping from $D(\widetilde{P}_{\Lambda})$ to $L^2_+(\mathbb{R}^{n+1})$. Besides $\partial_t^k(\widetilde{P}_{\Lambda})^{-1}(t, x, \partial_t, D_x)$ (k = 0, 1, ..., m) map continuously from $L^2_+(\mathbb{R}^{n+1})$ to $L^2_+(\mathbb{R}^{n+1})$.

PROOF. From Lemma 20 and Proposition 21 taking $h \gg 1$ and $M \gg 1$ (respectively $h \ge h_1(M)$ and M > 0), we get

$$\|Ru\|_{L^{2}(\mathbb{R}^{n+1})} \leq \frac{1}{2} \|u\|_{L^{2}(\mathbb{R}^{n+1})},$$

$$\|R'u\|_{L^{2}(\mathbb{R}^{n+1})} \leq \frac{1}{2} \|u\|_{L^{2}(\mathbb{R}^{n+1})}.$$

Thus Newmann series assures the existence of $(I + R)^{-1}$ and $(I + R')^{-1}$ which map continuously from $L^2_+(\mathbb{R}^{n+1})$ to $L^2_+(\mathbb{R}^{n+1})$. Hence $(\widetilde{P}_{\Lambda})^{-1} = Q(I + R)^{-1}$ maps continuously from $L^2_+(\mathbb{R}^{n+1})$ to $D(\widetilde{P}_{\Lambda})$. Besides since $\sigma(\partial_t^k Q) \in S(1, g), k = 0, 1, \ldots, m$ implies that $\partial_t^k Q$ maps continuously from $L^2_+(\mathbb{R}^{n+1})$ to $L^2_+(\mathbb{R}^{n+1})$, it follows that $\partial_t^k(\widetilde{P}_{\Lambda})^{-1} = \partial_t^k Q(I + R)^{-1}$ also maps continuously from $L^2_+(\mathbb{R}^{n+1})$ to $L^2_+(\mathbb{R}^{n+1})$.

REMARK. If $g(t, x) \in L^2_+(\mathbb{R}^{n+1})$, then from (ii)' in Lemma 20 it follows that $\partial_t^k \widetilde{P}_{\Lambda}^{-1}g \in L^2_+(\mathbb{R}^{n+1})$ (k = 0, 1, ..., m), implying that $\partial_t^k \widetilde{P}_{\Lambda}^{-1}g|_{t=0} = 0$ (k = 0, 1, ..., m-1).

4. – Proof of Theorem 2

First we shall solve the Cauchy problem (56)-(57). Let $u_j(x) \in H^{(s)}$ (respectively $H^{(s)}$) and

(65)
$$v_0(t,x) = \begin{cases} \sum_{j=0}^{m-1} \frac{t^j}{j!} e^{-\Lambda(t,D)} u_j(x), & t \ge 0\\ 0, & t < 0. \end{cases}$$

Note that from $r_0 \leq 1/s$

(66) $(\partial_t + \Lambda_t)^j v_0(t, x)|_{t=0} = e^{-\Lambda(0, D)} u_j(x) \in L^2(\mathbb{R}^n), \quad j = 0, 1, \dots, m-1.$

If v(t, x) satisfies (56)-(57), then $w(t, x) = v(t, x) - v_0(t, x)$ satisfies below:

(67)
$$P_{\Lambda}(t, x, \partial_t, D_x)w(t, x) = g(t, x), \quad (t, x) \in \mathbb{R}^{n+1},$$

(68)
$$(\partial_t + \Lambda_t)^J w(0, x) = 0, \quad j = 0, \dots, m-1,$$

where $g(t, x) = e^{-\Lambda(t,D)} \tilde{f}(t, x) - \tilde{P}_{\Lambda} v_0(t, x)$. Seek the function w(t, x) satisfying (67)-(68). Note that $g(t, x) \in L^2_+(\mathbb{R}^{n+1})$. Let $w(t, x) = (\tilde{P}_{\Lambda})^{-1}g(t, x)$, then w(t, x) belongs to $L^2_+(\mathbb{R}^{n+1})$ and satisfies (67)-(68) by Proposition 22 and its remark. Thus $v(t, x) = w(t, x) + v_0(t, x) \in L^2_+(\mathbb{R}^{n+1})$ is a solution of (56)-(57). Moreover a solution of (46)-(47) is given by $u(t, x) = e^{\Lambda(t,D)}v(t, x) \in L^2_+(\mathbb{R}^{n+1})$ satisfying $e^{M(D)^{1/s}}u \in L^2_+(\mathbb{R}^{n+1})$ because of $\Lambda = -M(t + \langle \xi \rangle_h^{-\sigma})^{-1-\frac{r_0}{\sigma}} - M \langle \xi \rangle_h^{1/s}$. Moreover it follows from Remark after Proposition 22 and from the equation (1) that for any positive integer k, $\partial_t^k e^{M(D)^{1/s}}u \in L^2(\mathbb{R}^{n+1} \cap \{t \ge 0\})$ and consequently $u \in C^{\infty}([0,\infty); H^{(s)})$ (respectively $C^{\infty}([0,\infty); H^{(s)})$). Since $\tilde{P} = P$ for $0 \le t \le T/2$, u(t, x) is a solution of (1)-(2) in $0 \le t \le T/2$.

Next we shall prove the uniqueness of solution for the Cauchy problem (56)-(57). Assume that

$$\begin{split} \bar{P}_{\Lambda}(t, x, \partial_t, D_x) v(t, x) &= g(t, x), \quad (t, x) \in \mathbb{R}^{n+1} \\ & \operatorname{supp}[v] \subset [0, \infty) \times \mathbb{R}^n, \\ g(t, x) &\equiv 0, \quad t < T. \end{split}$$

Then $v(t, x) = (\tilde{P}_{\Lambda})^{-1}g(t, x) = (I + R)^{-1}Qg(t, x)$. Hence by $\sup[g] \subset [T, \infty) \times \mathbb{R}^n$ and Paley-Winner theorem for Fourier-Laplace transformation we see that $\sup[v] \subset [T, \infty) \times \mathbb{R}^n$, that is, $v(t, x) \equiv 0$ for t < T. Therefore since there exists a unique solution v(t, x) in $L^2([0, T/2]; L^2)$ for the Cauchy problem (56)-(57), under the assumptions in Theorem 3, there exists a unique solution u(t, x) in $C^{\infty}([0, T/2]; H^{(s)})$ (respectively $C^{\infty}([0, T/2]; H^{(s)})$) for the Cauchy problem (1)-(2).

KUNIHIKO KAJITANI – MASAHIRO MIKAMI

REFERENCES

- [1] S. GINDIKIN L. R. VOLEVICH, "The Method of Newton's Polyhedron in the Theory of Partial Differential Equations", Kluwer Academic Publisher, Dordrecht-Boston-London 1992.
- K. IGARI, Well-Posedness of the Cauchy problem for some evolution equations, Publ. Res. Inst. Math. Sci. 9 (1974), 613-629.
- [3] K. KAJITANI T. NISHITANI, "The Hyperbolic Cauchy Problem", Lecture Notes in Math. 1505, Springer-Verlag, Berlin, 1991.
- K. KAJITANI K. YAMAGUTI, On global real analytic solutions of the Degenerate Kirchhoff Equation, Ann. Scuola Norm. Sup. Pisa Cl. Sci (4) 21 (1994), 279-297.
- [5] K. KITAGAWA, Sur des conditions nécessaries pour les équations en évolution pour gue le problème de Cauchy soit bien posé dans les classes de fonctions $C^{\infty}I$, J. Mat. Kyoto Univ. **30** (1990), 671-703.
- [6] K. KITAGAWA, Sur des conditions nécessaries pour les équations en évolution pour gue le problème de Cauchy soit bien posé dans les classes de fonctions $C^{\infty}II$, J. Mat. Kyoto Univ. **31** (1991), 1-32.
- [7] L. HÖRMANDER, "The Analysis of Linear Partial Differential Operators III", A Series of Comprehensive Studies in Math. 274, Springer-Verlag, Berlin, 1985.
- [8] M. MIKAMI, The Cauchy problem for degenerate parabolic equations and Newton polygon, Funkcial. Ekvac. 39 (1996), 449-468.
- [9] M. MIYAKE, Degenerate parabolic differential equations-Necessity of the wellposedness of the Cauchy problem, J. Math. Kyoto Univ. 14 (1974), 461-476.
- [10] K. SHINKAI, The symbol calculus for the fundamental solution of a degenerate parabolic system with applications, Osaka J. Math. 14 (1977), 55-84.

Institute of Mathematics University of Tsukuba 305-8571 Tsukuba Ibaraki Japan

Faculty of Technology Ehime University 790-77 Matsuyama Ehime Japan