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The Cauchy Problem for Degenerate Parabolic
Equations in Gevrey Classes

KUNIHIKO KAJITANI - MASAHIRO MIKAMI

Ann. Scuola Norm. Sue. Pisa Cl. Sci. (4)
Vol. XXVI ( 1998).

Abstract. This paper is devoted to the study of parabolic operators which are
degenerate at the time variable t = 0. Under the assumptions associated with the
Newton’s polygon the Cauchy problem for this operator can be solved uniquely
in Sobolev spaces and Gevrey spaces.

Mathematics Subject Classification (1991): 35K30.

1. - Introduction

In this paper we investigate the Cauchy problem for degenerate parabolic
operators associated with Newton’s polygon. Let us consider the following
Cauchy problem in a band (0, T) x R’ ( T &#x3E; 0)

where

We assume that P is degenerate at t = 0, namely, the coefficients (t, x)
satisfy

where or(ja) are non negative integers and x ) belongs to C’ ([0, To] ; y (so))
(respectively C~([0, To] ; y~o))). Denote by y(s) (respectively y(s)) the set of

Pervenuto alla Redazione il 2 maggio 1996 e in forma definitiva il 23 luglio 1997.
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function a (x ) defined in R’ such that for any A &#x3E; 0 (respectively 3 A &#x3E; 0)
there is CA &#x3E; 0 such that

There are several papers on the Cauchy problem for degenerate parabolic
equations published in the 1970’s. M. Miyake in [9] and K. Igari in [2]
gave necessary conditions to be H°°-wellposed in the case of first order in a’.
K. Shinkai in [10] constructed the fundamental solution of the Cauchy problem
for a single operator of higher order. Recently S. Gindikin and L. R. Volevich
in [1] treated the equations with constant coefficients using the method of
Newton’s polygon.

DEFINITION 1. Let R~_=[0, oo) and let t ( P ) _ { ( j , a ) E b~ a (0, x ) ~ 0}
and v(P) = {(1 + U(ja)lj, JU11j) E R 2 (ja) E -r (P) 1. Denote by N(P) the
smallest convex polygon in possessing following properties:
(i) v(P) C 

, 

(ii) if (q, r) E JRt, (q’, r’) E and r  r’, then (q, r) E N(P).
’ 

N ( P ) is called the Newton’s polygon associated with P.

For a number ro &#x3E; 0 let L,.o be the line passing through the point Qo = (0, ro)
which is tangent to the Newton’s polygon N ( P) . Denote by Q = ri) E Lro
the vertex of N(P) such that and ri &#x3E; r hold if (1 + q, r) belongs to
N(P) and Lro and denote by Q 1 = ( 1 + r 1 ) , ... and Ql = (1 + ql, rl), the
vertices of N(P) indexed in the clockwise direction beginning with Ql. For

i = 1, ... , I - 1 the sides joining the two vertices Qi, 1 will be denoted
as ri and let r = if I &#x3E; 2 and r = Q 1 if I = 1. It is evident that the
choice of Q 1 depends only ro. Moreover denote by I" = Q 1 Q 1 U r if there is
a vertex Q 1 - ( 1 + q 1, of N(P) except 61 1 in the line L ro and r’ = r if

it is not so.

Property (ii) of the Newton’s polygon N(P) implies that the vertices Q =
( 1 + qi, ri ), i - 1,..., I must satisfy the inequalities

We shall define the principal part of P associated with the Newton’s polygon
N(P). For each vertex Q i , for each vertical side ri i and for r the union of
vertical sides ri i (i = 1, ... , I - 1) we define respectively
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We define a weight function associated with N ( P ) as follows:

DEFINITION 2. The operator P is said to be r-parabolic at t = 0 if Pr
satisfies the inequality below

for x, ~ E Jaen and À E C with 0.

We shall introduce the functional spaces in which we consider the Cauchy
problem (1)-(2). For s &#x3E; 1 denote by (respectively H(s)) the set of functions
of which element u(x) defined in R’ satisfies that E for any
p &#x3E; 0 (respectively 3 p &#x3E; 0), means a Fourier transform of u. For
sake of convenience denote by the usual Sobolev space H°° = 

and = B°° which means the set of functions of which all derivatives are
bounded in 

In this paper we prove:
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THEOREM 3. For a differential operator P satisfying (4) we assume that
1  s  ro 1 if ro &#x3E; 0 and 1  so  s  oo if ro - 0 (respectively 1 

s  ro 1  (0), the coefficients bja(t, x) belong to Coo([O, To]; y (so))
(respectively COO([O, To]; y(so»)) (To &#x3E; 0) and P is r (respectively r’) -parabolic at
t = 0. Then there is T &#x3E; 0 (T  To) such that for any Uj E H(s) (respectively H(s»)
and f E C°° ([o, T] ; H(s)) (respectively C°° ([o, T]; H(s»)) there exists a unique so-
lution u E C°° ([o, T]; H(s)) (respectively C°° ([o, T]; H(s»)) of the Cauchy
problem (1)-(2).

This theorem will be proved in Section 4.
Let ÀQik, Àrik and Àrk (k = 1,..., m) be the zeros with respect to À

of PQi’ Pri and Pr respectively. Then we can easily see that P is r-parabolic
at t = 0 if and only if there is 3 &#x3E; 0 such that all the zeros of Pr satisfy

for t &#x3E; 0, and x, ~ E R’~. The inequalities (11) hold if and only if there is
8 &#x3E; 0 such that the following inequalities are verified:

for t &#x3E; 0 and x, ~ E JRn. This fact will be proved later in Proposition 5.

REMARK. K. Kitagawa in [5], [6] derived the following two necessary
conditions weaker than the inequalities (12) and (13) in order that the Cauchy
problem (1)-(2) is well posed in (s &#x3E; 1):

for t &#x3E; 0 and x, ~ E Moreover M. Mikami in [8] proved that when
the coefficients of P are independent of the space variable x, the homogeneous
Cauchy problem for P is well posed in H°° under the assumption (12) and (15)
and the non-homogeneous Cauchy problem for P is well posed in H°° under
the assumption (12) and (13).

NOTATION. We use the following notation in this paper:

X) denotes the set of m times continuously differentiable functions of
t E I with value in X.
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2. - r-parabolic polynomials

In this section our aim is to show Proposition 4 mentioned later. For the
sake of convenience put qo = -1, 1 = oo and rl+ 1 = rl. Let ai (i = 0,..., l )
stand for the slopes of the sides Qi Qi+1, i.e.

Putting = we have (I)I"° S .-- ~ (I)1"~ for h &#x3E; 1 and

~ E JRn. Let f = /(~, ~) = (t + and

where

belongs to C°° ([0, (0)) and is monotone increasing function. The constant
T &#x3E; 0 is sufficient small and will be determined later.

PROPOSITION 4. Assume that P is r (respectively r’) -parabolic at t = 0. Then
there are co &#x3E; 0, Mo » 1 (respectively 0  Mo « 1 ), ho » 1 and 0  T « 1

such that

for 0  t  T, x, ~ e JRn, M &#x3E; Mo (respectively 0  M  Mo), E == r
(respectively ~ = r’) e C (Re ~. &#x3E; ho (respectively h &#x3E; ho(M)))
and there is such that

In the proposition above we should remark that the constant CijafJ if inde-

pendent of M.

PROPOSITION 5. There are A &#x3E; 0 and h &#x3E; 0 such that when t &#x3E; A - 11 ~ and

I ~ I ~ h, the inequalities ( 11 ) hold if and only if the inequalities ( 12) and ( 13) are
verified.

Proposition 4 and Proposition 5 will be proved after the proof of Lemma 10.
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LEMMA 6. Assume that P is r parabolic at t = 0. Then there is cl &#x3E; 0
such that

E JRn, À E C (Re ~, &#x3E; hrl) and h &#x3E; 1.

PROOF. It is sufficient to show that there is 6 &#x3E; 0 such that

for t &#x3E; 0, x, ~ E Rn, ’k E C h") and h &#x3E; 1. In fact, [§ [ a (~)h/2 if
!~! I ~ h, then (21) holds. Besides (T I if ReÀ ~ hri
and [§  h, then (21) also holds. We note that (20) holds for r’. a

By simple computation we get:
LEMMA 7. Let i = 1,..., l, (1 lallj) E N(P) and A &#x3E; 0.

1.

fort &#x3E; 0, x, ~ 1.

PROOF. (i) By assumption it follows that

(ii) In the same way it follows that

We investigate the properties of the characteristic polynomial P (t, x, À, ~).
First we consider the case A-1 (~ ) h ~°  t  T.
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PROPOSITION 8. Assume that P is r parabolic at t = 0. Then there are co &#x3E; 0,
0  T « 1, 0  A « 1 and ho » 1 such that .

PROOF. Decompose P as follows:

It is obvious that the first term Pr(~.~) satisfy (24). When (1 ~- ~ ( j a) / j ,
r, it follows that &#x3E; 0 and il ( j a ) &#x3E; 0 for i = 1, ... , I if

ql. If t ~ A-1 (~)h ~°, there are three cases as follows:
1* A 1 (~)h ~° ~ t ~ (~)h ~l ~
2* there is k (2 I) such that (~ ) h °‘k-1  t _ (~ ) h ~k ,
3* ~(~.

(i) In the case 
In the case 1 *, 2*’and 3* by Lemma 7 we have h-il (ja) (tql (~}~)-’,

and respec-

tively. Putting To = infi { il ( j a ) , &#x3E; 0 we have

(ii) In the case 
By the same way of (i) we have

Thus from (25), (26), 0  A « 1 and ho » 1 we have

And from 0  T « 1 we get

hence we obtain (24).
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We note that (24) is valid for r’.

PROPOSITION 9. There are &#x3E; 0 and 0  A « 1 such that

fori, j E Nn, T,x,~ 1.

PROOF. Noting ‘ and 
from Lemma 7 we have

Next we consider the case 0  A -1 (~ ~ h ~° .
LEMMA 10. Let 0  A  1. If laljj ::s qo) + ro, there is

Mo = M(A) &#x3E; 0 such that

A-1 (~ ~ h ~~, ~ E JRn, 1.

, 
PROOF. By assumption and 

Since ago = (rl - + 1) the inequality below

is equivalent to

for t (~ ~ h°  A -1. Thus we can choose the constant

satisfying this lemma.
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Now we shall prove Proposition 4 and Proposition 5.

PROOF OF PROPOSITION 4. In the case A -1 ~~ ~ h ~°  t  T we can easily
see that (18) and (19) hold by (24) and (27) respectively, so we only prove in
the case A-1 ~~ ~ h ~° . First, we prove (18) when 0  t  A-1 ~~ ~ h ao .
It is obvious that satisfy (18). There is Ml » 1 (respec-
tively ho (M) &#x3E; 0 for M &#x3E; 0) such that

for Ml (respectively ho(M)). In fact, by Lemma 10, putting
K = maxjax Ibja(O, x) I we have

Thus taking Mi = 2MoKco (respectively ho(M) - where

TO = inf io ( j a ) &#x3E; 0, since P is r’-parabolic at t = 0) we obtain (29), imply-
ing (18)inO~~A-~)~.

Next, we prove (19) in 0 ::: t  A -1 ( ~ ) h ~° .

Here from 0 A-1 ~~ ~ h ~° we have
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Besides from ro we have

Hence (19) is proved in from (30), (31 ) and (32). D

PROOF OF PROPOSITION 5. First remark that (§)h $ [§ I  2 ( ~ ) h if [§ I ~ h.
(0  A  1 ), then there is i &#x3E; 1 such that there are three

cases as follows:

(i) 
1 

~ t ~ A(~)h ~‘ ~
(ii) 
(iii) t &#x3E; A -1 (~ ) hl .
(i) In the case A-1 (~)h ~i-1  t  A(~)h ~l :
It follows that

for h &#x3E; 1. Therefore there exists 0  A « 1 such that

Moreover it is obvious that

We have then from Lemma 7

and then there is A = A, &#x3E; 0 or h = h, &#x3E; 0 for any 8 &#x3E; 0 such that
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for t E [A-1 (~) h 0" -’, A (~) h "’ ]. We have then from (35) and (36)

Then, from (10), it follows that for sufficiently small E &#x3E; 0

for Re h g 0. In the same way it follows that

for Re h a 0. Thus

for Re ~, &#x3E; 0. Hence we see that the inequalities (11) hold if and only if the

inequalities (12) and (13) are verified when A -1 (~ ) h ~i -1  t  
(ii) In the case A-’(~)h":
It is obvious that there is C = CA &#x3E; 0 such that

Note that (1 -  a , E r B ri is equivalent to that la 1/ j  

qi ) + ri (i.e. I &#x3E; 0). In the same way as (i)
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we obtain the following, remarking that A  t ~~ ~ h‘  A -1:

for any E &#x3E; 0 and h = A) &#x3E; 0. Thus in the same way as (i) we get

Hence we see that the inequalities ( 11 ) hold if and only if the inequalities (12)
and (13) are verified when ~)~ ~ ~ ~ A-1 (~ ) h °~i .
(iii) In the case t &#x3E; A -1 (~ ) h ~l :
We have t &#x3E; since al = 0. If ( 1-I- a--~ .~"~ , e rBQI  0

and Then it is obvious that there is C = CA &#x3E; 0 such that
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Thus there exists 0  A « 1 for any 8 &#x3E; 0 such that

In the same way as (i) it follows that

for Re h g 0. Thus we see that the inequalities (11) hold if and only if the

inequalities (12) and (13) are verified when t &#x3E; A -1 (~ ) h °~l . D

3. - Construction of parametrix

Write cr = ao. Let

x (t) belongs to Coo ([0, oo)) and is monotone increasing function. Let

where

From Proposition 4 it follows immediately that:
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PROPOSITION 11. Assume that P is r (respectively r’) -parabolic at t = 0, then

(respectively h &#x3E; ho(M) and M &#x3E; 0). (Cijaf3 is independent of M.)

Consider the Cauchy problem for the operator P instead of the operator P,
that is,

Note that P = P for 0 T /2. Translate the problem above into another
one by the following reduction. Let

Remark that = M f . It follows evidently that

for j E N, a E t &#x3E; 0, x , ~ E RI and h &#x3E; 1. (Ci and A o &#x3E; 0 are

independent of a, ~ and h.)
From [3, Section 6] and [4, Proposition 2.3] we have

LEMMA 12. Assume that A satisfies (49) and a (x, ~ ) satisfies that for any
A &#x3E; 0 there are CA &#x3E; 0, K &#x3E; 

for a, ,8 E x, ~ E R" and h &#x3E; 1, where a’c" = aa Then

with

for j E N, a, f3 E t &#x3E; 0, x, ~ E and h &#x3E; 1, where stand for the
pseudo-differential operators with their symbols respectively. In particular
if 0  M « 1 we can take Cjaf3M = MCjaf3.
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Change unknown function u(t, x) for (46)-(47) as v(t, x) = x).
Remarking that at u (t, x) = e A (t, D) (at + At) v (t, x), we have

where

Hereafter we shall consider the following Cauchy problem instead of (46)-(47):

LEMMA 13. Let a (a (at, D)) stands for the symbol of a; a (~,, ~), then it fol-
lows that

1.
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PROOF. We use induction on j. The claim is trivial for j = 1, ... , 4;
assume it is true for j - 1 ( j &#x3E; 5). Let Qj (t, ~, , ~ ) = a«at + Then

Thus putting

we have (58) and (59) inductively.

From (53) we can write

where a~~,1 (t, x, ~) - Here estimate Ii, 12 and 13 in

turn. If t + ($ )§" &#x3E; s (0  s » 1 ), then taking ReÀ ~ hrl with h &#x3E; ho « 1
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we have

and if t + ($)§" s s, then

Hence taking 8 = h -8 and choosing 8 &#x3E; 0 suitably we can obtain

From Lemma 7, (28) and Lemma 12 it follows that if s &#x3E; 1

If s = 1 and 0  M « 1, Lemma 12 implies

In the same way as I,

Hence À,~) satisfies Proposition 11 if we take Ml (respectively ho(M))
since i~(t, x, X +At, ~) satisfies Proposition 11. Thus we have
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PROPOSITION 14. Assume that P is r (respectively r’) -parabolic at t = 0, then

for i, j E N, a, f3 E 0, x, ~ E M &#x3E; Ml (respectively h &#x3E; ho(M) and

Now we shall defined a Riemannian metric g as follows:

We use notation in [7, Section 18.4].

DEFINITION 15. Denote by S (m , g ) the set of functions a (t , x , ~, , ~ ) which
is holomorphic with respect to À in h I and satisfies

for i, j e N, a, ~8 E 0, x , ~ E JRn, À E hl) and h &#x3E; h 1,
where h 1 &#x3E; 0 and m (t, x, ~,, ~ ) is a weight function with respect to g defined
later. (Definition 17).

For u (t, x) E oo) x define Fourier-Laplace transformation

Besides for a (t, x, ~,, ~) E S(m, g) and u (t, x) E with supp[u] c
[0, oo) define

where ~ = ~/(27r)" and j~ = Note that supp[au] c [0, oo) x MB
For z = (t, X, ~., ~) E R+ x M" x C x R" denote



401

DEFINITION 16. (i) A function m(t, x, k, ~) is called slowly varying with
respect to g if there are C &#x3E; 0 and co &#x3E; 0 such that

for (t, x, ~,, ~), (s, y, T, 1J) E R+ x R’ x C x JRn (Rek, Re -r &#x3E; hi) if gz(s, y, T, 1J)
 co.

(ii) A function m(t, x, k, ~) is called a -g temperate if there are C &#x3E; 0 and

N &#x3E; 0 such that

DEFINITION 17. A positive real-valued function m (t, x , ~, , ~ ) is called a

weight with respect to g if (i) and (ii) in Definition 16 are valid.

LEMMA 18. There exists ho &#x3E; 1 and 8 &#x3E; 0 such that

it follows that

Hence from

(64) is verified.
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LEMMA 19. = j Then m is a weight with respect
to g, 1 (ro = 0) and h &#x3E; (ro &#x3E; 0).

PROOF. First we shall prove that m is slowly varying with respect to g. As-
sume gz (s, y, r, 1])  Co, then it follows that s  i j  com (t, À,~)
and 1  Then from ~~ ) h / C  (~ + r~ ) h  C ~~ ) h we have

Hence m (t -~ s, ), + -r, ~ + q)  Cm (t, À, ~), where C is independent of M and h.
Besides we have

Hence m (t, ~,, ~ )/ C  m (t + s, ~, + r, § + q), where C is independent of M
and h.

Next we shall show that m is a - g temperate. Since I -r I  m (t, 
g’ by Lemma 18, we obtain

By (~ + n)h 5 2(1)h(I + and I i7l s g~ we get

Next we show

In fact, since + s) &#x3E; T and T fold for t &#x3E; T, we can see
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T, noting (t + ~)~)~/~, ~(~) = t and + s )  + s,
we get

If cp(t), we have

and if cp(t),

holds. Furthermore, from the definition of a it follows that ri - for

V i, and ~(~) ~ M/(~~) ~ holds. Hence we can get

Thus we obtain

where N = (or + ro) /2, (rl -~ ql ) /2} and C is independent of M and h.
Therefore m is a-g temperate. D

From [3, Section 6] and Paley-Winner theorem for Fourier-Laplace trans-
formation we have

then

for N = 0, 1, 2, ...
(ii) Let a E S(1, g). Then

if u E with supp[u] C [0,00) x 
(ii)’ It follows that

E with C [0, (0) x (k = 0, ... , m).
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From Proposition 14, Lemma 18 and Lemma 20 we get

REMARK. From Lemma 18 we have

PROPOSITION 22. Let

Then PA (t, x, at, Dx) is one-to-one and onto mapping from to 

x, at, Dx) (k = 0, 1,..., 
to 

PROOF. From Lemma 20 and Proposition 21 taking h » 1 and M » 1

(respectively h &#x3E; h (M) and M &#x3E; 0), we get

Thus Newmann series assures the existence of (I + R)-1 and (I + R,)-1 which
map continuously from to Hence ( P~ ) -1 = Q (I +

7?)~ maps continuously from to D(PA). Besides since E

= 0, 1, ... , m implies that maps continuously from 
to it follows that at ( P~ ) -1 = at Q ( I -+- R ) -1 also maps continuously
from to 

° 

D

REMARK. If g(t, x) e then from (ii)’ in Lemma 20 it follows

that e (k - 0, 1,..., m ), implying that 0

(~ ==0, 1,... ,~z - 1).
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4. - Proof of Theorem 2

First we shall solve the Cauchy problem (56)-(57). Let uj(x) E H(s)
(respectively H(s)) and

Note that from ro  1 /s

If v(t, x) satisfies (56)-(57), then w(t, x) = v(t, x) - vo(t, x) satisfies below:

where g(t, x) = x) - PA vo (t, x). Seek the function w(t, x) satisfy-
ing (67)-(68). Note that g(t, x) E Let w(t, x) = (PA)-lg(t, x), then
w (t, x) belongs to and satisfies (67)-(68) by Proposition 22 and its
remark. Thus v (t, x) is a solution of (56)-(57).
Moreover a solution of (46)-(47) is given by u (t, x) = x) E 

satisfying because of A = 
Moreover it follows from Remark after Proposition 22 and from the equation (1)
that for any positive integer k, n ft ~ 0}) and conse-

quently u E oo ) ; H(s)) (respectively oo ) ; H(s))). Since P = P
for T /2, u (t, x) is a solution of (1)-(2) in T /2.

Next we shall prove the uniqueness of solution for the Cauchy problem (56)-
(57). Assume that

Then v(t, x) = (P~)-lg(t, x) - (I + x). Hence by supp[g] C
[T, oo) x and Paley-Winner theorem for Fourier-Laplace transformation we
see that supp [ v ] c [ T, oo ) x R’~, that is, v(t, x) - 0 for t  T. Therefore
since there exists a unique solution v (t, x) in L~([0, T /2]; L2) for the Cauchy
problem (56)-(57), under the assumptions in Theorem 3, there exists a unique
solution u (t , x ) in C- ([0, T /2] ; H(s)) (respectively T / 2] ; H(s))) for the
Cauchy problem (1)-(2).
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