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Compactness of Conformal Metrics with
Positive Gaussian Curvature in R2

KUO-SHUNG CHENG - CHANG-SHOU LIN

Abstract. In this paper we consider the compactness of a sequence of solutions un of

in

where K (x) is positive in R2 and decays like at oo for some b &#x3E; 0. Assuming that the limit
of the total curvature of un satisfies

we prove that un must be bounded in W o~ (II~2) for any p &#x3E; 1. We also construct a specific
K (x ) = K (Ix I) to show that the total curvature of any solution u of equation (0.1) with this

satisfy

This appears to be in contrast with the statement of Theorem Al in [A]. In this respect, we show
that for any K which decays like Ixl-b for 0  b  2, there exists ao (K ) &#x3E; 2 2 b such that the
total curvature of any solution u of (0.1 ) must satisfy

1. - Introduction

In this paper, we consider the entire solution of the equation

in

where A is the Laplacian operator of R2 and K (x) is a given function in JR2.
Equation ( 1.1 ) arises in the problem of finding a Riemannian metric which is

Pervenuto alla Redazione il 2 ottobre 1996 e in forma definitiva il 18 giugno 1997.
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conformal to the flat metric of R 2 and realizes the given function K(x) as its
Gaussian curvature. We refer the reader to [CN1] for a brief description of the
background and the history of this problem.

In case K is nonpostive on JR2, a fairly complete understanding of the
the solution set of (1.1) was achieved in [CN1], [CN2]. To state the results
in [CN2], we introduce al as

Then the main result in [CN2] is

THEOREM A. Suppose that K  0 in JR2 and that

for I large and some positive constant m. Then we have:

(I) 0, then ( 1.1 ) possesses no entire solution in JR2.
(II) If a I &#x3E; 0, then the following conclusions hold:

(i) For each a E (0, a 1 ), ( 1.1 ) possesses a unique solution Ua such that

at c

(ii) The function U (x ) given by

is an entire solution of ( 1.1 ) in 

is well-defined everywhere in JR2 and is a solution Moreover,

(iii) Let u be an arbitrary solution of ( 1.1 ) in Then either u - U or u - ua
for some a E (0, al ).

(iv) If 0  a  f3  al, then   U(x) for all x E JR2.
Furthermore, for any given e &#x3E; 0, there exists a constant R = R (s) such
that for Ix I &#x3E; R,

In this paper, K is always assumed locally bounded and positive in JR2.
A solution u means u e for any p &#x3E; 1 and satisfies ( 1.1 ) in the
distributional sense. For the case K (x) is positive in R~, it is not expected that
results similar to Theorem A should hold. However, for some special 
as stated in Theorem 1.1 below, we have the following result in the spirit of
Theorem A.
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THEOREM 1.1. Let K(x) =- 1 for 1 and K(x) - ~ for x ~ I &#x3E; 1 for
some constant b &#x3E; 0. Then the following statements hold:

(i) For every a satisfying -2  a  min{O, b - 2}, ( 1.1 ) possesses a unique C2
radial solution ua (r) satisfying (1.4).

(ii) Let u be an arbitrary solution of (1. 1) satisfying (1.4)for some a, then a satisfies
-2  a  minjo, b - 2} and u(x) = where is the solution in (i)
above.

REMARK 1.2. On the constrast to the case K  0, the family of solution
ua (x) in Theorem 1.1 does not have the monotone property in a as the case
in Theorem A. In fact, by the concrete construction of solutions in the proof
of Theorem 1. l, it can be seen that ua (r) and (r) exactly intersects once for

P. We hope that it will be useful in a future study.
Although Theorem 1.1 are only concerned with some specific K (x), it still

provides an interesting example to the situaton when K(x) is positive in JR2.
In [A], Aviles proved the following theorem, (See Theorem Al in [A]).

THEOREM B. Assume K (x) &#x3E; 0 in R 2 and K (x) Ix Ib = 1 for some
positive constant b &#x3E; 0. Then, for any a satisfying

there exists a solution u of ( 1.1 ) satisfying

at (

Let K (x ) be the specific funtion given in Theorem 1.1 with 0  b  2.
Then Theorem 1.1 contradicts to the result of Theorem B. In fact, Theorem 1.1
is not an isolated case to show that Theorem B does not hold. For a gen-
eral K (x), set

there is an entire solution u of ( 1.1 ) such that
at (

Our main result is

THEOREM 1.2. Suppose that K (x) is positive and locally bounded in JR2 and
satisfies

for I x I &#x3E; 1 and for positive constants A, B and 0  b  2. Then I

where ao is given in ( 1. 6).
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Obviously, Theorem 1.2 implies that Theorem B does not hold in general.
We note that the real number a I in (1.2) is -~ if K(x) satisfies (1.7).
Theorem 1.2 provides a major contrast to Theorem A for the case K (x) s 0. We
would like to remark that solutions possessing the asymptotic behavior (1.4) have
a geometric meaning. Following conventional notations, a solution u (x) of (1. 1)
is said to have a finite total curvature if K (x)e2u(x) and the quantity
2 is called the total curvature o, f’u. Assume K (x) satisfies (1.7).2,, fR2 Assume K(x) satisfies (1.7).
A consequence of our previous results in [CLn] is that a solution u has a finite
total curvature if and only if u possesses the asymptotic behavior (1.4), or more
precisely, u(x) / log Ix I exists, and the identity

are always true. Please see Lemma 2.1 in Section 2. Thus, it is interesting to
know what is the possible range of a or equivalently, the possible range of the
total curvature of solutions. In [M], McOwen proved that if 0  K (x) s 
at oo, then for every a E (-2, (b - 2) - ) where (b - 2) - = min(0, b - 2), there
exists a solution of ( 1.1 ) satisfying (1.4). Together with Theorem 1.1, we see
that the result of McOwen is the best possible for a general K which decays
like at oo.

THEOREM 1.3. Suppose X (x) is a positive continuous function in R 2 and
satisfies K (x) ixib = 1 for some 0  b  2. Assume Un is a sequence
of solutions of ( 1.1 ) such that

Then un is bounded in p &#x3E; 1. Furthemore if un converges to u in

2,p (JR2), then

COROLLARY 1.4. Suppose K satisfies the assumption of Theorem 1.3 and

Un is a sequence of solutions of ( 1.1 ). If 1~ as n - and

for some So &#x3E; 0, then we always have

COROLLARY 1.5. Suppose K satisfies the assumption of Theorem 1.3 and 
is defined in ( 1.6). If ao (K) &#x3E; - (2 - b), then ao (K) is achieved, i. e. there exists a
solution u of ( 1.1 ) with
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REMARK 1.6. When K (x) decays like for b &#x3E; 2, and un is a sequence
of solutions of (1.4) satisfying

for some Eo &#x3E; 0, then un is bounded in The proof is easy, and will
be omitted.

The paper is organized as follows. In Section 2, we will give a proof of
Theorem l.l. Both Theorem 1.2 and Theorem 1.3 will be proved in Section 3.

2. - Proof of Theorem 1.1

Let K be positive in R 2 and satisfy

for I large, where m is a positive constant. A solution u of ( 1.1 ) is said to
have a finite total curvature if Ke2u E L1(JR2), and the quantity Ke2udx
is called the total curvature of u. Theorem 1.1 in [CLn] says that if u is a
solution of (1.1) with a finite total curvature, then j I exists and

log Ix I

Conversely, it is easy to see that if exists, then .
and (2.2) holds. Hence, we have

LEMMA 2.1. Suppose K satisfies (2.1 ). Then if and only
if l~ exists. Moreover, (2.2) always holds.

REMARK 2.2. In fact, Theorem 1.1 in [CLn] also shows that for a solution u
of ( 1.1 ) having a finite total curvature a, there exists a constant C such that

holds. Hence, if for large then
where

PROOF OF THEOREM 1.1. Let
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and

where B1 &#x3E; 0 is a constant and Then it is not very difficult

to verify that Ua is a C2-solution of (1.1) provided that

Since UQ’ (0) = 2 log(4B1 ), we see that 7~ 1 &#x3E; 0 exhausts all radial solutions. It

is easy to see that ua satisfies (1.4) with a = -A2 - 1 + ~. Now A2 is a
monotonic function of B1 satisfying

and

Hence a satisfies -2  a  min[O, b - 2}. This proves (i).
Now suppose that u be an arbitrary solution of ( 1.1 ) with finite total

curvature. Since K(x) = is nonincreasing in r and K (r) &#x3E; for any
0  ,8  1, then from Theorem 1.7 in [CLn], we conclude that u must be a
radial function. Hence u - ua for some a in the range -2  a  min[O, b - 2},
where ua is defined in (2.4) and (2.5). This proves (ii). 0

3. - Proofs of compactness theorems

In this section, we begin with a proof of Theorem 1.2. First, we need the

following result which was proved in [BM].

THEOREM 3.1 (Theorem 3 in [BM]). Assume un is a sequence of solutions of

in
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satisfying

and

for two constants C1 and C2. Then either un is bounded in or there exists a

subsequence of un (still denoted by un) such that either Un uniformly on any
compact sets of Q or the blow-up set S is a set of finite number of points, Un ~ -00
uniformly on any compact set of SZ B S, and Kn e2un converges to I:i ai8pi with
ai &#x3E; 2TL’ and S = Ui {pi }.

REMARK 3.2. When either Kn is uniformly convergent or converges to a
positive constant then Theorem 3.1 can be improved to have ai &#x3E; 4~ .

PROOF OF THEOREM 1.2. Suppose ao = - ( 2 2 b ~ . Since ao = - 2 2 b can not
be achived by some sloution of ( 1.1 ) by Remark 2:2, there exists a sequence
of solutions of Un such that the total curvature

Since K has a lower positive bound in any compact set of JR2, by Theorem 3.1,
we have either un is uniformly bounded in any compact set or un is uniformly
convergent to -oo in any compact set of JR2.

STEP 1. We claim that un -~ -oo uniformly in any compact set of R 2
Suppose un is uniformly bounded in any compact set of JR2. By the elliptic
estimates, we may assume Un - u in W o p (I~2) for any p &#x3E; 1. In particular,
u satisfies (1.1) and the total curvature

which yields a contradiction by Remark 2.2. Hence, by Theorem 3.1, we have
Un 2013~ -oo uniformly in any compact set of JR2.

STEP 2. We claim there exists a constant C &#x3E; 0 such that

for

To prove the claim, we assume there exists xn E JR2 such that

By Step 1, we have as Set
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Then vn satisfies

where By the assumption on
for and

By Theorem 3.1, we conclude that un(0) s C for some constant C, which
yields a contradiction to the assumption.

STEP 3. There exists a positive constant C such that
and for

In [CLn], we have proved that un has the following representation

Thus, we have

By Step 2, the first integral can be estimated by

For the second integral, we have

Combined these two estimates together, we have

Set Then wn (x) satisfies
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Since for some constant C4, by Harnack
inequality, for any a &#x3E; 1, there exists a positive constant CS = C5 (a) such that

Hence, Step 3 is proved.
STEP 4. For any s &#x3E; 0 there exists R = R (~) &#x3E; 0 such that

for x I &#x3E; Rs and large n.

Step 4 will be proved by contradiction. Suppose there exist a positive
number so &#x3E; 0 and xn , yn with

--- ------ -.

such that

Let

Then vn satisfies

where By Step 2,

For we have

By Step 3 and the Hamack inequality (3.9), is bounded in By
the elliptic estimates, we may assume vn (y) -~ in W o p (I1~2) for any

p &#x3E; 1. Suppose there exists a subsequence of xn (still denoted by xn ) such
that &#x3E; 0, then by (3.10) and (3.11), we may assume
~ Ko(y) weakly in L~ (I1~2B{0}), where Ko(y) satisfies

for some positive constants C1 1 and C2, and vo(y) satisfies

For any we have
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Thus, the total curvature

Applying Corollary 1.4 in [CLn], vo(y) in fact satisfies

in

for some ,B E R, where 8 (0) is the Dirac measure at the origin, and the function
satisfies

in

It is easy to see that

where o( 1 ) denotes o(1) -~ 0 as r -~ 0. Thus, putting (3.12) and the above
together, we have

Obviously, 2 - b + 2p &#x3E; 0. Since at oo, by Re-
mark 2.2, there exists no entire solution (3.14) with the total curvature equal to

. Thus, it yields a contradiction. Hence we have proved

as n then vo(y) is harmonic in JR2B{0}.
By Step 3,

By Liouville’s theorem, we have
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where both ao and C are constant. Since vo (y) is radially symmetric, it obvi-

ously yields a contradiction to the assumption. Hence, Step 4 is proved.
STEP 5. Set

and

Define by

Differentiating (3.15) and (3.16) with respect to r, we have

Thus, we have

Since Fn (oo) &#x3E; n(2 - b), set r,~ to satisfy Fn (rn ) - n(2 - b). Obviously,
rn = +00. For any E &#x3E; 0, by Step 4, there exists R = R(s) &#x3E; 0

such that

Hence,

for

for
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Since for any n, we have

By Step 1, we note that the boundary term at R tends to 0 as n - +oo. By
letting n - first and then E -~ 0 the above yields

a contradiction, where (2 - b)7r is used. Therefore, the

proof of Theroem 1.2 is completely finished. D

PROOF OF THEOREM 1.3. Suppose un is a sequence of solution of (1.1) and
satisfies the assumption of Theorem 1.3. By Remark 3.2, we may assume that
either un is uniformly bounded in any compact set or un uniformly converges
to -oo in any compact set of R 2. By the the same reasoning of Step 1 and

Step 2 of Theorem 1.2, there exists a constant C &#x3E; 0 such that inequalities

whenever

hold.

First, we want to prove un is bounded in Suppose the claim
is not true. As before, we want to prove the asymptotic symmetry of un,
i.e. for any E &#x3E; 0, there exists R = &#x3E; 0 such that for y I = R,

~. Assume the conclusion is not true. Then there exists

rn --~ such that with I = I xn I - rn for some

positive constant Eo &#x3E; 0. Let
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Then vn is bounded in )y Hamack inequality and satisfies

in

where By the assumption on K and (3.20) for any
we have for ~ I

for large n. If then using (3.21) and the same
argument of Step 4 of Theorem 1.2, vn (y) converges to
in vhere ao and Co are constant. Since vo (y) is radially symmetric,
it yields a contradiction.

If , then i uniformly in any
compact set of R’)(0). Then uo(y) satisfies

in

as

where p E R and 8 (0) is the Dirac measure. For any ro &#x3E; 0,

Thus either vo (y) is regular at 0 or - as y ( - +oo. Since
and vo(y) = a log )y) +0(1) as jyj - for some

a E R, we have 2a - b  -2, i.e. IYI-be2vo(y) = 0(1)IYI-2 as Iyl - +00.
Hence, we can apply the method of moving planes as in [CL] and [CLn] to
prove vo (y) is radially symmetric with respect to the origin, which obviously
yields a contradiction. Hence the uniformly asymptotic symmetry of un is

proved.
To finish the proof of Theorem 1.3, we set

and,

As in (3.19), we have
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For any - &#x3E; 0, let R = be large such that

holds for r &#x3E; R. This immediately follows from the uniformly asymptotic
symmetry of un and the assumption on K. Let rn satisfy Fn (rn ) - 7r(2 2013~).
Suppose JJR2 K(x)e2Unex)dx  (2 - b) first. Then we can follow
the same proof as Step 5 in Theorem 1.2 to obtain

where F(oo) == fR2 K(x)e2Unex)dx. Obviously, the above yields
F(oo) &#x3E; 2n(2 - b), a contradiction.

Suppose fR2 &#x3E; 27r(2 - b). Then by (3.23), we
have the reverse inequality

for

for

Integrating the above and letting n first and then 8 - 0, we have

which implies

Obviously, it yields a contradition. Hence the boundedness of un in 

is proved.
To prove (1.9), we may assume un 2013~ uo in for any p &#x3E; 1.

Obviously, uo satisfies (1.1) and has a finite total curvature. In particular,

Hence, there exists Ro &#x3E; 0, So &#x3E; 0 and no such that

for all r &#x3E; Ro and n &#x3E; no. Integratiang ( 1.1 ), we have



45

for all  ~- and where Thus,

Applying the Hamack inequality, we have

for r &#x3E; Ro and n &#x3E; no where C1 and C2 are constants independent of n and r.
In particular,

could be arbitraily small provided that r is large. Thus, (1.9) follows immedi-
ately. And the proof of Theorem 1.3 is finished. D
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