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Existence and Regularity of Minima for Integral Functionals
Noncoercive in the Energy Space

LUCIO BOCCARDO - LUIGI ORSINA

Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)
Vol. XXV (1997), pp. 95-130

Chi cerca, trova; chi ricerca, ritrova.
Ennio De Giorgi

1. - Introduction and statement of results

In this paper we are interested in the existence and regularity of minima
for functionals whose model is

where Q is a bounded, open subset of a &#x3E; 0, p &#x3E; 1, and f belongs to
L’(Q) for some r &#x3E; 1.

This functional, which is clearly well defined thanks to Sobolev embedding
if r &#x3E; (p*)’, is however non coercive on there exists a function f,
and a sequence {un } whose norm diverges in W6’ (Q), such that tends
to -oo (see Example 3.3).

Thus, even if J is lower semicontinuous on W6’ (Q) as a consequence of
the De Giorgi theorem, the lack of coerciveness implies that J may not attain
its minimum on even in the case in which J is bounded from below

(see Example 3.2).
The structure of the functional has however enough properties in order to

prove that if f belongs to with r &#x3E; [p*(1 - c~)]~, then J (suitably
extended) is coercive on W6’ (S2) for some q  p depending on a (see Theo-
rem 2.1, below). Thus, J attains its minimum on this larger space. Our aim is
to prove some regularity results for these minima, depending on the summability
of f.

More precisely, we will prove that if f is regular enough, then any minimum
is bounded, so that (as a consequence of the structure of the functional) it
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belongs to (see Theorem 1.2). If we "decrease" the summability
of f, then the minima are no longer bounded, but they still belong to the

"energy space" Finally, there is a range of summability for f such
that the minima are neither bounded, nor in Wo’p(Q) (see Theorem 1.4).

We will also prove some results concerning the regularity of the minima
if the datum f belongs to Marcinkiewicz spaces, and a result of existence of
solutions for a nonlinear elliptic equation whose model is the Euler equation of
the functional J.

Let us make our assumptions more precise.
Let Q be a bounded, open subset of JRN, N ? 2.
Let p be a real number such that

(see Example 3.4, below, for some comments about these bounds), and let p’
be the Holder conjugate exponent of p (i.e., 1 + p, = 1).p p

Let Caratheodory function (that is, a (., s) is measurable
on Q for every s in R, and a (x, ~) is continuous on R for almost every x in Q)
such that

for almost every x in Q and for every s in R, where a, ,Bo and ~81 are positive
constants. We furthermore suppose that

(see Example 3.4 and Section 4.2, below, for some comments about these

bounds). Let j : R be a convex function such that j (o) = 0, and

for every ~ in where ~82 and ~83 are positive constants.
Examples of functions a and j are

where b is a measurable function on S2 such that

with ~84 and ~BS two positive constants.
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If 1  p  N, we denote by p* = the Sobolev embedding exponent.
Let f be a function in with

let v in W6’ (0), and define

By the assumptions on a, j and f, J turns out to be defined on the whole

W6’ (Q). We extend the definition of J to a larger space, namely W6’ (Q),
with q =  p, in the following way

If k &#x3E; 0, define

If u : S2 ~ R is a Lebesgue measurable function, we define

If E is a Lebesgue measurable subset of JRN, we denote by m(E) its

N-dimensional Lebesgue measure.
Throughout this paper, c denotes a nonnegative constant that depends on

the data of the problem, and whose value may vary from line to line.
Our results are the following.

THEOREM 1.1. Let q - and let f be a function in Lr (Q), with r as

in (1.6). Then there exists a minimum u of I on 

This result follows from a result of coerciveness and weak lower semicon-

tinuity for I on whose proof will be given in Section 2.
Once we have proved the existence of a minimum u, we can give some

regularity results, depending on the summability of f.
We begin with conditions on f which yield bounded minima.

THEOREM 1.2. Suppose that f belongs to with r &#x3E; li. Then any

minimum u of I on belongs to f1 thus J attains its

minimum on 
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REMARK 1.3. Observe that the condition on r does not depend on a. In
other words, whatever is the value of a (between 0 and -4), any minimum is
bounded. The main step of the proof of the previous result is the L°° (S2) part.
Indeed, once we have that a minimum belongs to then the fact that

it is in W§’~(Q) is easily seen. Moreover, using again the fact that u belongs
to L°° (S2), one can repeat the proof of Theorem 3.1 of [13] in order to obtain
the De Giorgi Holder continuity result (see [ 11 ) ) for u.

We give now conditions on f which yield unbounded minima.

THEOREM 1.4. Suppose that u is a minimum of I on and that f
belongs to with [ p* ( 1 - a))’  r  1f;. Then the following holds:
a) If i then u belongs to and to with

Thus, J attains its minimum on 

b) If ( p* ( 1 - a))’  r  ( I+Ctp )’, then u belongs to w~ 1 1 p (0), with

REMARK 1.5. The result of a) is somewhat surprising: even if the minima
are not bounded, we still have that they belong to Wo ’ P ( SZ ) . The 

regularity result will be proved combining the information that u belongs to
with the fact that u is a minimum.

REMARK 1.6. We observe that p* = s, so that there is continuity with
respect to the regularity of u in the two cases above. Moreover, we have
p = p for r = ( 1-+’~*a- )’ . If r tends to ~, then s tends to +00.

REMARK 1.7. As a consequence of Theorem 1.4, if r = p we have that
any minimum u belongs to and to for every s  Indeed,

~ 

N 

any function in L P (Q) can be seen as a function in for any rl  Ii,
so that the result of Theorem 1.4, a), applies. 

If a tends to -}, both ( 1- a- )’ and [ p * ( 1 - a ) ]’ converge to ~, so that
Theorem 1.4 cannot be applied if a = 1,.

REMARK 1.8. The results of this paper are related with the results of [6],
where the authors and A. Dall’ Aglio studied the existence and regularity of
solutions for an elliptic boundary value problem whose model is
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with b(x) as in (1.5), and a  4. The study of such equations also presents
the difficulty that the elliptic operator is not coercive on However, the

simpler structure of equation (1.9) with respect to the Euler equation for I (see
Section 7), allows to prove the existence of a solution u of (1.9) also for f in
Lr (S2), with r  [2* ( 1 - a)]’: thus, in particular, for data such that J is not
defined on 

The plan of the paper is the following: in Section 2 we will prove that I

has a minimum on while Section 3 will contain some examples and
counterexamples. Section 4 and Section 5 will be devoted to the proof of
Theorem 1.2 and Theorem 1.4, respectively. In Section 6 we will state and

prove regularity results on the minima of I depending on the summability of f
in some Marcinkiewicz space. Finally, Section 7 will be devoted to the proof
of an existence result for an equation which is a generalized form of the Euler
equation for the functional 1.

2. - Existence of a minimum

In order to prove that there exists a minimum of I on Wo ’ q ( S2 ) , with

q = Np(1-a) ~ we are going to prove that I is both coercive and weakly lower
semicontinuous.

THEOREM 2.1. Let q - Suppose that f belongs to Lr (S2), with

r 2: [ p* ( 1- a)]’. 
PROOF. We begin with the coerciveness of I, that is, we want to prove that

for every M in R the set EM = {v e M} is bounded. Since

for every u in we have

due to the assumption (1.6) on r and to the fact that q * = ~*(1 2013c~), we have
that if u belongs to then

For these u, we have by (1.2), (1.4), and Holder inequality,
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Since q is such that the preceding inequality becomes

which implies, by Sobolev embedding,

If the norm of u in is greater than one, this implies

so that, by definition of q,

Since r &#x3E; (q *)’, one has, again by Sobolev embedding,

Hence,

for every u in of norm greater than 1. Since a  p, implies p(1- a) &#x3E; 1,
then I (u) &#x3E; M if

and the norm of u in is large enough. Thus, there exists R = R(M)
such that EM is contained in the ball of of radius R; hence EM is
bounded.

Now we turn to the weak lower semicontinuity of I on 
Since q * = /?*(l2013c~), the assumption (1.6) on r and the Sobolev embedding

imply that the application

is weakly continuous on On the other hand, the term

is weakly lower semicontinuous on I since the assumptions on a and j
allow to apply the De Giorgi lower semicontinuity theorem for integral func-
tionals (see [10]). 0
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By standard results (see for example [9]), we thus have that there exists
the minimum of I on Wo’q (Q); that is, there exists u in Wo’q (Q) such that

Since I (v) = J (v) on then I (u )  I (o) = 0, and so

by assumption (1.6) on r, and since q * = p* (I - a). We claim that this implies
I(Tk(u))  -f-oo for every k &#x3E; 0. Indeed, the assumption j(O) = 0, and the
fact that fs-2 f Tk (u) dx is finite being f at least in imply

so that, by (2.2),

Thus, we can compare I (u) with I(Tk(u)). This yields, after straightforward
calculations, 

~

where Ak is as in (1.8). This estimate will play a fundamental role in the

sequel.

REMARK 2.2. Starting from (2.3), and using (1.2) and (1.4), it is easy to
obtain the following estimate:

Thus, even though the minimum may not belong to the "energy space" 
this is the case for the truncates of u. This property is also enjoyed by the so-
lutions of nonlinear elliptic equations with measure data (see, for example, [2]).
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3. - Examples

In this section we are going to give some examples and counterexamples,
in order to explain which kind of problems can arise when studying these
functionals.

EXAMPLE 3.1. Uniqueness of minima for the model case.
Let p = 2, and let us consider the model functional

with 0  a  4, and f ’ a nonnegative function in r &#x3E; [2*(1 - 
Let I be the extension of J to Wo’q (Q), with q = 2N(1-a) given by (1-7).

Then, as we have shown in the previous section, there exists

If we define

it is then clear, by definition of I, that

Furthermore, observe that since f2 f v dx is always finite on Wo’q (Q) by the
assumptions on q and on the summability of f, then

Let now

so that g (h (s ) ) = s. If v belongs to F, then

and if w belongs to then
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so that the application G : F -~ defined by v « g (v) is both well
defined and bijective.

Now we change variables and consider the new functional

1

Since h (s ) grows as and since  2 due to the assumption a  1
then L turns out to be weakly lower semicontinuous and coercive on 
Hence, there exists the minimum of L on Since G is bijective, we
obviously have 

-

Any function w that realizes the minimum of L is also a solution of the Euler
equation for L, that is, of the problem

where

Since f is nonnegative, as is h’ (s+), then w is a nonnegative function. Since

h’(s+) is concave, it is well known (see for example [ 1 ], Lemma 3.3) that w
is the unique positive solution of (3.1).

Hence, w is the unique minimum of L on This implies that

u = h(w) is the unique minimum of I on Thus, at least in the model
example, we have proved a uniqueness result for the minimum point of I. In
the case of elliptic equations like (1.9), the uniqueness of solutions has been
proved in [16].

In [8] it has been proved that if w is a solution of (3.1), and if f belongs to
with r &#x3E; ~, then w belongs to If we consider now u = h(w),

the minimum of I, we easily obtain by the definition of h that also u belongs
to L’ (Q). Thus, since u is the minimum of I, we have

since f belongs at least to L 1 (Q). The latter inequality then implies

so thar u belongs to Hence, we have proved (by means of a change of
variable, and in the model case) that the minimum u of I belongs to Ho (S2) n
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L°° (SZ) if f belongs to with r &#x3E; ~. This explains the result of
Theorem 1.2.

Using other results of [8], and performing again a change of variable, it is

possible to obtain for the minimum u of I the same results of Theorem 1.4.

EXAMPLE 3.2. The infimum may not be achieved.
If f belongs to with r &#x3E; [p* (I - a)], then the functional J is

bounded from below on Indeed, since on we have that J
coincides with I, defined in (1.7), then

by (2.1 ). If, moreover, f belongs to Lr (S2), with r = ( 1 pa ) ~, then the
results of Theorem 1.2, and Theorem 1.4, a), state that J attains its minimum

on 

Let now f belong to with r  r. The result of Theorem 1.4, b),
states that the minimum u of I does not belong to Wo ’ p ( S2 ) .

We are going to give an example in which we show that, in this case, the
infimum of J on is not achieved.

Let p = 2, let S2 = f x e Ixl [  1 ~, let p = lxi, and let

with c a positive constant to be chosen later. It is easy to see that f belongs
to L’ (0) for every r  r = ( 1 +2a ) ~, but is not in A straightforward
calculation implies that it is possible to choose c such that the function

is a solution of

with h as in Example 3.1. Since w is positive, then, as stated in Example 3.1,
w is the unique solution of the above problem, so that u = h (w) is the unique
minimum point on of the functional I, which is the extension, as

in (1.7), of the functional

Performing the calculations, we get
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Such a function does not belong to Let n in N, and consider the
function

which belongs to We then have, by straightforward calculations,

Thus,

but the infimum is not achieved since the unique minimum point u of I does
not belong to 

EXAMPLE 3.3. I may be unbounded from below.
If f belongs to with ( p*)’  r  [ p* ( 1- a)]’, then the functional I

may be unbounded from below on Wo’~(~), with q = *

As before, let p = 2, let S2 = {x E  1 }, let p = I x 1, and let

with c a positive constant to be chosen later. Then f does not belong to 
r = [2* (1 - a)]’. Moreover, let

Let n in N, and let un - Tn (u ), which belongs to Hol (0). If rn in (0, 1) is
such that u(rn) = n, we then have

where c~N is the (N - I)-dimensional measure of the unit sphere in On
the other hand,

and it is easily seen that we have

terms bounded with respect to n .
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y2 .

Thus, if c &#x3E; y2 , we have proved that there exists a positive constant cl such that2

terms bounded with respect to n .

Since rn converges to zero, I is not bounded from below on Observe

that since the norm of un tends to infinity in hence in Hh (~2), then J
is not coercive on 

EXAMPLE 3.4. On the bounds on p and a.

If p &#x3E; N 2: 1, and if a is such that (1.3) holds true, then J is coercive

on W 0 1’p (SZ) for every f in L 1 (Q). Indeed, since for any function in 
we have, by Sobolev embedding,

J is well defined on with f in L’(0), and it is easy to see that
we have

for every u in of norm greater than 1. Thus, for these u, we have.

and this implies the coerciveness since p ( 1 - a) &#x3E; 1 due to assumption (1.3).
Thus, J has a minimum on 

The case p = N will be dealt with at the end of Section 4.1.

If we take a = 0, a case which corresponds to "nondegenerate" functionals,
then the results of Theorem 1.2 and 1.4, a) become the well known summability
results for minima of coercive functionals on (see for example [14]
and [13] for the result, and [7] for the result). If a = 0, the
case of Theorem 1.4, b), is empty.

The case a &#x3E; -L will be studied in Section 4.2.pi

4. - Bounded minima

4.1. - Proof of Theorem 1.2

We begin with a technical result whose proof, due to R. Mammoliti, can
be found in the Appendix of [6].
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LEMMA 4. l. Let 1  a  N, and let w be a function in (Q) such that,
for k greater than some ko,

where Ak is as in (1.8), 8 &#x3E; 0, and 0 :::; 8  1. Then the norm of w in 
bounded by a constant which depends on c, 8, T, N, 8, ko, and m(2).

The previous result is analogous to the result of Lemma 5.3 in Chapter 2
of [14]. This latter result, however, holds under slightly more general assump-
tions, but gives an estimate of u in depending on the norm of u in

L1(Q). On the other hand, Lemma 4.1 gives an estimate depending only on
the various parameters, but not on the norm of u in any Lebesgue space.

PROOF or THEOREM 1.2. Let p  p be a real number. For k &#x3E; 0 we have,
using the Holder inequality,

where Ak is as in (1.8). By the assumptions on a and j, and by (2.4), we have

Suppose that p is such that

Then, by Holder and Sobolev inequalities,

Thus we have, using (4.2),
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so that, dividing by

and then raising to the power we get

Suppose furthermore that there exists 8 in (0, 1] such that

If k &#x3E; 1 we then have, again by Holder inequality and Sobolev embedding,

Hence,

Since, by (4.5), we have , we thus have
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Substituting in (4.4), we have

Using the Young inequality with exponents and on the second

term of the right hand side, we have

so that we have

As it can be seen by means of straightforward calculations, the assumptions on
r and a, and the definition of 0, imply that I i I

Moreover, since u belongs to with q - (hence, in particularW6, (Q) I p

to L 1 (S2)), we have that m(Ak) tends to zero as k tends to infinity. Thus, there
exists ko such that, ko, we have

and so (4.6) implies that
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Now we apply Lemma 4.1 with

It is easy to see that E &#x3E; 0 since r &#x3E; N, and that 8 belongs to (0, 1) since
p

0  a  -4. Thus, u belongs to p
It only remains to prove that there exists p  p such that both (4.3)

and (4.5) hold. This is true if there exists p  p such that

The request 0  9 s 1 is equivalent to p Np(1-a). Since  p forP P

every 1  p  N, if p s then p  p. Thus, we only have to check
that

for every r &#x3E; ~, for every a in (0, -4), and for every p in (1, N). This is

easily seen to be true. Thus, there exists p such that both (4.3) and (4.5) hold,
and so the L~(~) estimate holds true.

The estimate implies, by (1.2), (1.4) and (2.2),

and so u belongs to The fact that u is a minimum of J follows from
the fact that

since I coincides with J on Wo ’ p (S2) . 0

REMARK 4.2. If p = N, then the proof of the preceding theorem holds
true. Indeed, also in this case there exists a real number p  N which satisfies
conditions (4.3) and (4.5) with 0  8 _ 1, since (4.7) holds true for p = N
provided that r &#x3E; y = 1 and that a  11V N
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Let now f be a function in with r &#x3E; 1, and let a (x , s ) and j (~ )
satisfy (1.2), (1.4) with p = N and 0  a  §. Define, for v in 

and let q be a real number such that

Then, reasoning as in the proof of Theorem 2.1, the extension I of J on 
given by (1.7) turns out to be both coercive and weakly lower semicontinuous.

Thus, there exists the minimum of I ; by the proof of Theorem 1.2 and by
the above remarks, any minimum is in L’ (0), hence in W~, (0). We thus
have the following theorem.

THEOREM 4.3. Let p = N, and let f in L’(0), with r &#x3E; 1. Then any minimum

u of I belongs to I N (Q) n L°° (SZ).
Observe that for f in L 1 (0), J is not defined on since there

exist unbounded functions in W6, (Q).

4.2. - Another approach

The method of extending J to a functional I defined on a larger space
is only one of the possible methods of recovering some coerciveness for the
problem we are studying. Another one is the following. Consider, for v in

wci,p (f2), for n in N and for f in r &#x3E; (p*)’, the functional

Since, by (1.2), we have

then Jn turns out to be coercive and weakly lower semicontinuous on W~, (Q).
Thus, there exists un in such that

If f belongs to with r &#x3E; !i, we have the following result for thep

sequence { u n { . 
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THEOREM 4.4. Let f in r &#x3E; N, and let {un } be a sequence of minimap

of Jn. If 0  a  1, then I u, I is bounded in rl L°° (S2) and converges, upP
to subsequences, to a minimum u of J.

PROOF. Choosing v = Tk (un ) in (4.9) we get, after straightforward passages,
and using the assumptions on a and j,

where

Since a(x, Tn (s)) satisfies (4.8), and since f belongs to with r &#x3E; 2y,p
then un belongs to L’(0) (see, for example, [14]). We thus have, since

T’n ( II un II L°° (S2) ) - II un 

Using again the fact that f belongs to with r &#x3E; p , and a well known
result of G. Stampacchia (see [17]), from (4.10) it follows that there exists

0"0 &#x3E; 0, independent of n, such that

Since a  -/1, we have p pl  1, so that (4.11) implies that {un} is bounded in

Once we have proved that {un } is bounded in L°° (S2), the bound
is easily obtained as in the proof of Theorem 1.2. Thus, up to subsequences,
still denoted by {un }, un converges weakly in to some function u.

We claim that u is a minimum of J on Indeed, if c is such that

c, and if n &#x3E; c, we clearly have Tn (un) = un, and so, by (4.9)

Since J is weakly lower semicontinuous on by De Giorgi theorem
and by the assumptions on f, and since converges to J ( v ) for every v
in Wo ’ p ( S2 ) as n tends to infinity, we have

for every v in Thus, u is a minimum of J on 
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REMARK 4.5. We would like to point out the differences between The-
orem 1.2 and Theorem 4.4. The former states that any minimum of I on

W6’ (Q) is in W6’ (Q) n L 00 (Q), while the latter yields the existence of a min-
imum of J in On the other hand, the proof of Theorem 4.4
is simpler than the one of Theorem 1.2.

REMARK 4.6. If a = -4, then (4.11) becomesp

1 
,

If ~o we obtain again that { u n } is bounded in Thus, the

result of Theorem 4.4 holds true also for a = 1, under the condition that the
norm of f is small. This condition is not a technical one: we are going to
give a counterexample in which we prove that if -4, and if the norm of f
in is large, then {un } is not bounded in 

Let p = 2, a  1, and define, for v in and for À &#x3E; 0,

and

Since Jn is coercive and weakly lower semicontinuous on Ho (Q), then there
exists a minimum un of Jn. Defining, for s &#x3E; 0,

and performing the same change of variable in in as in Example 3.1, we obtain
that vn = gn (un) is a minimum on Ho (Q) of

and so is a solution of the boundary value problem

where
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Observe that since both A and h’ (s+) are nonnegative, so is vn : thus, h’ (vj) =
Let now h be greater than f, ’where ~.1 is the first eigenvalue of the

laplacian on S2. Suppose by contradiction that {un } is bounded in Then,
due to the definition of gn, we have that vn is bounded in and so

for some positive constant c. Thus, by standard estimates, is bounded in

Ho (Q), and so, up to subsequences, it weakly converges to some nonnegative
function v, which is a solution of the boundary value problem

where h’(s) = [(1 - a)s+ + 1] la~ . Observe that v # 0 since h’(0) = 1. We
claim that, under our conditions on k, problem (4.12) has no solutions. Indeed,
taking the first eigenfunction of the laplacian, as test function in (4.12), we
obtain 

I I I

Since yJj is strictly positive on S2 by the maximum principle, and since the
assumptions on h and a imply that

we have

a contradiction. Thus v does not exists, and so {un} is not bounded in 

5. - Summability of unbounded minima

This section will be devoted to the proof of Theorem 1.4.

PROOF OF THEOREM 1.4. If r = [p*(l 2013 a)]’ then p = q and s = q*, and
so the result is true since u belongs to Wo’~ (S2). Thus we only have to prove
the result if r &#x3E; [p*(1 - a)]’ = (q*)’.

From (2.4), and using the assumptions on a and j we deduce, for every

where Ak is as in (1.8). We will now follow the ideas of [7], Lemma 2.1.
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Let h be a positive real number, and let M be an integer; multiplying the
preceding inequality by (k + 2)Àp-1, and summing on k ranging from 0 to M,
we get

Observing that

where Bj is as in (1.8), and exchanging the summation order, we obtain

Since there exist two constants Ql and a2, independent of M, such that

the preceding inequality becomes

Recalling the definition of Bj, it is easily seen that

so that
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We would like to let M tend to infinity, but this is possible only if

Since f belongs to if we suppose that u belongs to L’~ (S2) for some

1, then (5.2) holds true if h &#x3E; 0 is such that

Let qo = q*. Since u belongs to then u belongs to Define

since r &#x3E; (q*)’. Thus, (5.2) holds for h = Letting M tend to infinity
in (5 .1 ), we get

The left hand side can be rewritten as follows, using the Sobolev embedding:

Define, for t7 in R,

so that (5.3) yields, since

Moreover,
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Let a = and observe that 0  cr  1 since r  If. Since
pr p

we have

with

Set 1]1 1 = y(t7o). Since i7o = q *  s (where s is as in the statement), we
have i7o  1] 1  s, as straightforward calculations imply. Thus, from (5.4) it
follows that u belongs to L’~1 (S2), an improvement with respect to the "basic"
information u E L’~o (S2). Since 1]1 &#x3E; we have &#x3E; 0, and (5.2) holds
true with À1 = Thus, it is possible to pass to the limit in (5 .1 ) as M
tends to infinity obtaining (5.3) with X = À1. The same passages done before
yield the following inequality

with c(i7) as in (5.5). Now we go on: define = so that (5.2) holds
true with Xk = By the properties of y(i7), we have that ?7k  ?7k+l 1  s,

and

Since is increasing, and converges to s as k tends to infinity, we have that
is bounded by some constant c. Hence

It is then easy to see that this implies

Letting k tend to infinity, we obtain, since  1, and since 17 k converges to s,

and this implies the Lebesgue regularity result on u.
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As far as the regularity of the gradient is concerned, we start from (5.3),
which now holds for hp - r - 1. If h is such that À - a 2: 0, then (5.3)
implies

so that u belongs to It can be easily checked that À 2: a if and only
if r &#x3E; ( 1~ ) , so that a) is proved. The fact that u is a minimum of J on

Wo ’ p ( S2 ) then follows as in the proof of Theorem 1.2.
For b), we use again (5.3). Now h  a, since r  ( ~ ) ~. We have, for

p  p, and using Holder inequality, 

Now we choose p so that

which implies that p is as in the statement. Thus, u belongs to Wo’’° (S2). D

6. - Marcinkiewicz regularity results

In this section we are going to consider how the regularity of u and Vu
depends on the summability of f in some Marcinkiewicz space. Throughout
this Section we will assume the following on a:

where fl6 is a positive constant, a satisfies (1.3), and b is a measurable function
on Q such that (1.5) holds.

Our estimates in Marcinkiewicz spaces will be obtained using a similar
technique to the one used by G. Stampacchia (see [17]).

We begin with the following technical lemma, which is very similar to the
result of [17], Lemme 4.1.
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LEMMA 6.1. Let 1/1 : [0, - [0, +00) be a non increasing function, and
suppose that

where c is a positive constant, and A, B, C and D are such that

Then there exists k &#x3E; 0, and a positive constant c such that

PROOF. Define and Then (6.2) implies

Choosing h = 2k, one has

Since, by our assumptions, ~, ~- A - ~, B = D, and À - ÀC = D, the preceding
inequality becomes 

- -

If p (k)  I for 0, k-~‘, and so the result is proved with
k = 1 and c = 1. Thus, suppose that there exists ko &#x3E; 0 such that p (ko) &#x3E; 1.

We claim that, for every n in N we have

To prove this claim, we proceed by induction on n. We have, since C  B  1,
and since p (ko ) &#x3E; 1,
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Suppose now that (6.3) holds true for n : we have (always because C  B  1)

which is (6.3) for n + 1. Thus, (6.3) holds for every n in N. Since B  1, and
p (ko) &#x3E; 1, from (6.3) it follows that

and so, recalling the definition of p,

Let now k be fixed, and greater than ko. Then there exist k’ E [ko, 2ko) and n
in N such that k = 2n k’, and so 2n ko  k  2n+ 1 ko. Since 1/1 is non increasing,
we thus have, by (6.4),

so that the lemma is proved choosing k = ko and c = 2~M. D

DEFINITION 6.2. Let r be a positive number. The Marcinkiewicz space
is the set of all measurable functions f : S2 ~ R such that

for every t &#x3E; 0, and for some constant c &#x3E; 0.

If S2 has finite measure, then

for every r &#x3E; 1, for every 0  ~  r - 1. We recall that if g E Mr (Q) and
E c Q is measurable, then the following inequality holds:

We can now state and prove our regularity result.
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THEOREM 6.3. Let f be in with [p*(l - a)]’  r  p . Then anyp
minimum u of I belongs to Ms (Q), with s as in the statement of Theorem 1.4.
Moreover:

a) if

then u belongs to 1 p (Q);
b) if

then IV u with p as in the statement of Theorem 1.4.

REMARK 6.4. Observe that if r = (y~-) , then p = p, so that IV u belongs
to MP (Q).

PROOF. Starting from (2.4), and reasoning as at the beginning of the proof
of Theorem 2.1, we get, if q - , so = q*, , N-ap , p-q 

,

Using the fact that f belongs to and that r &#x3E; (q*)’, we get, using (6.6)
and the Holder and Sobolev inequalities,

Thus one obtains

Dividing by and then raising to the power we have
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which is (4.4) with p = q = This choice of p corresponds to () = 1
in (4.5). Thus, performing the same calculations as in the proof of Theorem 1.2,
we get

Moreover, by Sobolev embedding, and if h &#x3E; k,

Hence,

We can now apply Lemma 6.1, with

and = m(Ak). It is easy to see that A  D if and only if a  -~, and
that C  B  1 if and only if r  ~. Moreover, D B - y~. Applying
Lemma 6.1 we thus obtain

with À = Substituting the values of A, B and D, we obtain À =

and so u belongs to N-rp 
Now we turn to gradient estimates. If

then any function f in can be seen, thanks to (6.5), as a function in
Lrl (Q), with

Thus, Theorem 1.4, a), states that u belongs to
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Suppose now that r is such that

Let k &#x3E; 0 and choose v = u - as test function in the definition
of minimum. Setting Ak and Bk as in (1.8), we obtain, after straightforward
calculations, and observing that v = u k, that o v = 0 on Bk, and
that ~v = Vu on 

Thus,

We have

Since v = u - sgn(u) on Ak+l, from the previous identity we easily obtain that
there exists a positive constant c such that

Thus, (6.7) becomes

Since on we have, by the assumptions on b,

Using (2.4) we thus obtain
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Using the fact that f belongs to and that u belongs to we

obtain, thanks to (6.6),

Summing on k ranging from 0 to h, and using the fact that there exists a

positive constant c, independent of h, such that

we have

which then implies, by (1.4), and by the assumption (1.5) on b, that there exists
h o &#x3E; 0 such that

Starting from this inequality, we work as in [2], obtaining

As a consequence,

Since the assumption r  ~ a ~ ~ 
I 

and the definition of s imply

minimizing the right hand side with respect to h yields

where or = 20132013-2013. . Easy calculations yield that a = p, and so the result isap r’ 
S

proved. D

REMARK 6.5. Observe that the assumption (6.1) on a has only been used
in the proof of the MP(Q) regularity of 
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7. - Euler equations

Let f in L’(0), with r a [p*(l 2013 Qf)]~ and let us consider the model
functional 

1 ~ I r-7 I n ~

defined on Wo ’ P ( S2 ) , with 0  a  7, and b a measurable function that
P

satisfies (1.5). Let I be the extension, given by (1.7), of J on w¿,q (Q), with
q = ~~J~~, and let u be a minimum of I on It is then easy to see

that u is a solution of the following elliptic boundary value problem

in the sense that

for every cp in Cj (Q).
Problem (7.1 ) can be seen as a particular case of a more general problem,

namely 
-

For these problems, various existence results have been given, under different
assumptions on B and ao. For example, if B is bounded, if cro &#x3E; 0, and if f
belongs to with r &#x3E; , existence results for solutions in n

p

L°(Q) have been proved in [5] (see also the references quoted therein). On
the other hand, if o-o = 0, and if B(x, s ) has the same sign as s, then existence
results in for f in have been proved in [3]. However,
example (7.1) is different from these cases, since cro = 0, and B has the "bad"
sign with respect to s. Moreover, all previously known existence results give
solutions in I p while, in our case, the solution belongs in general to a
larger space.

Anyway, the existence result for (7.1) depends on the fact that we are

taking into account the Euler equation of I, a functional for which we have
proved the existence of a critical point. If we slightly change the problem, and
consider the equation

a, then we do no longer have an Euler equation of some functional,
and it is no longer clear whether there exists a solution or not.
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We are going to prove that under some conditions on a and on f, the
previous problem has a solution.

Let us state the (more general) assumptions we make.
Let be a Caratheodory function (that is, ~(jc,’, -) is

continuous on R x R N for almost every x in S2, and A(-, s, ~) is measurable
on S2 for every (s , ~ ) in R x such that

for almost every x in Q, for every s in R, for every ç, ’1 in R N with § # ’1,
where 

1

yo and yl are two positive constants, and h is a nonnegative function in LP’ (~2).
be a Caratheodory function (that is, B(x, ~, ~) is

continuous on R x for almost every x in S2, and B(., s , ~ ) is measurable
on Q for every (s , ~ ) in R x R N), such that

for almost every x in Q, for every (s, ~ ) in I1~ x R , where y2 is a positive
constant.

Furthermore, let us suppose that

for almost every x in Q, for every (s, ~ ) in I1~ x where y3 is a positive
constant.

EXAMPLE 7.1. The functions

with a  1, satisfy the above assumptions with yo = yl - 1, k =- 0, y2 = cr
and y3 = 1 - Indeed,

Our result is the following.
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THEOREM 7.2. Let A and B be such that (7.2)-(7.7) hold true. Let f be a
function in r &#x3E; ti. Then there exists a solution u in f1 of

P

in the sense that

for every cp in 
1

REMARK 7.3. Thanks to the boundedness result of the previous theorem,
and to the assumptions on A and B, the De Giorgi Holder continuity theorem
(see [11]) still holds for the solutions of (7.8) (see [12]).

PROOF. Let us consider a sequence of approximating problems. For n
in N, let

so that Bn is a bounded function. Moreover, by (7.6), we have

so that (7.7) implies

Since Bn is bounded, the assumptions (7.2), (7.3) and (7.4) imply (see for
example [15]) that there exists a solution u n in of

Let k &#x3E; 0. Choosing Gk (un ) as test function in (7.10), and setting
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we obtain

Since on Ak,n we have

then (using again (7.6)),

Thus, we get

Using (7.9), we obtain

which is exactly (2.4) for u n in the case and j (~) = 
Thus, using the assumption on f, and reasoning as in the proof of Theorem 1.2,
we obtain

for some positive constant c independent of n.
We then choose Un as test function in (7.10). Using again (7.9), we get

since f belongs at least to L 1 (Q). Thus,

and so {un } is bounded in thus, up to a subsequence still denoted

by {un }, un converges, weakly in 1 weakly* in L’(Q), and almost

everywhere in SZ, to some function u which belongs to We
can then continue as in [4]: choosing as test function
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with k suitably chosen, we obtain the strong convergence of u n to u in W6, (Q).
This implies that it is possible to pass to the limit in the approximate equa-
tions (7.10), so to obtain a solution of (7.8). 0
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