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Hardy’s Inequalities Revisited

HAÏM BREZIS - MOSHE MARCUS

Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)
Vol. XXV (1997), pp. 217-237

Dedicated with emotion to the memory of Ennio De Giorgi

0. - Introduction

A well-known inequality due to Hardy asserts that

for all u E H (0, 1) with u (0) = 0. This is equivalent to the statement,

where ~(t) = min(t, 1-t). Inequality (0.1) is sharp; to verify this fact it suffices
to consider the functions u(t) - tCX, a &#x3E; 1/2. The constant 1/4 remains the
best constant in (0.1) even if the inequality is restricted to the space HJ (0, 1)
(see e.g. Lemma 1.1 ). It is also known that the constant 1/4 in (o.1 ) is not

achieved. In the Appendix (Lemma A. I) we shall present a more precise form
of this statement, namely,

for all u E H 1 (o, 1 ) with u (0) = 0. We shall also show that (see Lemma A.2),

for every u E H (0, 1) such that u (o) - 0, where X (t ) : := ( 1 - log t ) -1. The

inequality is in some sense optimal: the weight function cannot be replaced by
a lower power of X and the constant on the right hand side is sharp.

Part of this work was done during visits of H. Brezis to the Technion and M. Marcus to the
University Paris VI with the support of the CNRS (PICS 296) and the Technion.
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If Q is a bounded domain in R’ with Lipschitz boundary, it is known that
the following extension of Hardy’s inequality is valid,

where it is a positive constant and 8 (x ) = = dist (x, a S2) . The best
constant in (0.5), i.e.

depends on S2. If possesses a tangent plane at least at one point, then
~c,c (S2)  1/4, (see [2], [5]). For convex domains = 1/4, but there are
smooth bounded domains such that  1/4 (see [6], [5]). Furthermore, it
was proved in [5] that, for smooth bounded domains, the infimum in (0.6) is
achieved if and only if  1/4.

In the present paper we study the quantity,

where S2 is a smooth (e.g. C2) bounded domain. Note that Jo = /~(~). (The
superscript in J~ will be dropped if no ambiguity results.) Clearly, the function
À ~ J~, is concave and non-increasing on R, J~, - -oo when h - +00 and

I 
= 0 where ~,1 I is the first eigenvalue of -0 on The quantity

coincides with the inverse of the weak Hardy constant as defined by Davies[2]
who showed that = 1 /4. (This is a consequence of his Theorems 2.3
and 2.5.)

Our main result is the following,
THEOREM I. For every bounded domain S2 of class C2, there exists a constant

X* = ~,* (S2) such that,

The infimum in (0.7) is achieved if and only if À &#x3E; ~.*.
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In particular we find that for every smooth domain S2 there exists a constant
h E R such that

The largest such constant is precisely k* (0), i.e.

and in view of Theorem I, this infimum is not achieved.
Davies [2] constructs some planar domains with angular points such that

their weak Hardy constant is larger than 4. In our notation this means that for
such domains, 

1

He also states the interesting conjecture that,

for every domain c R’, without any smoothness conditions. Our results
shed no light on this conjecture.

As mentioned before, there are domains for which Jo = JL(Q)  1/4 and
then À *(Q)  0. On the other hand, if S2 is convex, then JL(Q) = 1/4 so that

0. In fact we shall prove,

THEOREM II. If S2 is convex, then 
-

We do not know whether in (o.11 ) the diameter of S2 can be replaced by
the volume of Q, i.e. whether

for some universal constant a &#x3E; 0.
Theorem I presents some similarities with the study of Sobolev inequalities

in [1]. Its proof is divided into three steps:
(i) supR JÀ = 1/4 and JÀ = 1/4 for some X.

The main ingredient in the proof of the second assertion is the following
inequality,

(where {x E S2 : 8(x)  p 1) which is valid for all sufficiently small
,8 &#x3E; 0. Surprisingly the proof of (0.12) relies on inequality (0.3) rather than
on the standard inequality (o.1 ).
(ii) The infimum in (0.7) is achieved for every X &#x3E; X*.

(iii) The infimum in (0.7) is not achieved for any h  h*.

The last assertion relies on the following non-existence result.
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THEOREM III. Let Q be a bounded domain with boundary of class C2. Suppose
that u is a non-negative function in Ho (S2) f1 c (Q) which satisfies the inequality,

where 17 is a continuous, non-negative function in Q such that

Then u - 0.

The proof of Theorem I is given in Sections 1-3. Section 3 contains also a
proof of Theorem III. In Section 4 we consider extensions of the above results
to variational problems of the type (0.7) involving weighted integrals. Theorem
II is proved in Section 5. Finally, in the appendix we establish inequalities (0.3)
and (0.4) and other related one-dimensional inequalities.

1. - On sup Jx

Throughout this section we shall assume that Q is a bounded domain with
boundary of class C2. First we discuss some auxilliary results that will be
needed later on. For f3 &#x3E; 0 let,

where 8 (x ) = dist (x, 9~2). Assuming that fl is sufficiently small, say P  ~o.
for every x E Q/3 there exists a unique point := a S2 such that

8(x) - ( x - Let n : Q/3 -* (0, fJ) x E be the mapping defined by
(6(x), a(x)). This mapping is a C2 diffeomorphism and its inverse is

given by,

where n(cr) is the inward unit normal to :E at or. For 0  t let Ht denote
the mapping .) of E onto This mapping is also a C2 diffeomorphism
and its Jacobian satisfies,

where c is a constant depending only on E, flo and the choice of local coor-
dinates. Since n(a) is orthogonal to Et = E) at or it follows

that, for every integrable non-negative function f in 
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where da, dai denote surface elements on E, Et respectively. Consequently,
by (1.3),

The result of Davies [2] mentioned in the introduction, implies that

For the convenience of the reader, we provide below a simple proof in the case
that Q is a smooth domain.

LEMMA. Given positive numbers E, {3, there exists a positive function
h E Ho (0, such that,

PROOF. The inequality is invariant with respect to scaling. Therefore we

may assume that ~6=2. Choose,

with a &#x3E; 1/2. Then,

where A = f 1 (2 - t ) 2 / t 2 is independent of a. Choosing a sufficiently close to
1/2 we obtain the desired conclusion. 0

PROOF OF (1.5). Let ~6, E be positive numbers such that fl  ~o and let h
be as in the previous lemma. Put,

Then _ ~ Ih’(8(x))1 [ and consequently, by (1.4),
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while,

Clearly,

Hence, using (1.6), we obtain

This implies (1.5).
Next we wish to prove that

there exists À E R such that

Using (1.4) and the 1-d Hardy inequality (0.1), it is easy to see that if
0  0  flo then, 

.

where o ( 1 ) is a quantity which tends to zero as fi ~ 0. However for the proof
of (1.7) we need the following more precise estimate.

LEMMA 1.2. If P &#x3E; 0 is sufficiently small (depending on SZ) then,

PROOF. By (1.4),

By rescaling inequality (0.3) we obtain, for v E H 1 (o, ~B) with v (0) = 0,

Therefore, if ~ &#x3E; c, (1.9) implies (1.8).
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PROOF OF (1.7). With f3 as in Lemma 1.2, pick 0 E such that

0  ~  1, ~ --_ 1 in and 0 = 0 in Q B OP/2- If u E Ho’(Q),

with

Since

we conclude that,

where c3 is a constant depending only on f3 and 0. This inequality and ( 1.11 )
imply that,

with and, in view of (1.5), we conclude that

Put

Then (0.8) and (0.9) are valid.

2. - JÀ is achieved when À &#x3E; k*

In this section we establish,

LEMMA 2.1. Let Q be a bounded domain with boundary of class C2. Then the
infimum in (0.7) is attained for everyx &#x3E; ~,*. In fact, every minimizing sequence
converges to a limit in Ho (Q).
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PROOF. We use the same strategy as in [1]. Let be a minimizing
sequence for (0.7) normalized so that

Thus (un ) is bounded in Ho (S2) and we may assume that it converges weakly:
in Put so that

The last assertion is a consequence of the fact that (vn /6) is bounded in
and converges to zero in Using (2.1) and (2.2) we obtain,

and

Let I so that = 1 /4. Then,

and hence, by (2.2) and (2.4),

From this inequality and (2.3),

But so that,

Since J,  1 /4 and j~z (u /6)~ s 1 we conclude that f ~ (u /8 ) 2 = 1 and therefore,
by (2.3), u is a minimizer for (0.7) and ~ 0. Thus un ~ u in
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3. - J À is not achieved when h s h*

In this section we establish,

LEMMA 3.1. Let Q be a bounded domain with boundary of class C2. ~,*,
the infimum in (0.7) is not attained.

It is easy to verify the statement in the case X  X*. Indeed suppose that
for some k  h* the infimum is attained at an element u of We assume

that u is normalized so that

Then, for h  h  X* we have,

which is impossible.
The fact that the infimum in (0.7) is not achieved when k = h* requires

a more delicate argument. Observe that if (for some À) the infimum in (0.7)
is achieved by a function v then it is also achieved by I v 1. Hence there exists
u E Ho (S2), u &#x3E; 0 such that,

By the maximum principle, u &#x3E; 0 in Q. Therefore, since JÀ* = 1, the con-
clusion of the lemma is a consequence of Theorem III whose proof is given
below. The statement of the theorem is stronger than needed here, but will be
used in Section 4.

PROOF OF THEOREM III. Without loss of generality we may assume that
q &#x3E; 0 in Q. (Otherwise, replace q bey 17 + (1 + [ log 6 [) .)

Assume by contradiction that there exists a non-negative function u as

stated in the theorem and that u Q 0. By the maximum principle, u &#x3E; 0 in Q.
Let 

,

so that

Put,
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and let vs = YS o 8. Assume that s &#x3E; 1/2, so that vs E Hg (~2).
Suppose that f3 E (0, 1) is sufficiently small so that 8 and the

statement of Lemma 1.2 holds in Since I VS = 1, we have

Hence, in

and consequently,

Since A8 is bounded, assumption (0.14) implies that, for small 8, the dominant
term on the right hand side is -s (s + 1)~~X~. Therefore, for sufficiently
small ~6, independent of s for s &#x3E; 1/2,

Now, pick E &#x3E; 0 such that, for all s E ( 1 /2, 1 ),

and put := u. Then ws E and by (3.2) and (3.5) 0
in Hence,

By Lemma 1.2,

Therefore, (3.7) implies that u in for every S E (1/2, 1). Hence

6(Z()) u in 0,6 and consequently u/6 g This contradicts the

assumption that u E Hol(O) and the theorem is proved. D
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This completes the proof of Lemma 3.1 and with it the proof of Theorem I.

REMARK 3.2. Since . H JÀ is non-increasing and concave, (0.8) and (0.9)
imply that this mapping is strictly decreasing for k &#x3E; k*. Recall also that

7~ ~ -oo as ~. -~ oo. Therefore, if A  1/4, there exists a unique h = À¡t &#x3E; ~.*

such that JÀ = p and

Now Lemma 2.1 implies that, for every A  1/4, (3.8) possesses a minimizer.
Thus ÀJL is the first eigenvalue of the operator - 0 - s on Ho (Q) and this
eigenvalue tends to h* when it T 4. However Theorem I implies that the

operator - ð. - 4h- has no positive eigenfunction in Ho’(Q).
We also observe that, for it  1/4, ÀJL is a simple eigenvalue. To verify

this fact, note that if v is an eigenfunction corresponding to À JL’ then H I is also
an eigenfunction, since it is a minimizer of (3.8). Therefore, by the maximum
principle, v :A 0 in Q. If v2 are two eigenfunctions corresponding to .,,
choose c &#x3E; 0 such that V = VI - CV2 vanishes at some point of Q. Then v
cannot be an eigenfunction, so that v n 0.

4. - Inequalities with weighted integrals

In this section we study the quantity,

where S2 is a bounded domain of class CZ and p, q, 17 satisfy the following
conditions,

Under these assumptions, we have the following (partial) extension of Theorem I:

THEOREM 4.1. Assume that the weight functions in (4.1 ) are normalized so that,

Then, there exists a constant k* = X*(p, q, rJ; S2) such that,

The infimum in (4.1 ) is achieved if À &#x3E; X* and it is not achieved if À  À *.
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OPEN PROBLEM. Assuming that p, are smooth functions (say C2) in SZ,
does it follow that the infimum in (4.1) is not achieved when X = h*?

PROOF. The proof is similar to that of Theorem I. Let cro E be a point
such that p (cro) = 

STEP 1. First we show that,

We shall use the notations introduced in Section 1. Let ~o be a sufficiently
small positive number so that the statements concerning the diffeomorphism n
described in Section 1, hold in Q 130.

Given E &#x3E; 0 choose p (depending on E) such that,

Then choose a function ~ E such that,

(Of course ~ depends on p and hence on E.) Further, let g be a function in
such that,

Given positive numbers e, f3 let h be as in Lemma 1.1. In what follows we
shall assume that f3  min(f3o, p/2). Put

and u := vg. With this notation,

where c 1 is a constant depending on E (through ~ ), but is independent of ~8.
Note that, 

-

and consequently,
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In view of (4.6) we have,

Hence, by (4.8),

where c2 - ~ is independent of Further, using (1.3) and
Lemma 1.1 we obtain,

Similarly,

These inequalities and (4.9) imply that,

where c, cl , c2 are constants independent of, ~6. (Recall that c is the constant
in (1.3) which depends on flo but not on P.) Therefore, letting first P tend to
zero and then letting E tend to zero we obtain (4.5).

STEP 2. Next we claim that

This is obtained as a consequence of the following inequality extending Lemma
1.2 to the case of weighted integrals:

for all sufficiently small P &#x3E; 0 (depending on S2 , p, q ). Since,
there exists a constant C such that,
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Let a &#x3E; 0 be a constant such that,

Then,

where C’ - ~. Therefore, as in the proof of Lemma 1.2, we obtain,

Since on ~, these inequalities and (0.3) imply (4.11)
Now, using (4.11), we proceed as in the proof of (1.7). With the notation

introduced there, for every u E Ho’(0),

where = Q B 52, and cl is the maximum of q /q over Qfi/4. Further, using

where c2 is a constant depending only on 0, p and C3 = C2 maxgzi fJ/4 82/r.
Inequalities (4.14) and (4.15) imply (4.10) with h = - (C 1 -f- c3 ) /4. 

0/4

Let r be defined as in (1.13). Then, (4.5) and (4.10) imply (4.4).
STEP 3. If h &#x3E; h* the infimum in (4.1) is achieved. Furthermore, every

minimizing sequence converges to a limit in Hh (~2).
This statement can be proved by the same argument as in the proof of

Lemma 2.1. We start with a minimizing sequence {un } for (4.1), normalized
so that
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Thus is bounded in and we may assume that it converges weakly:
1. . Put vn = u n - u so that

Since q vanishes on the boundary, (4.17) implies,

Using (4.16)-(4.18) we obtain,

and

Let Jvt  À * so that J, = 1/4. Then, by (4.18) and (4.20)

From (4.19) and (4.20) we obtain,

Since J~,  1/4 and 1 we conclude that f~(u/8)2q - 1 and

therefore, by (4.19), u is a minimizer for (4.1 ) and 2013~ 0. Thus

un ~ u in 

STEP 4. If À  À *, the infimum in (4.1 ) is not achieved.

This fact is proved in the same way as in the case of non-weighted integrals. D

REMARK 4.2. As mentioned before, the question whether the infimum is
achieved when À = À *, remains open. However we have a partial result. Define,

(recall that, by (4.3), = 1) and assume that,

Then, under further restrictive smoothness conditions, the infimum in (4.1 ) is
not achieved for h = k*.

We also note that, in the special case p - q, this conclusion follows from
Theorem III, under assumption (0.14).
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5. - An inequality in convex domains

In this section we prove Theorem II in a slightly stronger form, namely,
THEOREM 5.1. Let S2 be a bounded convex domain. Then,

with X as in (3.3) and D = diam (S2).

The proof is based on an argument of [5]. First we introduce,

DEFINITION 5.2. Let Q be a domain in R n. A sequence of domains is
a normal approximating sequence for Q if it satisfies the following conditions:

and for every compact subset K of S2 there exists an integer j such that,

Note that every increasing sequence of (open) subdomains whose limit is S2
is a normal approximating sequence in the sense of this definition.

Let x’ = (xl, - - - , x,-,) denote a generic point in so that x = (x’, xn )
is a point in R". 

’

LEMMA 5.3. x’ E D, 0  Xn  A(x’)}
where D is a domain in Rn-l 

1 and A is a bounded continuous function in D. If
u E and u vanishes on Xn = 0, then

where a = SUPx’ED A (x’).

PROOF. Rescaling in (0.4) we have,

for every u E H 1 (o, L) with u (0) = 0. Hence
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Let S be a bounded polytope and let r 1, ... , rq denote the (open) faces
of S. Let 7rj be the hyperplane containing r~ and denote by G J the half space
containing S such that Then s = 

For x E put

Further denote,

LEMMA 5.4. If S is a bounded convex polytope, inequality (5 .1 ) holds for

PROOF. First we claim that, for every X E S,

and

It is clear that, for x E S, d * (x ) : := min (d l (x ) , ... , dq (x ) )  ~ (x ) . If B is the

open ball of radius d* (x) centered at x, then B c Gj for all j and so B C S.
Therefore if, say, d * (x ) = di (x ) then E S, so that E ri .
This implies  di (x ) = d*(x).

Next we observe that Sj is convex. This follows from the fact that for

every x, y E Gj and every a E (o, 1 ),

By (5.7) and (5.8),

These facts imply that Sj lies "above" rj (in the sense that Q lies "above" D
in Lemma 5.3), and dist (x, rJ) in S. Hence, by Lemma 5.3, if

where DS = diam (S).
Finally, if then S B S* is a set of measure zero. Indeed,

where

and IAj,kl = 0. Therefore, (5.10) implies the assertion of the lemma.
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PROOF OF THEOREM 5.1. The convexity of Q implies that there exists a
normal approximating sequence of domains consisting of bounded convex
polytopes. We may assume that there exists a ball BA such that Qk c BA for
every k. By Lemma 5.4, inequality (5.1) holds in Qk. Since is a normal

approximating sequence, for every u E Co (S2), the integrals over Qk in this
inequality tend to the corresponding integrals over Q. D

Theorem II follows easily from Theorem 5.1 since X(t) 2: t for every
t E (o, 1 ) .

Appendix: One dimensional inequalities

We present here various refinements of the one dimensional Hardy inequal-
ity, including inequalities (0.3) and (0.4) mentioned in the Introduction.

LEMMA A .1. If u E H 1 (0, 1) and u (0) = 0 then,

PROOF. It suffices to prove (A.1 ) for functions u E C~[0,1] which vanish
in a neighborhood of the origin, because this family of functions is dense in
the space under consideration. Assuming that u is such a function put,

Let = so that,

Then,

Hence,

Thus
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LEMMA A.2. If u E 1) and u (0) = 0 then,

with X (t) = (1 - log t)-1. The weight,function X2 is optimal, in the sense that the
power 2 cannot be improved, and the coefficient 1 /4 on the right hand side is sharp.

PROOF. As in the previous proof, let vet) = In view of (A.2),
inequality (A.3) is equivalent to,

Since

This implies (A.4) which in turn implies (A.3).
In order to verify that the exponent of the weight function in (A.3) is

optimal , it is sufficient to show that inequality (A.4) fails if X2 is replaced by
X2-E , E &#x3E; 0. In fact we shall show that in this case, there exists a sequence
{ wn } such that E H 1 (o, 1), wn(O) = 0 and

3-1
Choose 0  E  8 and put f (s ) = s U7 and v (t ) = f (X (t)). Further approxi-
mate v by vn = fn (X ), where

and Then i and

while

Now, let Sk % e and choose nk sufficiently large so that nk -8k+E  1/2. Then
the sequence where wk = vnk with 3 = satisfies (A.5). In addition if
E = 0, we obtain 

-

so that inequality (A.3) is sharp.
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Next we prove,

LEMMA A. 3. Let 17 be a monotone nondecreasing function in C [o, 1 ] f1 C (0, 1]
such that 17 ( 1 )  1. Then,

for every u E 1) such that u (0) = 0.

PROOF. Put h(t) = 1 - i7(t), R(t) = th(t). Without loss of generality we
assume that u E C~[0, 1] and that u vanishes in a neighborhood of zero. Then,

and hence,

By assumption, h = h + th’ so that h - R’/2 &#x3E; h/2. Therefore, by (A.7),

which implies (A.6).

COROLLARY A . 4. Let X(t) = Then,

for every u E H (0, 1) such that u (0) = 0.

PROOF. Note that 1] := X2 satisfies the assumptions of Lemma A.3. There-
fore (A.8) is obtained by combining inequalities (A.3) and (A.6) with 1] = X2.
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