
ANNALI DELLA

SCUOLA NORMALE SUPERIORE DI PISA
Classe di Scienze

EMILIO ACERBI

IRENE FONSECA

NICOLA FUSCO
Regularity of minimizers for a class of membrane energies
Annali della Scuola Normale Superiore di Pisa, Classe di Scienze 4e série, tome 25,
no 1-2 (1997), p. 11-25
<http://www.numdam.org/item?id=ASNSP_1997_4_25_1-2_11_0>

© Scuola Normale Superiore, Pisa, 1997, tous droits réservés.

L’accès aux archives de la revue « Annali della Scuola Normale Superiore di Pisa, Classe
di Scienze » (http://www.sns.it/it/edizioni/riviste/annaliscienze/) implique l’accord avec
les conditions générales d’utilisation (http://www.numdam.org/conditions). Toute utilisa-
tion commerciale ou impression systématique est constitutive d’une infraction pénale.
Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=ASNSP_1997_4_25_1-2_11_0
http://www.sns.it/it/edizioni/riviste/annaliscienze/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


11

Regularity of Minimizers
for a Class of Membrane Energies

EMILIO ACERBI* - IRENE FONSECA** - NICOLA FUSCO*

Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)
Vol. XXV ( 1997), pp. 11-25

Abstract. Regularity properties for (local) minimizers of elastic energies have
been challenging mathematical techniques for many years. Recently the interest
has resurfaced due in part to the fact that existing partial regularity results do
not suffice to ensure existence of (classical) solutions to problems involving free
discontinuity sets. The analysis of such questions was started with the fundamental
work of De Giorgi in the early 80’s in connection with the Mumford-Shah model
for image segmentation in computer vision, and later applied to some models for
fracture mechanics, thin films, and membranes ([ 1 ], [ 18], [20]). In this paper it is
shown that local minimizers in W 1, 2 (Q; Ilgd) of the functional

are Holder continuous of any exponent y E (0, 1 ), where C is an open,
bounded set, f is a (not necessarily convex) function growing linearly at infinity,
and v(u) stands for the vector of all 2 x 2 minors of Du. As a consequence, it is
possible to obtain existence of "classical" minimizers in S B V (Q; R )

where g E IlBd ), q &#x3E; 1, fl, y &#x3E; 0. These minimizers are "classical

minimizers" in the sense that H B = 0 and u E B Su ) .

Mathematics Subject Classification (1991): 35J20, 49Q20, 49J45, 49N60.

1. - Introduction

De Giorgi’s seminal work in the early 80’s in the study of free discontinuity
problems with relation to the model of Mumford Shah for image segmentation
in computer vision ([9], [10], [ 11 ], [14], [16], [25]) has opened many doors

* Research supported by MURST, Gruppo Nazionale 40%.
** Research partially, supported by the Army Research Office and the National Science Foundation
through the Center for Nonlinear Analysis, and by the National Science Foundation under Grant
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into the study of mathematical questions relevant to the understanding of the
behavior of thin films, membranes, and fractured elastic media (see [1], [7],
[19], [20]). Although very different in physical nature and motivation, models
for these problems have as a common feature the fact that, when searching for
quasistatic stable or metastable solutions, one is led to minimizing among all
pairs (K, u) an energy involving bulk and interfacial terms,

where S2 is an open, bounded subset of JRN, q &#x3E; 1, g E L°(Q; ~6, y &#x3E; 0,
HN-1 stands for the (N - I) -dimensional Hausdorff measure, K is closed in R N
and u : is smooth.

In order to find minima for this energy, as it is usual one relaxes the spaces
of admissible fields where lower semicontinuity and compactness results may be
found more easily ([2], [3], [4]), and through regularity arguments one concludes
that, indeed, these solutions live in the more restricted set of "classical" fields.
De Giorgi and Ambrosio (see [2], [4], [15]) introduced the space SBV of
functions of special bounded variation, i.e. B V functions u whose distributional
derivative Du, which is a finite Radon measure, may be decomposed into an
absolutely continuous part Vu with respect to the N-dimensional Lebesgue
measure and a singular part whose support is an (N - I)-dimensional
rectifiable set Su. This is the "jump set" of u, in the sense that u has traces
u+ ~ u- a.e. on the two sides of Su. They showed that

admits a minimizer in S B V provided F is a convex function growing super-
linearly at infinity and coercive. In the scalar-valued case, where u : S2 - R,
De Giorgi, Carriero and Leaci [16] proved that if F (~ ) = 1~12 then

for any minimizer u E of ,~, and so the pair (Su, u) is a "classical"
minimizer of the original functional 9. Note that, in general, if u E SB V then
the set Su is far from being closed, i.e. HN-1 ((3u- B Su) n Q) &#x3E; 0, and it may be
even dense in Q. The result of [16] has been extended to a quite broad class
of convex functions F with growth p &#x3E; 1 at infinity, and further regularity on
the set Su has been obtained (see [1], [5], [6], [ 11 ], [13], [20]).

In the vectorial case u : S2 ~ 2, Fonseca and Francfort (see [18])
showed that functionals of the type (1.1) appear naturally in the study of effective
energies for fractured elastic materials.

In this paper we show that local minimizers u E WI,2 (Q; of the func-
tional 

,
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are in Cu’y (Q; for all y E (0, 1), where Q C R2 is open and bounded, f
grows linearly at infinity, and v (u ) stands for the vector of all 2 x 2 minors
of Du. In turn, this regularity will entail that minimizers u E of

are "classical" mimimizers in that and H 1 ((Su B Su)flS2) = 0.
In the case where d = 3 we may consider these energies as associated to thin
films or membranes (see [7], [12], [19], [23]). We remark that f does not
need to be convex. This regularity result was already obtained for d = 2,
v(u) = det V u, and when f is convex (see [1]). As in that paper, here we use an
argument similar to the one introduced by Bauman, Phillips and Owen [8], and
used by Dougherty [17]; precisely, we obtain regularity of local minimizers by
means of the higher integrability of two auxiliary combinations of the derivatives
of u, A : _ which turn out to be harmonic
functions in the case where = I (see Proposition 3.2).

2. - Statements and Preliminary Results

If Q c R N is open, we say that a function of bounded variation U E
is a function of special bounded variation (see [2], [3], [4], [14],

[15]), u E SBV(Q; JRd), if, denoting by Su the complement of the set of

Lebesgue points of u, the distributional derivative Du is represented by

where Vu is the Radon-Nikodym derivative of the finite Radon measure Du
with respect to the N-dimensional Lebesgue measure ,CN, v is the normal to
the rectifiable set Su, u+ and u - are the traces of u on Su, and 1 denotes
the (N - I)-dimensional Hausdorff measure.

In the sequel we consider Q to be a bounded, open subset of R 2, and we
let f : [0, [0, oo) to be a C 1 function such that

(HI) for some C &#x3E; 0;

(H2) there exist M E [0, such that

(H3) there exist a, C &#x3E; 0 such that for all t &#x3E; 1
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It is not restrictive to assume that

and in what follows we will work under this assumption. Also, in order to

simplify the notation the value of the constant C may change from one line to
the next, and BR, R &#x3E; 0, will denote a generic open ball of radius R, centered
at x E S2, and such that BR C S2.

Given u E SBV(Q; R d) we define

the 2-covector whose components are the 2 x 2 subdeterminants of ~u .
Consider the energies

and

DEFINITION 2.1. We say that u is aWI,2 -local minimizer of

if

for all balls BR(xo) C Q.
The main result of this paper is the following theorem.

THEOREM 2.2.~f u E E 

In the proof of Theorem 2.2 we will use classical arguments of regularity
theory within the framework of the Morrey spaces Z.~; for a detailed study of
these methods we refer the reader to [21], [24].

DEFINITION 2.3. Given , &#x3E; 0 we say that f E R) if there exists a
constant C &#x3E; 0 such that
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for all x E S2 and 0  p  diam Q. The function f is said to be in if

f E for all Q’ cc Q.
It can be shown that, with Q c JR2,

and that LP,(Q) is a Banach space endowed with the norm

Morrey proved that (see Theorem 3.5.2, [24])

LEMMA 2.4. If u E and Du E 0  À  2 then

In light of Lemma 2.4, we will prove Theorem 2.2 by showing that if u
is a W,-local minimizer of Fo then for all 0 :::; À  2

for all 0  p  R with BR cc Q.
As a corollary we obtain,
COROLLARY 2.5. Let U E SBV(Q; Rd) be a Then (Su, u) is a

v) with K C Rd).
Moreover, 

-

Following the argument introduced by De Giorgi, Carriero and Leaci [16],
and outlined in [ 1 ], the corollary holds provided we can show that WI,2 -local
minimizers of

satisfy an estimate of the type

for some 0  h  2 and 0  p  1 or, equivalently,

We conclude that the assertion of the corollary holds true provided we
prove (2.1 ).

The following two lemmas may be found in [21] (see Chapter 3, Theo-
rem 3.1, page 87, and Lemma 2.1, respectively).
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LEMMA 2.6. Let and let v R) satisfy

Then Dv E L 2,,k (BR; II~2), and for every p  R

LEMMA 2.7. Let 0 : [0, [0, be a nonnegative, nondecreasing
function, such that

for all 0  p  R  Ro and for some constants H, K &#x3E; 0 and 0  ~8  y. Then
there exist constants 80 = 80(H, y, P), C = C (H, y, fl) such that

for all 0  p  R  Ro.

LEMMA 2.8. Let p &#x3E; 1 and 0  À  2. If fij E LÏdcÀ (Q) for i, j E [1, 2} and
u E is a distributional solution of

then i

PROOF. Let BR cc Q and for every i, j let vi be the solution of (see
Theorem 9.15 and Lemma 9.17, [22])

and we set

Then w E LP(BR) and In addition, 2
so that the function

is harmonic, i.e. = 0. Hence
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from which we deduce that for every p  R /2 (thus, for all

We have

By Lemma 2.7 we deduce that for all 0  p s R

and so u E 0

We end this section with a list of algebraic inequalities, following an ar-
gument introduced in [8] (see also [17]).

Let P, Q E R d and set

LEMMA 2.9. We have

PROOF. Since
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we have

and so

and

Clearly i) and iii) follow. In addition, we have that

hence

which yields assertion ii).
Now remark that if v # 0 then P # 0 and, setting

then also Q’ ~ 0. Define the orthonormal vectors

We write

with

Note that

and that if then

We have

with

We have

which, together with ii), concludes the proof of iv).
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3. - Proof of the regularity theorem

In this section we assume that u E W1~2(S2; is a local minimizer of Fo.

PROPOSITION 3.1. If D u e 0 ~ À  2 then D u ~

d) where := a + ~,(1 - a/2).

Before proceeding with the proof of this result, we remark that using an
iterative scheme where

then

hence (2.1) will follow for all 0 :::; À  2 and, as justified in Section 2, this
suffices to assert Theorem 2.2.

The proof of Proposition 3.1 uses higher integrability properties of the
functions 

- . "t .- .1

, where DiM and D2 u stand for the column vectors in R d of the derivatives of u
with respect to x 1 and to x2, respectively.

PROPOSITION 3.2. The functions A and B solve the system

where

In addition, if Du E for some 0  À  2 then

PROOF. Consider (D : := E Col (Q; Ilg2), and let 8 &#x3E; 0 be small enough
so that with 4$g(x) := x ~- ~ ~ (x ), then is a smooth diffeomorphism
satisfying

where cvi ( ~ , -~ 0, as 8 ~ 0, uniformly in Q. Set
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We have

where the inner product of two d x 2 matrices ~ and q is defined as ~ ~ r~ : _
trace(~T r¡).

On the other hand, since

we also have that, setting

because by Lebesgue’s dominated convergence, by (H 1 ), and due to the bound-
edness of f’,

By the local minimality of u we have 0, from which the
Euler-Lagrange equation can be easily obtained,
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for every . This equation may be rewritten as

that is,

and the first assertion follows. By (H3)

and so, assuming that Du we have that and

We may now use Lemma 2.8 to obtain that

and by Holder inequality we conclude that

Finally, in order to prove Proposition 3.1 we introduce the following nota-
tion : 

_

PROOF OF PROPOSITION 3.1. Fix q5 E Wo ’ 2 ( SZ; JRd) and assume that D u E
Ll ’~ (S2; for some 0  À  2. For 8 E R set := u (x) + Define

Since

we have
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Local minimality of u entails

and so

We have

where

We recall that by (H2)

By Lemma 2.9 iii), iv), we deduce that

with G = (G¡, G2) and

and where XA stands for the characteristic function of the set A. By Lemma 2.9
ii), iii), and recalling that on Q K we have K, we have



23

and by Proposition 3.2 we deduce that G E L2°q~~~ (SZ; Next, for a fixed
ball BR C C Q we compare u with the solution of the Dirichlet problem

By Lemma 2.6 I and for all I

From (3.1 ) and (3.2) we have for all

Therefore, taking 0 : := u - v, and using the fact that by the definition of G
and by (3.2)

we have

Using (3.3) we now obtain

and if K is large enough, so that NK is small, from Lemma 2.7 we conclude
that for all 0  h’  

and thus (3.4) holds true for h’ = qo(À).
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