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On the Continuous Extension of Holomorphic Correspondences

F. BERTELOOT - A. SUKHOV

0. - Introduction

The category of holomorphic correspondences, which contains the inverses
of proper holomorphic mappings, is a very natural object to consider in sev-
eral complex variables. Rigidity properties of holomorphic correspondences are
dramatically determined by their boundary behaviour. We refer to the papers
of S. Pinchuk [Pi4] and E. Bedford and S. Bell [BB] ] where this principle is
illustrated and the smooth extension studied under global boundary regularity
assumptions.

Our aim in this paper is to establish some purely local boundary continuity
properties for holomorphic correspondences and give some applications. The
fundamental works of Henkin [H], Pinchuk [Pil] and Diederich-Fomaess [DF1 ]
have completely enlightened the Holder-continuous extension phenomenon for
proper holomorphic mappings onto bounded domains with strictly pseudoconvex
or finite type boundaries. These results have been localized for proper holo-

morphic maps between bounded domains by Forstneric-Rosay [FR] and for any
kind of holomorphic maps between non necessarily bounded domains by the
authors [Be], [Su]. Although the proofs of these results are based on a rather
simple strategy, it is not possible to follow it for holomorphic correspondences.
Indeed, the technique is essentially the following: the derivatives of the map
are controled via the asymptotic behaviour of the Kobayashi metric and an
Holder estimate is obtained by a standard integration argument. Both steps of
this method do not work for multi-valued holomorphic mappings and we have
therefore to elaborate a genuinely different approach.

Our proof is mainly based on a detailed study of the "attraction effect" of
plurisubharmonic barrier functions on multi-valued analytic discs (see Section 3).
The plurisubharmonic barrier functions also play an important role in estimating
the distance to the boundaries (see Section 2). Thus, the boundaries which
are considered in this paper admit good families of plurisubharmonic peak
functions and, by the works of Fornaess-Sibony [FS] and Cho [Cho], this covers
pseudoconvex and finite type ones.

A precise formulation of our results is given in Section 1, where the
basic definitions and facts are also recalled. Some applications are given in
the last section; we show for instance how our results lead to an elementary
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proof of a well-known theorem of Bell-Catlin [BC] which asserts that certain
Cauchy-Riemann mappings are locally finite-to-one. We also prove that any
proper holomorphic correspondence between algebraically bounded domains is
algebraic.

This work was partially done while the second author was visiting the
Université des Sciences et Techniques de Lille. He would like to express his
gratitude to the Department of Mathematics for its hospitality.

1. - Definitions, notations and results

a) Holomorphic correspondences and canonical defining functions.
Let D and G be two domains in C" and let A be a complex purely n-

dimensional subvariety contained in D x G. We denote by D and

1r G: A -+ G the natural projections. When the projection 7rD is proper then
o is a non-empty finite subset of G for any z E D and one may

therefore consider the set-valued mapping:

Such a map is called an holomorphic correspondence between D and G and
the variety A is said to be the graph of F. More formally, one can treat the
correspondence F: D ~ G as a triple F = A, 1rG) where the projection
1r D is proper. One says that F is irreducible if A is an irreducible variety and
proper if both 7rD and 7rG are proper.

Since 1r D is proper, there exists a complex subvariety SD C D and an
integer m such that F (z) = { w 1 (z), ... , for any z E D and the 
are distinct holomorphic functions in a neighbourhood of z when z E D B SD
(see, for instance, [Ch]). One then says that F is an m-valued correspondence.
The set SD is the branch-locus of F.

Let {a 1, ... , be a system of m points in C" which are not neces-

sarily distinct. For (w, ~) E Cn x C", consider the polynomial =:

where (ab) = follows from the unique-
ness principle that - 0 if and only if W E {a 1, ... , Expand-
ing Pa in powers of ~, Pa (w, ~) _ ¿1¡I=m (DI(w; a)~l , one finds a fam-

ily of polynomials 4Ji(w; a) in w = (w 1 9 ... , wn) whose common zeros in

Cn coincide with the given system of points {a 1, ... , These polynomi-
als are called canonical defining functions for the system {a }. Renumbering
the points ai does not change Pa and, Thus we have

where the cp¡,J(a) are polynomial in al (the
coordinates of a ) which are symmetric with respect to superscripts. Moreover
these polynomials have integer coefficients which depend only on I, J. Now
we consider an m-valued holomorphic correspondence F = (7rD. A, 7rG) with
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branch-locus SD. For any z E D B SD we apply the above construction to the
system a (z) =: {c~(z),... , = F(z). This leads to the functions

where cp¡,J(z) stands for One shows (see [Ch]) that the functions
cp¡,J(z) are holomorphic on D and that A is precisely the set of common zeros
of the functions 4Si(z, w) in D E C". These functions are called canonical

defining functions for the correspondence F = (1rD, A, 

b) Continuous extension.
Let F : D --~ G be an holomorphic correspondence and let p be a boundary

point of D. We say that F extends continuously to bD at point p if the
canonical defining function for F extends continuously to bD at point p. If

these canonical defining functions are Hblder-y (y e]0,1[) on D n U for some
neighbourhood U of p, we say that the correspondence F extends Hblder-y
continuously at point p.

c) Cluster sets.
Let F : D -+ G be an m-valued holomorphic correspondence and let S C bD

be some subset of the boundary of D. We define the cluster set of F at S
(CD (F, S)) as follows:

for some sequence

where oo E CD(F, S) means that the set is unbounded for some se-

quence (z~ ) in D with limj dist (zi, S) = 0. We note that F is proper if and
only if CD(F, bD) n G = 0.

Let p be a point in D and ( pv) be a sequence in D converging to p; let also
..., be a set points in G (the qJ’s are not necessarily distinct). We say

that the sequence (F(p,)) = {wl(p"), ..., converges to ..., 

after a possible reordering one has limj = qj for j = 1,..., m or, in other
words, if (F(p~)) is converging to in the sense of the Hausdorff

convergence of sets.

d) Regular boundaries.
Let S2 ne a domain in C". A point p E bQ is said to be (a, P)-regular

(0  a  1  ~B) if there exists a neighbourhood U of p and a family of
functions which are p. s.h. on Q n U, continuous on S2 n U and

satisfy the following estimate:

on S2 n U. An open connected subset r of bQ is said to be (a, ~8) regular if
it is a C2-smooth real hypersurface whose points are (a, fl) regular.
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It is worth to emphasize that (a, P)-regularity is known to be satisfied for
finite type boundaries. To be precise the following holds:

i) If b 0 is C2-strictly pseudoconvex at point p, then p is ( 1, 2)-regular.
ii) If Q C e2 and bS2 is smooth, pseudoconvex and of type 2k at point p,

then p is ( 1, 2k) regular (see [FS]).
iii) If Q c C’ and bS2 is smooth, convex and of type 2k at point p, then p

is (a, 2k)-regular for any a E]O, 1 [ (see [FS]).
iv) If Q C C’ and bS2 is smooth, pseudoconvex of type 2k at point p, then p

is ( 1, P)-regular for some fl &#x3E; 1 (see [DF 1 ] ) for real analytic boundaries
and [Cho] for smooth ones).
We are now in order to state our main result:

THEOREM A. Let D, D’ be two domains in Cn which are not necessarily bounded.
Let F: D - D’ be a holomorphic correspondence. Assume that r C bD and r’ C
bD’ are open pieces of the boundaries which are respectively (a, P)-regular and
(a’, P) -regular If the cluster set CD (F, r) is contained in r’ then F continuously
extends to D U r. Moreover, F extends as a Hölder-continuous correspondence to
r B SD (which is an open dense subset of r).

Actually, we shall obtain Theorem A from the following more concrete
result which will be proved in Section 4. It is actually this theorem which

generalizes the results about the local continuous extension of holomorphic
mappings:

THEOREM A’ . Let D, D’ be two domains in Cn which are not necessaí’ily
bounded. Assume that r c b D and r’ C b D’ are open pieces of the boundaries
which are respectively (a, P)-regular and (a’, Let F: D -~ D’ be a

holomorphic correspondence such that the cluster set CD(F, r) does not inter-
sect D’. Suppose that p is a point in r and that there exists a sequence (Pv) in D
converging to p such that the sequence { F ( p" ) } converges to a subset 
ofr’. Then F continuously extends to p.

As we have already mentioned, finite type boundaries are regular. We may
therefore state the following global version of Theorem A:

THEOREM B. Let F: D - D’ be a proper holomorphic correspondence between
bounded domains in (Cn. Suppose that D is pseudoconvex with C2 boundary and D’
is pseudoconvex with Coo boundary of finite type in the sense of d’Angelo. Then F
extends continuously to D and H61der-continuously to D B SD.

Various applications of our results will be described in Section 5.

2. - Boundary distance equivalence

We will denote by Iffi the unit ball of Cn . From now and on one assumes
that the holomorphic correspondence F which is considered in Theorems A, A’
and B is m-valued for some m E Z+; we set F (z) = {w 1 (z), ... , 
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The aim of this section is to establish the following.
LEMMA 2.1. Under the hypothesis of Theorem A’, there exist constants C1 1 &#x3E; 0

and r, r’ &#x3E; 0 such that for every z E D n ( p + rB) the following holds: iffor some
j = 1, ...m one has Wi (z) E D’ n Ui=,,...,m (q’ + r’B) then

Our proof makes use of the family (1.2) of p.s.h. barrier functions and is
based on the ideas of [Su].

Given S :::: 0 we set {z e un D &#x3E; -6’}. It follows from (1.2)
that there exists an Eo &#x3E; 0 such that for every E E (0, so] one has D E c U,
where U is an (open) neighbourhood of p such that the functions (1.2) are

defined on D n U and U n a D = U n r.

First, we show that the correspondence F is locally finite.

LEMMA 2.2. For every E E (0,so/2] and w E D’ the intersection (1rD 0

TcD 1 ) (w) n D’ is at most finite.
PROOF. Since the projection 1rD is proper, for any w E D’ the set V =

is an analytic subset of D. One may assume that the intersection
V~ = V n D’ is not empty. Since the cluster set CD(F ; r) does not intersect
D’, the set VB has no limit points on r. Therefore, the boundary V of
the analytic variety V’ is contained in SB = {z E U n D ~ -e}. Now if
we assume that dim V£ &#x3E; 1, it follows from the maximum principle for p.s.h.
functions on analytic varieties that Cpp is constant on V’; this is impossible.
Thus, dim V’ = 0 for any c E (0, so]. Now assume that V’ is infinite for
certain 8 E (0, so/2]; then there exists an a E S’ which is a limit point for
V~. But then a is an interior limit point for a 0-dimensional variety V’O: a

contradiction. D

We now introduce a family of psh barrier functions which will play a
fundamental role in the proof of Lemma 2.1. Fix an E E (0, so/2] and 0
such that D n ( p + Sl i) is contained in D~. We denote by 1r (z) E r the

orthogonal projection of z E U n D to r: without loss of generality one may
assume that = dist (z, r) for every Fix 3 &#x3E; 0

such that sl/50  8  23 and consider the compact corona K =
D n (p + 25B) B ( p + ~B). It follows from (1.2) that for 82  ~i/100 small
enough there exists a r &#x3E; 0 such that

Consider a smooth convex non-decreasing function such that = -z

-t, - t for t &#x3E; -r/2 and set p, (z) - t-1 (e o ~p~ ) (,z). Then

p~ K = -1 s2B) and we may extend the function p~ (z) to
D setting p~ (z) _ -1 Thus, for every ~ Ern (p + 82Jae)
we get a negative continuous p.s.h. function p~ (z) on D with the properties:
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LEMMA 2.3. The function 1/Ia(w) is continuous negative and p.s.h. on D’.

PROOF. Since the restriction F: D£ -+ F ( D£ ) is finite and 1rD is proper,
for every point (z, w) E A - rF with z E D’ there exist (small enough)
neighbourhoods S2D and of (z, w) in C2n such that QD’ C S2D and the
restrictions n QD and 1rD’ A n QD/ are proper. In particular, F(D~) is
open.

Let to be an interior point of F(D~) and (OJk)k C F(D£) be a sequence
converging to co. Let ~ E D£ n be such that ~7r(~)(~) - 
we denote by ~k a point in D, n (1rD o with = for

k = 1, 2,.... Let ~ be a limit point of the sequence (~k )k . Since the cluster
set r) does not intersect D’, one has ~ E D’ U S£ . Hence, if we set

(~D~oTCDI)(~k)=(wi(~k)~ ... , c~m(~k){ and (~cD~o~cDl)(~)={wl(~)~ ... , wm(~)}~
we will have limk = w ~ ( ~ ) for every j (after a possible renumeration of

s ) (see [Ch]), and, therefore, ~ E Thus, p7r(.)(~) P7r(~)(~) =
Assume that p,~~a~ (~ ) is not equal to pn~a~ (~ ) . Fix a neighbourhood Q

of ~ small enough such that (7rD o = {~ }. Let be a subse-

quence converging to ~ . Since is open, for any v sufficiently large there
is qv in (1rD o n Q; then we get by continuity  

this contradicts the choice of (~k)k. Thus, 1/Ia is continuous on F(D£).
If W E D’ is a boundary point for F (D£ ), then _ -1. For sequences
C F(D£), (~k)k C D£, and ~, ~ defined as above, the same argument

shows that ~ E S’ and pn~a~ (~ ) = = -1. This gives the continuity of
on D’.
It remains to verify the subaveraging property. Let W E F(D~). Choose

~ in (7rD o nD’ such that p,~~a~ (~ ) = and neighbourhoods
QD D of (, co) such that the restrictions 7rD I A n QD and 1rD/ I A n QD/
are proper. One may suppose QD to be small enough such that one has

(7TD o = {~}. The function

is negative continuous on and p.s.h. on 1rD/(AnQD/)B V, where
V is a complex variety of dimension  n - 1. By the removal singularities
theorem ua (w) is p.s.h. on 7rD’(A Since ua  1/Ia on 7rD’(A 
ua (co) = and ua satisfies the subaveraging property, the function has
the subaveraging property at c~.



753

If wED’ is a boundary point of F ( D£ ), the same arguments give the
existense of ~ in such that p,~~a~ (~ ) = _ -1. For

ua(w) defined as above, we get similarly ua(w)  for W E Q n F(D£),
where Q is a neighbourhood of w. But ua = = -Ion S2 B F (D’) and we
conclude. D

We shall need the following refined version of the Hopf lemma (see
[Co], [PiT]).

LEMMA 2.4. Let S2 C C (Cn be a domain with a boundary of class C2 and let
K C C S2 be a compact subset with non-empty interior, L &#x3E; 0 be a constant. Then
there exists constant C(K, L) &#x3E; 0 such that any negative p.s.h. function u on 0
with u (,z)  -L for every z E K, satisfies the estimate

Fix an r’ &#x3E; 0 small enough such that a D’ n (q i ~- r’I~) = +r’B) for
i =1, ... , m . For any i = 1, ... , m fix also a compact Ki in 
with non-empty interior (this is possible since F(D~2) is open by Lemma 2.2
and qi i E CD (F; p)). One has

It follows from the condition on the cluster set that the pull-back =

(7rD has no limit points on U n a D; hence, the closure K~ of
o7r~)(~) n D’ is compact in D n U. If z E K!, it follows from (1.2)

that

Since the last quantity is smaller than a constant -N  0, one can set

where L &#x3E; 0 does not depend on a and i. Now it follows from Lemma 2.4
that p/r~a (w) ~ &#x3E; C dist (w, r’) for w E D’ n r’B) with C &#x3E; 0

independent of a. Let a be in (p + 83Jae) n D. If for some j - 1, ... , m one
has c D’ n Ui=1,...,m (ql + r’B), we get

This proves Lemma 2.1.
If the correspondence F: D ~ D’ is proper, the proof is much easier;

moreover it suffices to use the Diederich-Fomaess exhaustion p.s.h. function
instead of the family (1.2) and we do not need the assumption on a D to be
(a, ,B)-regular. Thus we have:
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LEMMA 2.5. In the hypothesis of Theorem B, there exist constant I

and C &#x3E; 0 such that for every z E D one has

For the proof, see, for instance, [BB 1], [Pi5].

3. - The contraction of multi-valued holomorphic discs near p.s.h barriers

Since we deal with multi-valued mappings, the standard technique based
on estimates of the Kobayashi infinitesimal metric cannot be used directly for
getting boundary continuity properties. This is due to the fact that the Kobayashi
metric is not decreasing by proper holomorphic correspondences. The following
assertion is of crucial importance for our construction, it basically describes
how a multi-valued analytic disc behaves when its "center" is close to some

plurisubharmonic peak point.

LEMMA 3.1. Let SZ c (~n be a bounded domain (n &#x3E; 1), let Bp be the unit ball
&#x3E; 1) and F: I~ --~ S2 be an m-valued holomorphic correspondence. Let A

be a C-linear form on Cn . Assume that there exists a function qJ, continuous on Q,
p. s. h. on S2 and satisfying the following:

i) (p S 1 on Q and = 1 for some (00 E bQ ;
ii) there are constants a, P, r, A, B &#x3E; 0 such that

Then there exists an 80 = so(r, a, ~8, A, B)  min (r, 1) such that for any
wo E F (0) satisfying w° - I = dist (wo, a Q) = s  So the following estimate
holds:

where T = C is a positive constant which depends only on A, B, m, ~8,
II A II and the diameter M of S2.

PROOF. Consider a function cp’(w) defined by on

I I w - No  r } and by 1- BrfJ / 2 on s r } . It follows from (ii) that
the function qJ’ is p.s.h. on Q and coincides with cp if lw - wO I  81 for 81 

Set o-(z) =: w E F(z)} and let 80  min[El, r, 11.
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Then a is a p.s.h. function on Bp and it follows from (ii) that o~ (o) &#x3E; 1- AEO.
If J1 denotes the normalized Lebesgue’s measure on Bp one has:

hence

and

Let us now define a holomorphic function g on Bp by g (z) = 

Using (ii) one sees that if E  80  then for any z with 
1 - there exists w E F (,z) n I  r} such that a (z) = w(w) and
Iw - Thus we have:

By the subaveraging property one has for any z’ E Bp:

Then from (3.3), (3.4) and (3.5) we get:

where Co depends only on A, B, I I A 11, M, and P and r =: min( 2 , 2,~ ) ~
By the definition of g it follows from (3.6) that for any z’ E Bp there exists

w E F(.z’) such that and the conclusion
follows since [ D

In principle, this lemma allows to prove our main results in the case of
bounded domains. In order to use it in the case of unbounded domains we
need the following localization lemma. Its proof uses some ideas of [Si2].
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LEMMA 3.2. Let S2 be a domain in Cn (n &#x3E; 1) and Bp be the unit ball in
CP(p &#x3E; 1). Let 1  j  il c bQ be a collection of l points on bQ and let
8 = ak I &#x3E; 0. Assume that there exist l functions qJj ( 1  j  l) such
that:

i) CPj is p. s. h. and continuous on Q;
ii) -00  -Kj  (pj  0 on Q;

iii) is p. s. h. on S2 f1 liz - [  t }
where 0  T  ~ and Kj &#x3E; 0 are some constants. Then for every 0  R  T there
exist some constants 0  Rl  R2  R and 0  r  1 such that, for any m-valued
holomorphic correspondence F: Bp - Q:

PROOF. Let us first show that it suffices to consider the case p = 1. If

uo E Bp and luol  ~  r then we may find a sequence (uk) in Bp which
avoids the branch locus of F and converges to uo. Consider the sequence
of m-valued analytic discs fk defined by fk (t) = for t E Bi =:A.k I
Applying the lemma to the fk’s and passing to the limit we find that F(uo) c

B(aj, R2 ) where RZ  RZ  R.
We now assume that p = 1 and proceed in three steps.
FIRST STEP. Construction of some p.s.h. function uZo associated to zo E Q.

Let 0  R2  R and 0  a  -. Assume that Zo E Q n R2J2 2 8 2

Consider a smooth increasing function X on such that X (x ) = x for 0 
x  a and X (x’) = 2- for x ? 2a. Let us set p -: 1   p , then w is a
2 _.7 _

continuous p.s.h. function on Q such that:

We now set u,o (z) = X (I z - ZOI2).
Since a a log uZo is positive outside SZ n 2a } which is

contained in Q n B(aj, R), the assertion (ii) shows that log uzo is p.s.h. on Q
for some sufficiently large M. This choice of M is clearly independant of zo.

SECOND STEP. There exists a constant A &#x3E; 0 such that for any m-valued

holomorphic correspondence F: 0 -~ S2, any E e]0, a ] and any j E { 1, ... , ~}:

Consider the function uzo which is given by the first step. Let us define
a function vzo on A by setting = f1ZEF(t) The function vzo is
a well-defined continuous function on A, moreover 0  1 for any
t E A. Let to E A be some point which does not belong to the branch locus
of F. Denote as Fl,..., Fm the m branches of F which are defined on some
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neighbourhood U of to. Then on U and this
shows that log vZo is subharmonic outside of the branch locus of F. As log vzo
is continuous we see that it is actually subharmonic on A.

Let us temporarily admit the following.
CLAIM. Let f : A - C" be an m-valued holomorphic correspondence such

that 0 E f (0). Then ~ I t I 2 on a neighbourhood of the origin in A.
Thus we have:

Since = e log vzo -log It 12 is subharmonic on A - 101, it follows from (3.7)
that the function tl2 extends to some subharmonic function of A which, by
the maximum principle, is taking values in [0, 1]. Then we have:

for any r E [0, 1].
Let t be any point in A such that z - for every z E F (t )

where 8 Then, according to (i) and the definition of vzo , we have:

Thus, from (3.8), we get It 12 &#x3E; A2£2m where A2 = e -MK.
We have shown that It I  implies that - zo I  s for some z E F(t).

THIRD STEP. The localization argument.

Let us fix R 1 and R2 such that 0  R2  R’ and 0  R 1  ~~2. As-

sume that the conclusion of the lemma is not true, then we may find a se-

quence of m-valued holomorphic correspondences Fp : 0 ~ S2 such that Fp (o) C
R 1 ) and a sequence of point (tp ) in A such that lim tp = 0 and

the intersection of Fp (tp ) with not empty. After

taking a subsequence, we may assume that R2  R2 for zp E Fp (tp)
and jo E { 1, ... , . } . We set Fp( 1-ipt Clearly, is a sequence of

P

m-valued holomorphic correspondences from A to Q. Fix 0  s  min(a, R2),
then by the second step there exists z p E Fp (-tp ) n tlzp - when p is

big enough. We have therefore R2 - ~ &#x3E; 22 &#x3E; R I and, for any

Thus z p does not belong to B(aj, R 1 ) ; since ip E Fp(0) we have reach
a contradiction.

Let us now prove the claim:
Without any loss of generality we may assume that f is irreducible and

f (0) = 0. Let us denote by f l , ... , fn the coordinates of f. Each fj is an

mj-valued holomorphic function on some neighbourhood of t - 0 and may
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therefore be defined by = where gj is an holomorphic function
near the origin. It follows that for It I small enough. Let us

set m’ = mn } then Izl2 §iJ and the claim follows

since m. D

4. - Boundary continuity

We are now in order to proceed with the "integration" argument and prove
the following:

LEMMA 4.1. Assume that the hypothesis of Theorem A are fullfilled. Let p e
sequence in D converging to p. Suppose that limv =

qJ e r’ for j - 1,..., m where we set F(z) = {w 1 (z), ... , Then,
for any sequence D converging to p, the sequence converging to

..., That is, limv = q¿, after a possible reordering of superscripts
(the point q~ are not necessarily distinct).

REMARK 1 Roughly speaking, the above lemma says that the cluster set of
F(zv) for (zv) converging to p does not depend on the sequence (zv).

For ~ e r we denote by n (~ ) the unit vector of real inward normal to
r at ~ ; there exists a neighbourhood U of p in en such that D n U is filled

by the rays {~ + t n ( ~’ ) , t e when § runs over U. Now let dv denote
(resp. (6[) be (respectively and

(respectively §§ ) in r be the orthogonal projection of pv (respectively pv ) to
r. For any v large enough we consider a piecewise linear path 1r v in D which
consists of 3 linear segment: the segment [~" , a" ) in { ~" e of

length 6v + dv, the segment [~~, av] in {~~ + e of length 8~ + dv
and the segment [a" , a v ] .

Considering that 7r~ is oriented from pv to p~, we denote by 1r~ the portion
of TTp which consists in the points lying between pv and x, for any x e 1rv.
We may assume that qk j, k s f s m. Since r’ is regular, one
easily shows that the hypothesis of Lemma 3.2 are satisfied at points 
Let /?i, R2 and r be the positive constants which are associated to these points
by Lemma 3.2. Recall that R 1  R2  28 where 8 = 

Since F(pv) is converging to {q 1, ... , we may assume that

F(pv) c B(qj, Ri ) for every v.

We now argue by contradiction, assuming that F ( pv ) is not converging to
{q 1, ... , Then, we may find R 1 e]0, and p~ E 1rv such that

and max{ dist i

Thus, after taking some subsequence, F(pJ) is converging ql I C r’
where dist { q 1, ... , = R 1 for some jo. We then pick a C-linear form
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A on C’~ such that &#x3E; 0 for 1 i. For every
z E D we may consider the m-valued holomorphic correspondence defined on
$1 1 by = F(z + urd(z)) where r E ] 0, 1[ [ is given by Lemma 3.2 and
d(z) = dist (z, bD). It follows from Lemma 3.2 that is contained in

//

for every z This will allow us to apply Lemma 3.1
to these correspondences in order to establish our "integration" argument.

Assume that p~ E [av , p~]. Then we replace p’ by p~ but keep the notation
p~. Without any loss of generality we may assume that r = 1.

o We parametrize [~v, av] as follows: Àv: [0, 8v + dv] - D with ~.v: t «
so that ~v = Àv(O), pv = and av = Àv(8v + dv). Note that

dist (Àv(t), a D) = t when v is large enough. Consider a sequence tk = (Bv +
dv ) /2k , k &#x3E; 1 and denote by Nv the integer such that tNv . First,
we will show the following

For any k &#x3E; 0 and wk E F(Àv(tk» there exists

with C &#x3E; 0 independent of k, v .

Let us consider an m-valued holomorphic correspondence fk, defined on the
unit disc A of C by fk (u ) = It follows from Lemma 2.1 that

Then Lemma 3.1 implies the existence of
such that

Thus (4.1 ) is proved.
Quite similarly, using the correspondence fNv: 0 -~ D’ defined by fN" (z) =

we get the existence of
such that

(by choice, 2 1 ). Thus, we get from (4.1 ) and (4.2):
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and we have therefore proved the following:

9 Now we consider the segment [a,, a’].
By construction we have I pv - a" I = av I = dv and for any

z E [a" , av ] one has dist (z, r ) ~ d" . Let us divide [a" , av ] in 4 parts of
equal lengths by the points cj, j = 0, 1, 2, 3. Let us consider a correspondence

then
Since dist (cj, r)  dv, we get by Lemma 3.1 that there exists

such that

Since we get this

implies that:

~ Finally we proceed with [p’, a] in the same way than for 
We get:

We are now in order to finish the proof of Lemma 4.1. Let us consider
a sequence (wv ), wv E F(p’), such that limv wv = q/jo. From (4.6), (4.5) and
(4.4) we get the existence of Wv E F(pv) such that:

This is a contradiction since, after taking a subsequence, wv is converging to
E ... , and A has been chosen such that &#x3E; 0

for every i E { 1, ... , m } .
When pj belongs to segment [a" , av ] or to the segment ] one re-

place av or p" by p" and the above procedure remains valid, with the only
modification that we deal with at most two segments instead of three. D

We are now in order to prove the main theorems. Let us first recall some

elementary properties of canonical defining functions.
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LEMMA 4.2. Let av = ... , am } be a sequence of systems of m points in a
bounded domain Q in converging to a = fall ..., that is ai - aj as v -~
00, j = 1, ... , m. Then 0, (w; -+ a), ~ I ~ = m, uniformly on compact
subsets in Cn. Conversely, if the polynomials aj) converge in this way to a
polynomial (w), I I I = m, then the sequence of systems av has, under a suitable
ordering ofpoints, a limit a = f a 1, am I and a), ~ I ~ = m.

PROOF. see ([Ch], page 46). D

This lemma together with Lemma 4.1 immediately implies that the coef-
ficients of the canonical defining functions ( 1.1 ) extend continuously to p, or
in other words that the correspondence F: D --+ D’ extends continuously to p,
under the assumptions of Theorem A’.

Recal that SD C D denotes the singular locus of the correspondence F (in
particular, 1rD: A B (SD) - D is locally biholomorphic). The structure of

SD is described by the following:
LEMMA 4.3. Let A, the graph of some holomorphic correspondence, be defined

by the canonical functions (DI. Then SD = 7rD(V), where V C A is a complex
subvariety of A of codimension &#x3E; 1 of the form

The proof is contained in [Ch], page 50.

In order to get the Holder continuity, we will establish the following:
LEMMA 4.4. Let F: D - G be a holomorphic correspondence between do-

mains D, G C which continuously extends up to the boundary in a neighbour-
hood of p E D. Then SD is set of commons zeros of functions which are holomorphic
in D and continuous up to D near p.

PROOF. We just follow the standard exception of variables argument (see
[Ch], page 30), keeping in mind the boundary continuity of the defining func-
tions.

Without any loss of generality one assumes that G is the polydisc An c 
We represent the projection 1rD: A -+ D in the form 7rD = 7r, o ... 01rl, where

Since proper, all the projections 7~:(7~-i o ... o 7Ti)(A) -
o ... o 1rl) (A) are proper.
Set w = (w’,wn) = (wl, ... , wn_1, wn) and 1rl:(Z,W) « (z, w’). It

follows from ( 1.1 ) and Lemma 4.3 that V is a set of common zeros of the
functions w), j = l, ... , .~, which are polynomials in w with coefficients
holomorphic in z on D and continuous up to a D near p. The degree of fl in
wn will be assumed maximal, and is denoted by d(d &#x3E; 0, since 7ri is proper).
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We replace the system f2,..., f~ by the one-parameter family of functions
Ft = ~2 fktk, t E C; the zero sets in D x An of these families coincide. As it is
well-known, the polynomials fl and Ft in one variable wn have common zeros
iff the resultant R(fl, Ft ) vanishes. Therefore, 7ri (V) C {(z, W’) E D x I
R ( f l , Ft ) - 0 in We write the resultant (being the corresponding determinant
in the coefficients of f 1 and Ft ) in powers of t : R = ~od Rk (z, w’)tk . The
condition R - 0 in t is equivalent to w’) = 0 for all k, hence 7r, (V) c
{(z, w’) E D x On_1 ~ w’) _ 0, k = 0,..., 

Conversely, suppose that every Rk(a, b’) = 0 for (a, b’) E D x 1

fixed, and let bn, ... , bn e C be the roots of the polynomial 
The resultant R( fl (a, b’, .), Ft (a, b’, .» n 0 in t, hence for each t E C the

polynomial Ft(a, b’, wn) vanishes at at least one of the points bJ, that is

On the other hand, is a polynomial in t, and if it does not
vanish identically, then the number of its roots is finite. Hence, for some jo the

polynomial ~2 fk (a, b’, bn° )tk n 0 in t, that is fk (a, b’, = 0, k = 2,..., .~.
Hence (a , b’ ) E n 1 ( V ) and

Here Rk(Z, w’) are polynomials in w’ with coefficients, holomorphic in z
on D and continuous up to a D near p (by construction). Now one may apply
the same argument to 7r2, etc ... , and we conclude. D

We now complete the proof of Theorem A. Since F is continuous up to

r, as a corollary of Lemma 4.4 we get that r B SD is an open dense subset
of r. Fix p E r B S D . Then there is a neighbourhood U of p such that

= f F1 (z), ... , for .z E U n D, where every FJ: U f1 D -
D’ is an holomorphic mapping on U f1 D which is continuous up to r.

Since r’ is (a’, ¡3’)-regular, we have (see [DFl] for the bounded case
and [Su] for the general one):

LEMMA 4.5. There exists a neighbourhood V’ of r’ such that for any w 
and Y E ~n one has

where KD, denotes the Kobayashi infinitesimal metric on D’ and C2 &#x3E; 0 is constant.

On the other hand, one has an evident

LEMMA 4.6. Given ,z E D n U and X E en one has

By continuity, one may assume that
We have
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where C1 1 if from Lemma 2.1. Thus, we get by Lemma 4.6 that

Now the standard integration argument implies that

for any z’, z" E U n D. This means that the coefficients of the canonical

defining functions (1.1) are Holder aa’ I fJ’ continuous on any compact subset
of rBSD. D

The proof of Theorem B is quite similar, we merely use Lemma 2.5 instead
of Lemma 2.1. Note that, in general, we cannot extend the coefficients to SD,
since the constant C3 depends on U, that is on the distance from p E r B SD
to SD .

5. - Some applications

In this section we give several different applications of our results.

PROPOSITION 5. l. Suppose that F : r - r’ is a continuous CR mapping between
pseudoconvex hypersurfaces in Cn. Suppose further that rl is C°° of finite type in
the sense of D’Angelo, r2 is of class C2 and does not contain any one dimensional
analytic varieties. If F (zo) = wo and F - (wo) is a compact subset of 11, then F is
a finite-to-one mapping in a neighbourhood of F-1 (wo), which itself is necessearily
a finite set.

This result was obtained by [BC] for the case where r’ is of class C°°

(they proved also that in this case F also in C°’°). Their proof is based on the
Bergman projector technique and essentially uses deep PDI results on regularity
of the Bergman projection and the assumption that r’ is of class C°°. Our

approach provides a quite elementary proof of this assertion.
PROOF. It follows by [T] that F extends holomorphically to the pseudo-

convex side D of r; since r’ does not contain complex varieties of positive
dimension, F maps D to the pseudoconvex side D’ of 1~ (see [B]). As it
was shown in [BC], one may find arbitrarily small neighbourhoods V of wo
and U of F-1 (wo) such that F: D f1 U - D’ fl V is proper. Then it follows
from Theorem B that the proper holomorphic correspondence F-1: D’ f1 V -
D n U extends continuously to r’ and, therefore, is finite for any
wEr n U. D

The second assertion may be considered as version of the classical Poincar6-
Alexander theorem for analytic varieties.
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PROPOSITION 5.2. Let D and D’ be bounded domains in Cn (n &#x3E; 1) with strictly
pseudoconvex simply connected real analytic boundaries. Let Q be a subdomain of
D such that 8 Q contains an open piece r of a D and let F: S2 ~ D’ be an m-valued
holomorphic corespondence.

Suppose that the cluster set r) is contained in a D’. Then the graph of
F is the union of m graphs of restrictions to S2 of (global) biholomorphisms between
D and D’. In particular, if F is irreducible, then m = 1.

This assertion generalizes many well-known results [Al], [BB I], [Pi4] and
is new even in the classical case where D and D’ coincide with the unit ball

PROOF. It follows from Theorem A that F extends continuously to r; as
it was shown in Section 4, there is a point p E r and a neighbourhood U of
p in (Cn such that F ~ I D n U "splits", that is the graph of F is an union of
holomorphic in D n U mappings F(i): D n U - D’, continuous up to r. It
follows from [PiT] that every F(j) is a local smooth CR diffeomorphism on
r n U’, if a neighbourhood U’ of p is small enough. Therefore, F(j) extends
holomorphically past p [L], [Pi2], and, moreover, extends analytically along
any path in a D (see [Pi2], [Pi3]); since a D is simply connected, the extended
mapping is holomorphic in a neighbourhood of a D and, therefore, extends to D.
The extended mapping F(j): D ---* D’ is proper and, therefore, biholomorphic
in view of the simply connecteness condition (see [Pi3]). 0

Our next assertion concerns the mapping problem for algebraically bounded
domains. A domain D C cen is said to be algebraically bounded if D = {z E

I p(z, z)  OJ, where p is a real polynomial in cCn and dp =1= 0 in a

neighbourhood of a D. We say that a holomorphic correspondence f : D - D’
between domains D, D’ in Cn is algebraic, if the graph of f is contained in
a complex n-dimensional algebraic variety V in Cn x 

PROPOSITION 5.3. Let F: D -~ D’ be a proper holomorphic correspondence
between algebraically bounded domains in Cn (n &#x3E; 1). Then F is algebraic.

PROOF. First we prove that there exists p E a D such that every coefficient
in ( 1.1 ) extends holomorphically past p. If D is not pseudoconvex this is evi-
dent. If D is pseudoconvex, D’ is necessarily pseudoconvex as well; since they
are of finite type [DFl], it follows from Theorem B that F extends continuously
to a D; so we may take p E a D suc h that f "splits" in a neighbourhood U of
p to holomorphic on D n U mappings = 1,..., m, which are continuous
up 

Since F-1: D~ -~ D also extends continuously to aD’, the pull-back
is finite. Therefore, it follows by [BC] that any F(j) extends C°°

smoothly up to a D near p and f(j): D n Uj -~ D’ n (F(j)(p) + rB) is proper
for a suitable neighbourhood Uj of p and r &#x3E; 0 (see [B]). But then every F(j)
extends holomorphically past p in view of [DF2].

Now one may choose a Levi-non-degenerate point p’ E a D close enough
to p such that any F(j) is biholomorphic at p’; hence F ~~ ~ ( p’) is a Levi-
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non-degenerate point in a D’ and F(j) extends to an algebraic mapping by the
Webster theorem [W]; therefore, F is algebraic by the uniqueness theorem. 0
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