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Characteristic Equations for the Spectrum of Generators

RAINER NAGEL*

1. - Motivation

The spectrum a(A) of the generator A of a strongly continuous semigroup
on a Banach space X characterizes various qualitative and, in particular, asymp-
totic properties of the semigroup. We only mention that the negativity of the
spectral bound of A, i.e.,

implies uniform exponential stability for eventually norm continuous semigroups
on Banach spaces or for positive semigroups on LP- spaces (see [Ne], Chap-
ter 3.5). We refer to the monographs [Nal] and [Ne] where these and many
more relations between spectrum and asymptotics are discussed systematically.

It thus remains a fundamental task to find or at least to estimate the

spectrum a- (A) of semigroup generators A. By definition, this is a problem
in the given Banach space. However, in many situations it can be solved by
finding the zeros of a certain complex function. More precisely, there exists
a function ~ : C 2013~ C such that the spectral values of A are the zeros of a
so-called characteristic equation, i.e.,

Thus the infinite dimensional (linear) problem of computing a(A) is reduced
to a one-dimensional (non linear) problem. Here are some first examples for
this phenomenon.

1.1 EXAMPLES.

(i) Take the finite dimensional space X := C" and a complex n x n-matrix
Then
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for the characteristic polynomial PA(À) := det(À - A).
(ii) In the semigroup approach to delay equations one considers the Banach

space X := C [-1, 0] and the operator A f := f’ on the domain

for some continuous linear form L E X’. Then it is well known that

where

These and many more examples lead to the question we intend to study
in this paper.

1.2 PROBLEM. For which operators A : D(A) C X - X is it possible to
characterize (parts of) the spectrum or (A) through a "characteristic equation" in
a smaller, preferably finite dimensional space?

In Section 2 we propose an abstract framework for this problem and then
show in Section 3 its usefulness by a series of examples.

2. - Theory

We use perturbation methods and, in particular, the following well-known
observation.

Let Ao : D(Ao) C X - X be a closed, linear operator with nonempty
resolvent set p(Ao). For a linear operator B : D(Ao) C X - X satisfying

Ao) E for some (all) h E p (Ao) define the perturbed operator

on the domain D(A) := D(Ao). Then the identity

implies the following characterization of a(A) n p (Ao) .

2.1 LEMMA. Fork E p (Ao) one has the equivalence

Another technique we shall employ in Section 3 consists in taking the
"part" of a given operator A : D (A) c X -~ X. For this we suppose that a
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Banach space Y is continuously sandwiched between the domain D(A) with
the graph norm 11 . and the given Banach space X, i.e.,

Then the part of A in Y is

with domain

If A is closed then Ay is closed as well and one has coincidence between the
spectra and cr (A Y ) (see [Ar], Proposition 1.1).

2.2 LEMMA. 0 then one has

After these preparatory lemmas we formulate the abstract framework which
we will use to discuss Problem 1.2.

2.3 Assumi-rioNs. Throughout this section we assume the following.
(A 1 ) The Banach space X = Xl x X2 is the product of two Banach spaces Xl

and X2.
(A2) For the operator Ao : D (Ao) C X --+ X and for ~, E p (.,4.0) we have an

explicit representation of the resolvent

in operator matrix form with respect to the product Xl x X2.
(A3) The perturbation B : D(Ao) C X satisfies Ao) E C(X) for

all À E 

(A4) The operator A : D (Ao) C X is defined as the sum

It is evident from these assumptions that we will use terminology and
results from the theory of operator matrices. However, only some elementary
facts from that theory will be sufficient and we refer the interested reader to
K.-J. Engel’s survey article [En-3] and his book manuscript [En-2] for more

sophisticated results. In particular, it is shown there (see also [Na-2]) that -

using Schur complements - the spectrum of a 2 x 2-operator matrix can be
computed in one of the factor spaces once the spectrum of the diagonal entries
is known. Surprisingly in all concrete applications studied in Section 3 the

following special situation occurs.
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2.4 THEOREM. Let the operators A, Ao and B on the product space X = Xl x X2
satisfy assumptions (Al)-(A4). If B is of the form

then for each À E p (Ao) one has the equivalence

PROOF. The assumption (A3) guarantees that we can apply Lemma 2.1. To
do this we use the standard matrix rules to compute

Hence, k E p (A) if and only if

is invertible. This is the case if and only if and are

invertible, i.e.,

The condition

might be called the characteristic equation of ,A. with respect to Xl. It gives an
answer to Problem 1.2 and permits to compute values of cr (A) in the smaller
space Xl. If this space is finite dimensional the condition reduces to a scalar

equation.
2.5 COROLLARY. In the situation of Theorem 2.4 assume dim Xl  00. If we

define

then

In particular, if a (.,40) = 0 one has

Note that we did not assume dense domain for our operator A. This is

necessary since in many applications (see 3.3 and 3.4 below) we start with
a (densely defined) semigroup generator, but then extend it to a Hille-Yosida

operator with non dense domain in some extrapolation space. It is only this
extension which produces, in a quite surprising way, situations for which ,As-
sumptions (Al )-(A4) are satisfied. However, having characterized the spectrum
of the extended operator, we obtain information on the spectrum of the original
operator by applying Lemma 2.2. A special case occurring frequently in the
examples below is stated explicitly.
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2.6 COROLLARY. In the situation of Theorem 2.4 assume that

and that the operator A on X and its part Ay in Y satisfy peA) f1 p (,,4y) =,4 0. Then
E p (Ao) one has

PROOF. Lemma 2.2 implies = a (Ay), hence the assertion follows
from Theorem 2.4. D

2.7 COMMENTS.

(i) It was the special form of the perturbing operator B as a matrix B =

0 B which produced the characteristic equation in the space Xl. This( 0 0) p q p

is not such a restrictive assumption as it might seem. In fact, let us start
with a full operator matrix

on x = xl x x2 and decompose it as ,,4 = ,A.o ~ ,t3 with

and

Then it has been shown in [Na-2], see also [En-2], that for "nice" domains
the spectrum, resolvent and, if it exists, the semigroup generated by the
triangular matrix can be calculated explicitly. So the non trivial part of
the spectrum of the full operator matrix can be obtained by Theorem 2.4.

(ii) We return to the situation of Corollary 2.6 and observe that the domain of
the part ,A.y in Y is

This means that the additive perturbation B of ,,4 becomes a perturbation
of the domain. In the Examples 3.3 and 3.4 we invert this procedure
and extend an operator with "perturbed domain" to an additively perturbed
operator. To this extended operator we can apply our theory.

(iii) A completely different approach to Problem 1.2 concerning eigenvalues
only is presented in [Ka-VL].
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3. - Examples

As said before the abstract framework might seem artificial and the results
simple. Therefore we are going to present some typical examples which should
demonstrate that the Assumptions (Ai)-(A4) and Theorem 2.4 allow to obtain
old and new characteristic equations in a unified way.

3.1. - Delay differential equations

In the semigroup approach to (Banach space valued) delay equations (with
possibly infinite delay) one looks at the space

for some Banach space X and at the operator

with domain

For the off-diagonal entry in A we suppose
"unperturbed" operator

The

with domain

generates a strongly continuous semigroup, has spectrum

and its resolvent is

for S E R and f X). If we take as perturbation the operator

then the Assumptions (Ai)-(A4) are satisfied and Theorem 2.4 takes the fol-
lowing form.
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PROPOSITION. In the above situation and for Rek &#x3E; 0 one has

If B is of the form B(.) E ,C (X ) ) this is equivalent to

and, if in addition dim X  oo, to

3.2. - Volterra integro-differential equation

We refer to [Na-Si], Section 4 where Volterra integro-differential equations
have been solved using semigroups on product spaces. In order to determine
the spectrum of the corresponding generator we look at the Banach space

and the operator matrix

with domain

Here, A : D(A) C X - X is some Hille-Yosida operator with s(A)  0 and
the operator C : D (A) --* L 1 (R+, X) is of the form

for some scalar-valued, integrable function a (.) of bounded variation on R+.
Then 

~ -

with D (,A.o) = D (A) is a Hille-Yosida operator with spectrum
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and resolvent

for Re h &#x3E; 0. Taking as perturbation the operator

all the Assumptions (Al )-(A4) are satisfied. It therefore suffices to compute
explicitly the resolvent R (À, is) as

for Re À &#x3E; 0, s &#x3E; 0 and f X) in order to obtain the following
characteristic equation for the spectrum of A.

PROPOSITION. In the above situation and for Re À &#x3E; 0 one has

We leave it to the reader to rewrite the above condition as a scalar char-
acteristic equation in case dim X  oo. Similar conditions appear in the study
of Volterra integral equations but usually are obtained via Laplace transform
methods (see [Pr]). Finally, we point out that the spectra of ,,4 and its restric-
tion to D(A) = D(A) x X) coincide (use the extrapolation theory from
[Na-Si], Section 1 and Lemma 2.2).

3.3. - Population equation with spatial diffusion

We now compute the spectrum of an operator introduced by Nickel-Rhandi
[Ni-Rh] in order to study the behavior of an age-dependent population with
spatial diffusion. We refer to [Ni-Rh], Section 5 for more details and only give
the definitions without their biological interpretation.

Take X := for some open subset Q in I~N . On this space we take
the Laplace operator A with, e.g., Dirichlet boundary conditions generating the
semigroup On the product space
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we define an operator matrix

with domain

The lower right entry is an operator G

given by
- -, - - -,

on a core of D(G). We refer to [Ni-Rh] for a precise description.
For the functions J1 and k we suppose 0  JL E and 0  E

Cb(R+). Then is a Hille-Yosida operator and for Re h &#x3E; 0 one has

with

and

for f and s &#x3E; 0. These statements can be verified by direct

calculations and are explained by the observation that

while 7~(~, Go) is the resolvent of a "weighted" translation semigroup with zero
boundary condition (see [Ni-Rh], (5.5)).

Choose now 0 S fJ E and define B : L 1 (II~+, X) - X by

Then the operators Ao and ,~3 :_ ~ 0 ~ ) satisfy the Assumptions (Ai)-(A4) and
we obtain the following information on the spectrum of the operator A := Ao+B.

PROPOSITION. In the above situation and for Re À &#x3E; 0 one has

where

Assuming the spectrum of the Laplace operator A to be known as a (A) =
Pa (A) = E Z} we obtain a very explicit characterization of a (A).
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COROLLARY. For Re X &#x3E; 0 one has

for some n E N.

3.4. - A cell equation

In this example we compute the spectrum of an operator which, a priori,
is not defined on a product space and therefore seems far from satisfying
Assumptions (Ai)-(A4).

Partial differential equations describing the growth of a cell population in
which division takes place have been studied by many authors using semigroup
methods (e.g., see [Me-Di], [Gr-Na], [Na-4]).

In this approach one considers the operator

with domain

generating a strongly continuous semigroup on the space

Here, a E (0, 1) is a constant, 0  it, b E L’* (’0’ 1 ~ and

By solving differential equations one finds that the spectrum of G is given by
the following characteristic equation

We show that this also is a special case of Assumptions (Ai)-(A4) and Theo-
rem 2.4.
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As product space take

On. consider the operator

with maximal domain

On the space the operator

with domain

generates the nilpotent semigroup given by

Finally, consider C with

as a bounded operator from Ll(4,1) into L 1 ( 2 , 2 ) and the Dirac measure

3 2 1 as an operator from ~~(~1) into C. With these operators we define a

3 x 3-operator matrix

with domain
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This operator matrix will be considered as a 2 x 2-block matrix in the indicated

way. 
~

The resolvent of a triangular operator matrix
~. E p (A 11 ) n p (A22) and is given by the matrix

exists for

at least when the lower left entry is bounded (see [Na-2]). This enables us to
compute the resolvent of ,A.o for each k E C as the operator matrix

In this 2 x 2-block matrix, the upper left entry is analogous to the resolvent in
Example 3.3. More precisely, one has to take

and

The lower right entry is the resolvent of the nilpotent, weighted translation
semigroup generated by Do and can be computed as

From this we obtain

and therefore
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In the last step we take as perturbing operator the matrix

and obtain an operator

with domain

satisfying the Assumptions (Al )-(A4).
Before computing its spectrum we should note that

(1) the part of A in

is exactly our initial operator G on L 1 ( 2 , I) and
(2) the spectra o-(.4j) and a (A) coincide by Lemma 2.2.

Therefore it remains to compute Ao) which is an operator matrix of
the form

with R I (À) = 3 1 o R(À, being a complex number. From the above
2

expressions we therefore obtain the desired result.

PROPOSITION. The spectrum of the cell growth operator is

Clearly, the same method also works for the similar but more complicate
equations on tumor growth treated in [Gr] or [Gy-We]. However, instead of

adding more examples we emphasize the following observation.
The method proposed does not only yield a characteristic equation but it

isolates the space and the operator being responsible for the (non trivial part
of the) spectrum. This insight allows many applications to perturbation and
stability problems and we conclude by giving an example in terms of control
theory.



716

COROLLARY. Let A be the above operator on the space

Then there exists a one-dimensional control space U = C and a control operator
K E £(U, X) such that the control system (A, K) is stabilizable, i.e., there exists
a feed back operator L E £(D(A), U) such that the spectral bound of A + K L
satisfies

PROOF. If we take K : U - JY with and

we obtain that

Since we have already seen that a (Ao) = 0 we have proved the assertion. D

Both the operators and A are Hille-Yosida operators, hence become

generators of semigroups if restricted to the closure of its domain, i.e., to

{0}xL~,l)x~(~).
Looking at the domain of these restrictions one sees that the above corollary

is a statement on "boundary stabilization".
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