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Boundary Optimization under Pseudo Curvature
Constraint

DORIN BUCUR - JEAN-PAUL ZOLÉSIO

1. - Introduction

In the field of shape optimization, we are concerned with problems of the
type: minimize the shape functional

in the family of open (or closed, or measurable) subsets of a fixed bounded
hold all. Some-times, a measure constraint can be given. The functional J
can depend also on Q via the solution of some p.d.e. defined on an open set
related to Q. The usual method to prove the existence of minima for such
a functional is a compactness-lower semi-continuity result or a r-convergence
method, which supposes the existence of a sequence of functionals which have
minimal points and which r-converges to J.

Obviously, a very important role in this study is played by the topology
in the space of domains and the associated compact families. There are two
classical topologies which are usually used, like the Hausdorff topology in the
family of closed sets and the characteristic topology in the family of measurable
sets, each one having some advantages and drawbacks. Anyway, there is no

direct link between the two topologies.
Our first idea was to find a constraint which could be imposed on a family of

sets and which could insure some relation between the two topologies. Therefore
we introduce the (y, H)-density perimeter, where y &#x3E; 0 is a positive number
which in a way represents a scale which we impose in the problem, and H :
[0, oo) - R is a continuous function which will play a corrector role. If we
shall impose a boundedness constraint on the (y, H)-density perimeter we shall
obtain for example that the Hausdorff convergence implies the char-convergence,
or moreover that the measure of the limit set boundary is equal to zero. An
important remark is that chosing H we can handle some topological invariants
of the sets, as for example the number of connected components in 2 D, or the
number of holes of torus in 3 D. All these results are tied to a pseudo curvature
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concept, the maximal density curvature which will be important also in
the study of the r-convergence of the (y, H)-density perimeter for y - 0.

These results will be applied for existence of minima of functionals defined
in the family of open sets of the type

which arise in free boundary problems, or defined on boundary sets of the type

where is the Minkowski content of r, which arise in computer vision.
The r convergence result, means that one can approximate the continuous

problem by some discretizations given in terms of y. In fact, the parameter y
is in a way a scale on which the problem is considered.

2. - Topology in the space of domains

In this section we recall the concepts of Hausdorff and char convergence
of a sequence of domains and some basic properties involving the generalized
perimeter of. a measurable set. We shall also give some examples comparing
the two concepts. For the simplicity of the talk we shall introduce some special
classes of domains which will be used all over the paper. Let D C R N be a
bounded open smooth domain. Let’s denote by

the family of closed subsets of cl (D) and by

the family of closed subsets of cl (D) of zero Lebesgue measure. We can also
denote the family of open subsets of D by

For any closed sets Fl, F2 E C(D) the Hausdorff metric is defined by:

where

By complementarity one can define a topology in the space of open sets namely,
the Hausdorff complementary topology, denoted HI and given by the metric

where Q2 E and Qc is the complementary set of Q.
We recall the main properties of this topology.
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PROPOSITION 2.1. The family C(D) is compact in the Hd-topology
The proof of this proposition is an easy consequence of the Ascoli-Arzela

theorem. A necessary remark is that the family Co(D) it is not compact. Other

interesting properties of the Hausdorff topology are the following.
PROPOSITION 2.2. Denoting by #(r) the number of connected components of

r, the mapping

is lower semi-continuous in the Hd -topology.
PROPOSITION 2.3. The family O(D) is compact in the Hc-topology.

PROPOSITION 2.4. Let Then V K cc Q, there exists n K E N such
that V n &#x3E; nK we have K C On-

The char-topology is defined on the family of measurable subsets of R N
by the L 2 -metric :

where A i , A2 are measurable subsets of R N and XA 1 are their characteristic
functions. A classical result states that the ball is weak compact
in the L2 topology. This statement does not give the compactness in the

space of domains, but it is used in the proof of relaxed problems, and in

homogenization theory. To obtain a strong compactness result it is defined the
generalized perimeter of a measurable set A in the ball D by

The main result concerning the generalized perimeter is the next one.

PROPOSITION 2.5. 
c. Then there exists a subsequence and a measurable set S2 in D, such that

lim infn,. and 

Since the generalized perimeter is associated to measurable sets, the char
convergence has no special behavior for the family of open sets where usually
p.d.e. are defined. So it is possible that a sequence of open sets with uniformly
bounded generalized perimeter to converge in the char topology to a measurable
set which has not open representative. For a simple example, constructed by
finite unions of balls centred in the points of rational coordinates of the unity
ball, see [6].

In oposition with the char topology, the Hc-topology has a good com-
pactness property in the family of open sets, but there is no direct link be-

tween the Hc convergence and the char-convergence, namely if and
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we do not have XA = X B . A very simple example is to consider

1) B {Xl, ... , being the first n points of rational coordinates
in the unity ball. Then and 

These two topologies can be compared by introducing the (y, H)-density
perimeter. One of the purposes of the paper is to find a possible constraint
on the boundaries, of the generalized perimeter-type, such to obtain the two
convergence properties in the same time. More exactly, a sequence of open sets
which converges in the Hc-topology to an open set, has also to converge in the
char-topology to the same set. In the same time we shall also have a control on
the measure of the boundary of the limit term, since in free boundary problems
it is quite natural to ask the measure of the boundary to be equal to zero.

3. - Density perimeter Py, H

We define a new concept which could take the place of the perimeter in
free boundary problems, but which has more specific properties in our desired
direction than the generalized perimeter of De Giorgi [9].

Let A c an arbitrary set, and s &#x3E; 0.

DEFINITION 3.1. The 8 -dilation of the set A is

Let H : [0, oo) - R be a given continuous function with H (o) - 0
which will be a "corrector" of the perimeter and y &#x3E; 0 a fixed number which

represents a maximal scale in the problem. We shall introduce the following
new concept for the "perimeter", which is an extension of the density perimeter
defined in [5].

DEFINITION 3.2. Let y &#x3E; 0. The (y, H)-density perimeter of the set A is

In the first term we have expanded the boundary a A with balls of the

ray s, and we computed the "area" of the boundary which intuitively is the

quotient of the volume and the "high" 2E. The default which may appear is
corrected by the function H. A typical example is in 2 D for the density
perimeter of a segment. If we take H (s) - - E-’ then for any y &#x3E; 0 we
have that the (y, H)-density perimeter is equal to the length of the segment
and in fact the function H corrects the default - the area of the two half-disks
formed by the two extremal points of the segment (one can see in fact that
H (~)  - 2 is also convenient). If we want to compute the same quantity for
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a circle, one can see that no corrector is necessary, since for y small we have
that 2E = lenght of the,circle.

In a way, this construction means that we introduced a larger scale, given
by y, on which we are looking at the problem. From the numerical view-

point this is a natural constraint. For y vanishing to zero, we shall study
the r-convergence of the density perimeter, and under some supplementary
constraints we shall deduce its convergence towards classical length measures,
like the Minkowski content or the Hausdorff measure.

A first question which naturally holds is: "When the density perimeter it
is equal to the classical perimeter?".

Following the Steiner theorem (see [3]), if r is an (N - I)-dimensional
C °° -manifold without boundary, then for 8 enough small we have that

where a2i are real numbers depending on the geometry of the manifold. In two
dimensions, if r is a C°°-manifold without boundary then chosing H(e) = 0,
Py,o is equal to the length ’of F for y small. For the case N = 3 we have

where x(r) is the. Euler-Poicare characteristic (see [2]). It is surprising that
m(r) depends only on the. surface of r and its Euler-Poicar6 characteristic

(which in three dimensions is very well controled). Finally, we can remark that
if we chose in three dimensions the corrector function

then for E enough small the density perimeter is equal to the surface for any
connected C°°-manifold without boundary of 2-dimensions. This is true, since
the Euler-Poincar6 characteristic for such a manifold in three dimensions is less
or equal to two. For example, for a tours with y holes we have

The problem we are concerned with is linked in fact to the value of E for

which the previous formulae - are not anymore valid. In this context we shall

introduce the maximal density curvature, which we shall study to find some
r-convergence properties of the density perimeter.

A main difference between the generalized perimeter of De Giorgi and the
density perimeter is that the first one is defined in a class of sets, namely it
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is constant in the family of sets with the same L2 characteristic function, and
hence it does not "see" a crack, or a point. In opposition with this behavior,
for the density perimeter each point is important. One can also ask which is
the link between the density perimeter and other type of length measures. We
recall the definition of the Minkowski contents and of the Hausdorff measure
which are related to the density perimeter. The upper and lower Minkowski
contents are defined in [7] for S C R N respectively as

If the upper and the lower Minkowski contents coincide, the common value is
called the Minkowski content of the set.

Another essential length measure is the Hausdorff s-dimensional measure,
given by the following relation. For s &#x3E; 0 and 3 &#x3E; 0 we put

where r ( .) is the usual Gamma function. The Hausdorff s-dimensional measure
of S is given by

A first relation between the density perimeter and classical length measures
is contained in the following

PROPOSITION 3.1. Let A c RN. The map y --~ Py,H (A) is non-increasing, and

where ./1~t*(A) is the upper Minkowski content of A.

For a sequence of open sets which have the (y, H)-density perimeter uni-
formly bounded, we shall prove the existence of a subsequence which converges
simultanously in the Hc-topology and in the char-topology to the same set.

LEMMA 3.1. Let sequence of open subsets of D, Then
V~ &#x3E; 0, ~ n~ E N, Vn &#x3E; ns we have 8Q C (aQn)’-

PROOF. The proof of this lemma is classical. Suppose that 3 E &#x3E; 0, a

subsequence of still denote with the same index and some points
xn E Since aQ is compact we can assume that xn -+ x,
x E From the Hc-convergence there exists ns /4 E N such that V n &#x3E; ns /4 we
have x E So x E (S2n)~~4, but x ~ (aQn)sj2, and hence B(x, 4) c S2n,
V n &#x3E; nsj4. We get B(x, 4) c which implies x is an interior point of 
in contradiction with the choice x E 0
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One can give the following compactness result which makes the link be-
tween the H’-topology and the char-convergence.

THEOREM 3. l. Let k &#x3E; 0 be fixed. Then the family of open subsets of D for
which the density perimeter of the boundary is upper bounded by k

is compact in the Hc-topology. Moreover, if {S2n }n 5; then

On .

PROOF. For compactness in the HC topology it suffices to prove the closed-
ness since this space is compact. For that we shall prove the following lemma
which asserts the lower semi-continuity of the (y, H) density perimeter.

LEMMA 3.2. The mapping S2 --~ Py, H (a S2) is lower semi-continuous in the

For fixed 8 E (0, y) and 8 chosen such that E + 8  y we have that

Making 8 -~ 0 and n - oo we get

The lower semi-continuity of the density perimeter proves that is

compact in the H~ topology. Moreover, by the definition of the H’-convergence
we have that V s &#x3E; 0, B~ E N, V n &#x3E; and Q’ c (S2n)~. Remark
that in general and so we can write

= M (0’ +  + 

~ + 2ks - 2sH(s)

Making s - 0 the conclusion follows. D

COROLLARY 3.1. The family Fy,k (D) is compact in the char topology.
The measure of a set of finite density perimeter is equal to zero. Indeed,

suppose that A is an arbitrary subset of D such that Py,H (A) = k  oo. Then

m(A) = 0 since 2ks - We conclude that if an arbitrary set
O has the (y, H)-density perimeter of the boundary finite, then 0 has an open
L2-representative in the same class, since the set OBa 0 is open.
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For measuring lengths, various notions can be defined in relation with
the density perimeter, all having the same lower semi-continuity property. For
example if one denote by a (k) the k - L2 measure of the unity ball of R~, one
can define the k-dimensional (y, H)-density perimeter of a set A by

Since as a general fact the (N - I)-density perimeter measures the area of the
boundary of an open set in the HI-topology, for the m-density perimeter it is
sufficient to consider only closed sets and the Hausdorff topology (denoted Hd ).
Then one can prove the following:

PROPOSITION 3.2. For k E { 1, ... , the mapping A --+ pk Y, H (A) is lower
semi-continuous in the family of closed sets with the Hd topology.

For Neumann problems, when we are interested in measuring the boundaries
of the cracks, a more suitable measure can be defined using the Sobolev capacity,
but which preservs the lower semi-continuity property. So one can replace the
(N-2)-density perimeter in the following way. Let g : [0, oo) - R+ continuous
with g(x) = 0 if and only if x = 0 and define

For an application of this type of constraint see [4].

4. - Pseudo curvature and correctors

We observe that for some sets and for y small we may have Py, H (A) _
.~(* (A). To study the situations when this holds, we shall extend the definition
of the density curvature for the (y, H)-density perimeter.

DEFINITION 4.1. Let A c The maximal density curvature of a set A is

Any finite value of is reached. Indeed, if 6n  ~ a~ H ~A~ and 8,, -

1 for n - oo, then for 0  s  20132013 there exists a rank ns such that8,H 8,H
we have
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Using the continuity of the measure on increasing sequences we obtain the
inequality for Ca, H I (A) * On the other hand, if for fixed 8 and for any 0  8  3
we have the inequality

we also have

Indeed, we shall take an increasing sequence which converges to 8 and
write (11) for 8n. By the same argument of the continuity of the measure on
increasing sequences we get (12). Thus, in Definition 4.1 can be considered
inequality (12).

If  oo, then for all we have Py, H (A) _ .NL * (A) and 8,H
moreover the upper and the lower Minkowski contents coincide.

There exists a connection between the density curvature and the mean
curvature. Indeed, let’s suppose that r is the boundary of a smooth open set
S2. To obtain that it would be sufficient that on (0, k-1 ) to have

or

or

Since this inequality is true for E = 0 it would be sufficient to have on (o, k-1 )

equivalent to

But following [9], is the sum on of the mean curvature of

and this remark makes the connection between the boundedness of the
mean curvature and the density curvature.
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LEMMA 4.1. Let { rn } be a sequence of closed subsets of cl (D) such that
Then

d 1PROOF. For a sequence rn - r suffices to prove lim 

I Let’s fix 0  s  8 For it &#x3E; 0 it exists n/l/2 E

N, such that V n &#x3E; rn c rit/2. So and 
and

But for subsequence {nk } we get

For all 0  5 and for all n &#x3E; ns-g the H’ convergence gives lo C rf . So

Since = f8 and = r-, the continuity of the measure gives

Since our hypothesis was 0  8  3  the previous
relations . D

8,H 
In the further considerations of this section we shall study the density

curvature of a compact connected set for 7~(c) = 2013~ and we shall see that
the density curvature is zero.

Firstly we give the following lemma.

LEMMA 4.2. Let K c compact connected set consisting of a finite
union of segments. Then ca,H(K) = 0.

PRooF. In a first step we shall suppose that K doesn’t contain parallel
segments. Then, for given 3 &#x3E; 0, the set K8 has the boundary consisting of
vortex, arcs of circle and segments. Any vertex can join two segments or two
arcs or an arc and a segment, but always the exterior angle in the vertex is
inferior or equal to 7r.

Since there are no parallel segments in K, and since the segments of
the boundary are parallel with the segments of K, then the mapping
8 --~ is continuous on [0, oo). From [10] we have that
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and so the mapping 3 --~ is derivable on [0, oo) and

We intend to prove that the map

is non-increasing on [0, oo). Since G(.) is derivable we compute its derivative

To prove that G’(8)  0 it is equivalent to prove that

This is a continuous function which vanishes in 3 = 0. So it would be sufficient
to prove that the right hand derivative of this function is negative on [0, oo),
i.e.

where by d we denote the right hand derivative. Hence, it is sufficient to prove
that the right hand derivative of the mapping 8 --* HI (a K3) exits and is less
that 2n .

For the computation of dli 1 (a K s ) we see that the contribution of a segment
is zero, the contribution of an arc is the measure of the arc, and the contribution
of a vertex is -2 cotan ’ (the same for any of the three possible situations)
where a is the exterior angle. So we can write

where Ui are the measures of the arcs, and a the measures of angles. Hence

Since for x &#x3E; 0 we have tan(x) &#x3E; x then

where N is the number of vertices. The sum + Ui ) is in fact the

sum of exterior angles to K8. Since K is connected then a K8 may have more
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connected components, but only one exterior envelope whose sum of angles is
(Ne + 2)n, and more but finite number of interior envelopes whose exterior sum
of angles is (Np - 2)7r. So

where N = Ne and we get

The passage to any K, even with parallel segments, is now trivial since in the
Hd topology we can find a sequence of Kn with no parallel segments such that

rjKn K, and from the semi-continuity of (Lemma 4.1 ) we conclude the
proof. 0

We can state the following assertion.
THEOREM 4.1. If K is a compact connected set in then Ca, H (K) = 0.
PROOF. From the lower semi-continuity of ca, H in the Hd topology it is

sufficient to approach K by a sequence of sets such as in Lemma 4.2. We
cover K by open balls of ray 2 and since K is compact there is a finite number
of balls which cover K. Moreover, since K is connected this family of open
balls . can be considered connected. We shall consider the union of segments
constructed in the following way: we link two centers of two balls if their
intersection is non-empty. We get a set denoted rs which consists of a union
f 

. rjof segments, is connected and dHd (K, rs)  8. Therefore for 8 0
and since ca,H (rn) = 0 we get Ca, H (K) = 0. o

According to [8], for a compact set with a finite number of connected

components in two dimensions we have that ~-~C 1 ( K ) _ Then we derive
as a consequence the following result which can be found in [7].

COROLLARY 4.1. If Kn is a sequence of compact connected sets which Hd -
converges to a compact connected set K then

PROOF. Since K is a compact connected set in 2-D we have =

Pl,n8j2(K) and the mapping

is lower semi-continuous in the Hd topology. D

THEOREM 4.2. If K is a compact set with k connected components then for all
I &#x3E; k we have = 0.

PROOF. For the proof, we only remark that we can suppose that the con-
nected components of K are as in Lemma 4.2 with no parallel segments. Then
by the same considerations as in Lemma 4.2 we have that the right-hand deriva-
tive of the Hausdorff measure of the boundary of K3 is less than 2~ k. D
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5. - r -convergence of the density perimeter

We recall the definition of the r-convergence and its most important prop-
erty in a simplified form. Let Fn : K ~ R be a sequence of functionals defined
on a compact space K which have minimizer points yn , and F : K ~ R.

DEFINITION 5.1. It is said that Fn r-converges to F for n ~ oo if
1. E K, xn ~ x we have F (x )  lim Fn (xn )
2. E K, 3 {xn } E K, xn - x and F (x ) &#x3E; Fn (xn )

Let’s suppose that yn ~ y. Then y is a minimizer for F. Indeed, let
x E K. Then there exists xn E K, Xn - x and F (x ) &#x3E; lim SUPN Fn (xn ) &#x3E;

lim sup lim infn,,, F (y ) .
We have the following result which proves that a numerical algorithm com-

puting a minimizer for energy functionals penalized with the density perimeter
leads to minimizers for the energy functional penalized with the Minkowski’s
content length measure.

THEOREM 5.1. The density perimeter Py,H r-converges to the Minkowski’s
content for y - 0 in the family of closed subset of cl(D) of zero measure and with
uniformly bounded density curvature.

PROOF. We have to verify the two conditions for r-convergence.
uj .

1. For any fn---+r with we have to prove

If lim infnoo = oo the inequality above is true. If this limit is

finite, then for a subsequence we shall have M  oo and so

m(rn) = 0. For any JL &#x3E; 0, B~~ E N such that &#x3E; 1 ~ So

Since ca, H then for we have

Making n -~ oo and p - 0 we get

and that inequality is true for all 2K ~  0. Making 8 --~ 0 the proof is
finished.
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2. For any r in the class, there exists a sequence of rn such that 
and

We shall chose rn = r. Then for we get that P Yn (1) = ./1~(r).
D

In 2-D we have the following r-convergence result which takes into con-
sideration the connected components instead of the maximal density curvature.

THEOREM 5.2. Py,H r-converges to the Minkowski’s content for y -~ 0 in the
family of compact sets with at most k connected components.

PROOF. We can apply Theorem 5.1 for = 0 and we get

and so the first condition for r-convergence is verified. The second one is
trivial as in Theorem 5.1. D

6. - Existence of optimal domain

According to the physical problem which we solve, there are some typical
classes of shape functionals to minimize. A first type which is characteristic
for free boundary problems consists in minimizing a shape functional

The usual method used in [11] consists in a relaxation of f to measurable
sets an to penalize with the generalized perimeter. In such a way it is made a
deviation from the initial problem previously defined on open sets.

Using a penalty term involving the density perimeter, we can recover in
the same time the char-convergence and the openness of the limiting term. We
can state

THEOREM 6.1. If f is lower semi-continuous in the char-topology then for any
y and H satisfying the usual conditions the functional

has a minimizer in the class O(D).
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A similar result holds also if the lower semi-continuity of the functional f
is given in the HI topology, but the general frame of free boundary problems
is the char-convergence.

Another important class of functionals is of the type

which we want to minimize in the family Co(D) and which is supposed to be
lower semi-continuous in the Hd topology. Since the set Go (D) is not compact
in the Hd topology there is no an immediate existence result. We shall add a
penalty term of the type .M(T) + and minimize

In other to apply the r-convergence result we give the following:

LEMMA 6.1. For any y &#x3E; 0 the functional

has a minimizing term in Co(D).

PROOF. Let consider a minimizing sequence Co(D). From the

compactness of C(D), we can suppose that rn Hd) r. Since for a minimizing
is bounded, we get that Py, H (r )  oo and hence we

have r E Co(D). From the lower semi-continuity of the functional f and of
the density perimeter we obtain that r is a minimizer. D

THEOREM 6.2. The functional r -~ has a minimizing term in Co(D).

PROOF. From Theorem 5.1 we get that the density perimeter Py,H r-

converges for y - 0 to the Minkowski’s content in the family of closed sets
with bounded density curvature and from the properties of r-convergence and
Lemma 6.1 we get that E(-) has a minimizer. D

Following Theorem 5.2 in 2-D we can give:

THEOREM 6.3. In two dimensions, the functional

has a minimizer in Co (D) C 
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7. - Minimal energy functionals

The main field of applications of the previous considerations are the minimal
energy functionals derived from modelizing process of physical problems.

The first example considered in Theorem 6.1 is characteristic in free bound-
ary problems. Usually, a penalty term of the generalized perimeter is considered
to modelize the superficial tension which appear on the free boundary. Unfor-
tunately, to solve such a problem we have to relax it to measurable sets, and
the free boundary might have even a positive measure, which is completely
different from the physical reality. Nevertheless, in some specific examples one
can deduce some regularity results (see [1]).

We shall give here a simple solution to a Bernoulli like free boundary
problem considered also in [11]. The author was constrained to relax the

original problem to measurable sets, and to define special Sobolev-like spaces.
Using the density perimeter, we give a simple existence result which will also
furnish the openness of the optimal domain as well as the measure of the

boundary equal to zero.
Let D c R N be an open set, the hold-all for our moving domain and C a

compact subset of D. Let f E L2(D) with essup f C C and for any open S2
with C c S2 c D we consider the energy .

Remark that for fixed smooth Q there is a unique element in which
minimizes E (S2), namely the solution of the Neumann problem

Given a E R+ with m (C)  a  m (D) we shall minimize in the family of
open sets the following problem

We give: 
°

THEOREM 7.1. Problem ( 14) has a solution in the family of open sets with zero
boundary measure.

PROOF. Indeed, let {S2n } be a minimizing sequence. From the compactness
property of the H’-topology one can suppose that S2n and C C S2 c D
is an open set. Moreover, from Proposition 3.2 we have that

and hence m (a SZ) = 0.
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It is sufficient to prove that lim inf,-,,, E (0,). Let u n E 
be the minimizer of Then a simple calculus give the existence of M E R
such that

Denote by ~, and ifun the extensions by 0 on D of the functions un and
Vu, to elements of L2(D) respectively L2(D, Then

From the classical weak compactness result, one can suppose that

But, and using Proposition 2.4 we get that

Indeed, let w E D(S2), supp w = K compactly contained in Q. From Proposi-
tion 2.4 one can write

Making n -~ oo, by the weak convergence we get

Hence up E and = 

But, also (I - and since Py, H (a S2n ) is uniformly bounded one
can suppose (eventual substracting a sequence) that Qn 0. Then making
n ~ oo one gets

and hence u = 0 a.e. on 0’. Similarly v = 0 a.e. on Q’.
To conclude the proof we have

Hence

Thus Q is a minimizer, and from the char-convergence we have m(Q) = a. 0
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Comparing this result to that of ( 11 ], where the minimal set was only
measurable with finite generalized perimeter, in our statements one can also ask
f E H-1 (D) with the existence of an open set U satisfying a uniform cone
property with supp f C U c C. Then the proof follows in the same way, but in
the energy functional instead of the term Jg u f dx we consider the dual pairing
form  f, PDulU where PD : Ho (D) is an extension
operator. This situation is without sense if the set S2 is only measurable, since
the support of f might be of zero measure.

We also remark that under the assumption of the uniform boundedness of
the density perimeter, the convergence of the energies implies the convergence of
the states. Indeed, if b n E N, M, and E(Q),
then using the previous notations we obtain that

From the uniqueness of the minimizer w get ul,2 = uo, and hence

The second example is the Mumford-Shah functional which appears in

image segmentation (Lemma 6.1 and Theorems 6.2, 6.3). In this case, the
choice of y is like a maximal scale introduced in the problem, and following
the r-convergence result, we have that for y small, the optimal solution of Ey,
approaches the optimal image, for which the length of the contours is given in
terms of the Hausdorff measure of the boundary or Minkowski content.

Let D be a bounded open subset of R N and g E L2 (D) the image to treat.
Taking the energy

one can apply Theorems 6.2 and 6.3, and we obtain existence results for the
image segmentation.
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