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Spherical Analysis on Harmonic A N Groups

JEAN-PHILIPPE ANKER - EWA DAMEK - CHOKRI YACOUB

0. - Introduction

Harmonic AN groups and analysis thereon have been studied by several au-
thors in the past 10 years ([Bo], [BTV], [CDKRI], [CDKR2], [Daml], [Dam2],
[Dam3], [Dam4], [DR1], [DR2], [Ric2], [Sz2] ... ). Recall that, as Riemannian
manifolds, these solvable Lie groups include all symmetric spaces of noncom-
pact type and rank one, namely the hyperbolic spaces HN (R), HN (C), HN (IHI)
and H2 (®) (the real hyperbolic spaces which are somehow degenerate,
are often disregarded), but that most of them are not symmetric, thus providing
numerous counterexamples to the Lichnerowicz conjecture [DRl].

Despite the lack of symmetry, spherical analysis i.e. the analysis of radial
functions on these spaces is quite similar to the hyperbolic space case. This
was already apparent in the pioneer works [DR2], [Ric2] and will be made clear
in this paper. First of all we shall emphasize that spherical analysis is again a
particular case of the Jacobi function analysis, an elementary observation which
is quite useful and seems to have been unnoticed. The main body of the paper
will be devoted to establishing a series of analytical results, which illustrate
the actual similarity with symmetric spaces: a Kunze-Stein phenomenon, sharp
and simple criteria for the LP - LP and the weak L 1 --~ L 1 boundedness
of positive convolution kernels, the LP behavior of (functions of) the Laplace-
Beltrami operator, a detailed analysis of the heat kernel, the weak L 1 - L 1

boundedness of both the heat maximal operator and the Riesz transform, ....

The (modified) wave equation will be studied separately [AMPS].
Our paper is more precisely organized as follows. In Section 1 we recall

the basic structure of harmonic AN groups and in Section 2 the basic spherical
harmonic analysis thereon. In Section 3 we establish the analogues of the Herz
and the Str6mberg criteria for the LP - LP and the weak L 1 -~ L boundedness
of positive radial convolution kernels, and get as first consequences a spherical
Kunze-Stein phenomenon and the weak L 1 ~ L 1 boundedness of the Hardy-
Littlewood maximal function. In Section 5 we obtain an explicit formula for
the heat kernel based on the inverse Abel transform, deduce from it optimal

Pervenuto alla Redazione il 2 gennaio 1995 e in forma definitiva il 11 ottobre 1996.
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upper and lower bounds, both for the heat kernel and its gradient, and get as
a consequence the weak L 1 -~ L 1 boundedness of the heat maximal operator.
We conclude in Section 6 with some further results and open problems.

This paper is the result of two independent researches. On one hand, J.-Ph.
Anker and E. Damek worked out most of the material in Sections 2 to 5 during
a(n enjoyable) stay of the first author in Wroclaw in the Spring of 1993. On the
other hand, C. Yacoub obtained parts of Sections 3, 5 and 6 in the first chapter
of his thesis [Ya]. All three authors are grateful to N. Lohou6 for suggesting to
look at the weak L 1 -~ L 1 boundedness of the heat maximal operator in this
setting, which was the starting point of their study.

1. - Basic structure of S = AN

Harmonic A N groups form a class of solvable Lie groups, equipped with
a left-invariant metric. More precisely, S = A x N is a semi-direct product of

R with a Heisenberg type Lie group N.
H-type Lie groups were introduced by Kaplan [Kal] and studied later on

by several authors (see [BTV], [CDKRl], [CDKR2], [DR2], [Ka2], [Ka3], [KR],
[Kor], [Ricl], [Rie] ... ). Recall briefly their structure. Let n be a two-step
nilpotent Lie algebra, equipped with an inner product ( , ). Denote by 3 the
center of n and by v the orthogonal complement of 3 in n (so that [0, 0] C 3).
Let JZ : u - to be the linear map defined by

Then n is of Heisenberg type if the following equivalent conditions are satisfied:

(1.2) ad X is an isometry from (Ker ad X) -L (C to) onto J, for every unit vector

Z~t);

Recall [Kal] the possible dimensions k = dim 3 and m = dim b :
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where K &#x3E; 0 and it &#x3E; 0 are arbitrary integers. In particular m is always
even. (As was pointed out by A. Koranyi, there is actually a simple and clear
explanation for this fact: any JZ corresponding to a unit vector Z E 3 induces
a complex structure on b.)

The corresponding (connected and) simply connected Lie groups N are
called of Heisenberg type. We shall identify them with their Lie algebra n via
the exponential map. Thus multiplication in reads

Consider ([Bo], [BTV], [CDKR1], [CDKR2], [Daml], [Dam2], [DRl],
[DR2], [Sz2] ... ) the semi-direct product S = N x Rj defined by

S is a solvable (connected and) simply connected Lie group, with Lie algebra
~. = to fl3 3 fl3 R and Lie bracket

S is equipped with the left-invariant Riemannian metric induced by

on .~. The associated left-invariant (Riemann-Haar) measure on S is given by

Here Q = 2 + k is the homogeneous dimension of N.
Most Riemannian symmetric spaces G/K of noncompact type and rank one

fit into this framework. According to the Iwasawa decomposition G = NAK,
they can be realized indeed as S = NA = AN, with A -- R. N is abelian for
real hyperbolic spaces = H N (R) (which are therefore often disregarded)
and of Heisenberg type in the other cases G/K = HN (IHI), H2(O).
Notice that these classical examples form only a very small subclass of harmonic
AN groups, as can be seen by looking at the dimensions:
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It should be pointed out that different notations and normalizations are used in
the setting of symmetric spaces on one hand and in the setting of A N groups
on the other hand. In this paper we shall stick to the latter conventions.

Hyperbolic spaces have a well known realization as the unit ball
in IFn . Our general groups S can be realized similarly as the unit ball

in 5, via a Cayley type transform:

where

and conversely

Letting a ~ 0 i.e. 1, this transform extends naturally to a stereo-
graphic type projection a C between the boundaries a S - N and 

f (o, 0, 1 ) } . Notice that the Jacobian of 8C is related to the Poisson kernel

on N ([Dam3], [Dam4], [DR2]). Precisely,

In the ball model ~(e), the geodesics passing through the origin are the
diameters, the geodesic distance to the origin is given by
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and the Riemannian volume writes

where d~ denotes the surface measure on the unit sphere in sand
n = dim S = m + k + 1. In particular:

( 1.17) The volume density in normal coordinates at the origin, and by translation
at any point, is a purely radial function, which means that S is a harmonic

manifold ([DRl], [Szl]).

(1.18) The ball volume has the asymptotic behavior

Like all harmonic manifolds, S is an Einstein manifold. A lengthy compu-
tation yields the actual constant:

The sectional curvature, as far as it is concerned, is nonpositive, with mini-
mum = -1 [BTV] (see also [Bo], [Dam2]). Notice that it may vanish, contrarily
to the hyperbolic space case.

Eventually let us mention an interesting inequality

between the A-component a(x) of x and the geodesic distance r(x) from x to
the origin, which follows from (1.12) and (1.15), and which is the analogue
of a classical relation between the Iwasawa and the Cartan projections in the
symmetric space case.

2. - Spherical harmonic analysis on S

Spherical harmonic analysis on S was developed in [DR2] and [Ric2], in
close analogy with the classical (rank one) symmetric space case. We recall it

in this section, place it in the general framework of Jacobi analysis [Koo] and
introduce the Abel transform.
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Harmonic analysis on symmetric spaces G/K relies on the commutativity
of convolution on bi - K -invariant objects on G. A similar phenomenon occurs
on general S, if one replaces bi-K -invariance by radiality. For functions on S,
this notion has the obvious meaning. For distributions, invariant differential

operators, ... radiality is defined by means of an averaging operator over spheres,
which writes

in the ball model and generalizes K -averages on rank one symmetric spaces
The following fundamental properties were established in [DR2]:

(2.2) Convolution preserves radiality.

(2.3) Convolution is commutative on radial objects. In particular, the radial

integrable functions on S form a commutative Banach algebra L1(S)a under
convolution.

(2.4) The algebra D(5’)~ of invariant differential operators on S which are radial
(i.e. which commute with the averaging operator) is a polynomial algebra with
a single generator, the Laplace-Beltrami operator ,C.

From there one can develop ([DR2], [Ric2]) a theory of spherical func-
tions, spherical Fourier transform, ... quite similar to the classical (rank one)
symmetric space case, for which we refer for instance to [An5], [Fa], [Hel].
Let us sum up:

(2.5) Spherical functions ({J on S are characterized by the set of conditions

is a radial eigenfunction of ,C (and thus automatically analytic),
t = 1 .

(2.6) They are all obtained by a Harish-Chandra type integral formula:

Moreover £ wx = - ( + k2) and wx 4= = ±it -4

(2.7) For Re(i ,) = - ImÀ &#x3E; 0, we have the following asymptotic behavior:

where c
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(2.8) The spherical Fourier transform is defined by

for radial functions f = f (x ) on S, which we shall often identify with functions
f = f (r) of the geodesic distance to the origin r = d (x, 0) E [ 0, .-

(2.9) Paley-Wiener theorem:
?~ is an isomorphism from the space of smooth radial functions with

compact support on S onto the space of even entire functions of

exponential type.

(2.10) Plancherel formula:
We have the following inversion formula

where co = 2k-2 ~ - 2 -1 1 r(~). Moreover 1í extends to an isometry from the
space a of radial L2 functions on S onto L2«0, +(0), 

Notice that the constant given in the inversion formula [Ric2 ; (4.1)] is

slightly incorrect. The error is due to a discrepancy (already alluded to in

Section 1) between standard normalizations in the harmonic AN group setting on
one hand and in the symmetric space setting on the other hand. See also (5.61).

As for hyperbolic spaces, all this analysis fits actually into the general
framework of Jacobi function analysis [Koo]. and this is the point of view we
want to present now. The radial part (in geodesic polar coordinates) of the
Laplace-Beltrami operator ,C on S writes

By substituting t = L, 4 rad £ becomes the Jacobi operator [Koo; (2.9)]

with indices a = and f3 = k2l. Notice that we are in the ideal case

a &#x3E; f3 &#x3E; - 2 for Jacobi analysis. A comparison of the preceding formulas
with [Koo; § § 2.1-2.2] yields the following identifications:
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(2.13) Spherical functions on S are Jacobi functions:

(2.14) The spherical Fourier transform coincides with the Jacobi transform:

As a consequence, all above-mentioned results follow from the general theory
developed in [Koo]. And much more actually.

For instance there is an analytic Abel transform, which can be interpreted
again geometrically as an orbital integral, as in the symmetric space case, and
which leads to an effective inversion formula for the spherical Fourier transform.
Let us consider, for radial functions f on S, the integral transform

It follows from the integral expression (2.6) that

(2.16) i.e. 

where Y denotes the classical Fourier transform on the real line. Hence

(2.17) Abel tranforms A f are even functions

and inverting effectively the spherical Fourier transform 1t or the Abel trans-
form .,4 amounts to the same problem.

Let us compute (2.15) explicitly. Write n = (X, Z) as usual. (1.12) and
(1.15) yield the expression
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for the geodesic distance r’ between x = (X, Z, a) and the origin. Thus (2.15)
becomes

1 y
Elementary integral calculus (introduce polar coordinates X = 2013 in b,

Z = ç 2 2013 in 3 and substitute successively cosh 1- = cosh § + , cosh2 S2 =
cosh2 2 + ç i.e. cosh s2 = cosh sl + 2 ) leads to the formula

expressing the Abel transform as a composition of two Weyl type fractional
integral transforms [Koo; (5.61 )], defined by

for T &#x3E; 0, 
In order to invert the Abel transform, we use the fact (for

fixed t &#x3E; 0) a one-parameter group of transformations let say of 
with

Thus

Explicitly,
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when k is even and

when k is odd (recall that m is always even).
The mapping properties in the setting of smooth functions with compact

support can be summarized by the following commutative diagram

where each arrow is a (topological) isomorphism. This picture can be extended
to larger function spaces. Inspired by the symmetric space case, let us introduce
for instance the following radial Schwartz type space on S:

which is nothing else but (cosh . )i S(R)even (with the usual identification),
denoting the classical Schwartz space on R. Then we have again a

commutative diagram

where each arrow is a topological isomorphism [Koo; § 6]. Let us make two
remarks:

(2.28) There is actually a whole range of radial LP Schwartz type spaces SP(S)q
(0  p  2), which are defined by substituting e for in (2.26). Their

Abel transform is and their Fourier transform, for
p  2, is the space of even holomorphic functions h = h(h) inside the strip
I Im h [  (t - ~) Q, which satisfy
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for any nonnegative integers M, N [Koo; Theorem 6.1 ] .

(2.30) These Schwartz spaces can be defined more intrinsically by replacing
the radial derivatives in (2.26) by powers ,CM of the Laplace-Beltrami
operator, as in the symmetric space case (see for instance [An2; § 4, Remark (i)]).

For the sake of completeness, let us give the explicit expression of the
Plancherel measure:

depending whether

Notice that all possible cases are covered. See the list (1.4).

Eventually let us relate, as in the symmetric space case, the spherical
functions on S with a natural series of representations of S living on its

boundary, namely the analytic continuation of the representations unitarily
induced from the characters a -+ (X E R) of A = These induced

representations are realized on L2(N) by
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where x = (n, a) with n E N and a E A. Via the stereographic projection, they
can also be realized on L2(aB(s)) by

Both realizations admit obvious analytic continuation in À E C. We want to
show that

where Pi is the Poisson kernel on N (see ( 1.13) or ( 1.14)) and c = =

n

2 20137T.. Contrary to the symmetric space case, this cannot be obtained here by
an elementary substitution. Consider instead the normalized kernel
on S:

A direct computation as in [Dam3] yields £ Px = - ( Q2 + A)7. Hence4

From now on, let us assume 0. Inspired by the determination of the
Martin boundary of S in [DR2; § 7], we shall approximate ’PX (x) by ratios

x involving the Green function G, of Lx = L + 2 + À 2. Gx was
&#x3E; 4

determined in [DR2; Theorem 7.8] for À E i [ o, -f-oo) , but this restriction is not
essential. Notice that, as in the hyperbolic space case ([An5], [Fa], [MW]),
G~, = is a multiple of the fundamental solution at infinity [Koo; (2.15)]

of the Jacobi type equation (rad £x) (D = 0. Precisely,
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Now, let y = (X, Z, a ) E S tend to (Xo, Zo, 0) in N x R+. Then, as it was
shown in the proof of [DR2; Theorem 7.11 ],

I is bounded above (and below) if x remains in a compact
subset of Sand d(y, e) --~ +00.

We are now ready for the proof of (2.34). Take y = (o, 0, a ) E S with

0. By using (2.39) and dominated convergence, (2.36) becomes

Since Gx is radial,

where (by)~ a is the normalized surface measure on the geodesic sphere aB(e, r)
of radius r = d (y, e) in S. Thus,

Using again (2.39) and dominated convergence, we obtain

where na = 1). This last expression is easily seen to be equivalent
to (2.34).

Now that we have identified with a matrix coefficient of it becomes
clear that

(2.44) is a positive definite function on S when h E R.

See (6.14) for further information.
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3. - LP - L p and weak L 1 --+ L 1 boundedness of positive radial convolution
kernels

The problem consists in finding minimal conditions on a nonnegative lo-
cally integrable radial function K = K (r) ensuring LP - LP boundedness,
respectively weak L 1 -~ L 1 boundedness of the corresponding right convolu-
tion operator T f = f * K, i.e.

respectively

We shall first establish the analogue of the Herz criterion for symmetric
spaces ([Her; Theorem 7], [LRy; Anhang 3]), which takes care of (3.1). As

we shall see later (Proposition 4.10.i), we can always reduce by duality to

I p2.

(3.3) THEOREM. (3.1 ) holds if and only if

Moreover this quantity coincides with the LP operator norm of T.

Notice that this integral condition reduces simply to K E L 1 (S)a for p = 1,
as should be expected, and that it can be made quite explicit in all cases, namely

by introducing polar coordinates in S and using the basic behaviort

t The symbol between two positive expressions means for us that

Cl x second expression  first expression  C2 x second expression

for some positive constants Cl and C2.
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The proof of Theorem 3.3 is different from the symmetric space case and
actually simpler. Consider the right regular representation

of S on On one hand, given f E and f ’ E with norms s 1,
we have

hence

On the other hand, since S is amenable, there exist fn E and fn E LP’ (S)
with norms  1 such that

locally uniformly in X E S. Hence,

In order to conclude, notice that

Theorem (3.3) implies the following Kunze-Stein type phenomenon for right
convolution with radial functions. This is an amazing result at the first glance,
since (any version of) the Kunze-Stein phenomenon is known to be false for
general functions on S (see for instance [Col], [CF], [Li], [Lo; pp. 414-415], ... ).

for every F E Lp (S) and fELq(S)Q.

Let us turn our attention to the weak type estimate (3.2) for T f = f * K .
By taking for f an approximate unit in L 1 (S), such an estimate implies that K
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belongs to the weak L 1 space Since the volume density behaves at
infinity like (a positive constant times) e Qr , a typical radial function which is
L 1, ’ at infinity is

The following theorem asserts that this type of decay at infinity is actually
sufficient to imply weak L 1 - L 1 boundedness. Both its statement and its

proof are adapted from the analogous result fpr symmetric spaces [Str].

(3.14) THEOREM. Let K be a locally integrable radialfunction on S with the following
behavior at infinity 

-

Then the associated right-convolution operator T f = f * K on S is of weak type

PROOF. We can assume that f &#x3E; 0 and K (r) = e -Qr . By definition,

r

Write y = r rz,er) = arnx,z, where ar = (0,0,er) and nx,z =Write y - = where ar - (o, 0, e r ) and 

(X, Z, 1). On one hand, the left-invariant Riemann-Haar measure on S in this
decomposition is just d y = dr dX dY. On the other hand, (2.18) implies the
following control of the geodesic distance r’ between the point y and the origin:

Thus

where

is the right-convolution operator on S associated with the Poisson kernel PI
on N. Since T’ is trivially bounded on we are left with the weak
L 1 ~ L 1 boundedness of the operator
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which is just the right-convolution on S with the function 1 on A n R. Writing
this time x = nas (with n E N and s E R), we have

Hence

-f -00

where e d r = t . This brings us to the desired conclusion:where eQso 
201300 

dre-Qr !(nar)=t. This brings us to the desired conclusion:

(3.22) COROLLARY. The Hardy-Littlewood maximal function

is of weak type L - L 1 on S.

Since M is trivially bounded on it is also bounded on all inter-
mediate spaces LP(S) (1  p  For general Riemannian symmetric
spaces of noncompact type, this LP result was first obtained in [CS]. The weak
L 1 --~ L1 1 boundedness, as far as it is concerned, was established in [Str].

PROOF OF COROLLARY (3.22). As usual, we consider separately the local
Hardy-Littlewood maximal function

and the large scale Hardy-Littlewood maximal function

On one hand, Mo can be handled as in the Euclidean case. On the other hand,
.Moo is dominated by the right-convolution operator T f = f * K associated to
the radial kernel

which is of weak type L 1 -~ L 
I by Theorem (3.14).
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4. - LP radial multipliers

In the previous section, we have considered right convolution operators
on LP(S) associated to radial functions which are essentially positive. This
section is devoted to an actually wider class, consisting of all functions of the
Laplace-Beltrami operator ,C, which are at least bounded on L 2 ( S) .

Let us first make clear that, as in the symmetric space case, the spherical
Plancherel formula (2.10) provides an explicit realization of the spectral decom-
position of C on L2(S) and hence of all (spectrally defined) functions of S.
For every h E L°°(R)even consider the right-convolution operator

let say from C°° (,S) to C°° (S) . The right-hand side of (4.1 ) should be understood
in the following way:

Notice that Th is entirely determined by its action on radial functions, which
corresponds simply to pointwise multiplication on the Fourier transform side:

(4.3) LEMMA Th is a bounded operator on L2 (S), with operator norm equal to
llhlll- -

PROOF. To be safe, we may assume that h belongs to the Paley-Wiener
space PW(C)even . The general case follows by a routine completion argument.
We have

Since is positive definite when h E R (2.44),

Hence
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By (2.10) the right-hand side of (4.6) is equal to

Thus Th is bounded on L2 (S), with operator norm  On the other

hand, it is clear from (2.10) that Th is bounded on L2(S)a with operator norm
= IIhllLoo .

It now follows easily from (2.6), (2.10) and Lemma (4.3) that the spectral
decomposition of ,C on L2 (S) is given by

for O:s Àl  À2 :S +00. Moreover all (spectrally defined) functions of £ can
be written

for some h E 
The classical LP multiplier problem consists in finding properties of h

reflecting the boundedness of Th on LP(S). As for symmetric spaces [CS], we
have the following necessary conditions.

(4.10) PROPOSITION. (i) Assume that Th is bounded on LP (S), for some 1  p 
Then Th is bounded on the dual space LP’ (S) and hence on L2(S).

(ii) Assume that Th is bounded on LP(S), for some 1  p  2. Then h = 

extends to an even bounded holomorphic function in the strip I  (-L - 1) Qp 2

(continuous up to the boundary in the case p = 1).

The proof is similar to the symmetric space case [CS]. Let us recall it.

Since h = h, Th coincide with the dual operator (Th)t, which implies immedi-
ately (i). For (ii) we use the fact that

, 
q 1 1

(4.11) belongs to % when [  (- - -) Q
p 2

(respectively in the case p = 1). .( P Y I 
2 

p )

This follows from the integral formula (2.6), which yields by convexity

(4.12) when I Imk 

and from the asymptotic behavior (2.7). Our next step is the crucial formula



662

which is easily established for À E R:

B 

holds indeed for every f E The analytic continuation of h follows
now from (4.13), more precisely from

with suitable choice of test functions f E The uniform boundedness

of h is obtained by taking the Lp’-norm in (4.13):

and dividing by 11 LP’ :A 0. This concludes the proof of Proposition (4.10).
Reciprocally one can show, as in [An3], [ST], [Ta], ... , that Th is bounded

on L P (S) provided h = extends holomorphically to the strip I Im X I 

1 - 4) Q and satisfies there sufficiently many uniform symbol type conditions.p 
Here is a sharp Hörmander type multiplier theorem, which was recently obtained
in an actually wider context [AS].

(4.17) THEOREM. Let 1  p  2. Assume that h = h(.X) is an even bounded

holomorphic function in the strip I 1m À I  (i - 4) Q whose boundary value
h (,) = lim h(À + i tt) satisfies

 1 1) Qp I
(i) rio h belongs to the Besov space Bq,1 (II~) ,
(ii) r~ h (t . ) belongs to Bq,1 I (R), uniformly in t » 0,
where i7o = respectively 17 = is an even (smooth) bump function

= 0, respectively À = :f: 1 and a = n (1 - _21) &#x3E; !! &#x3E; 0. Then Th is a
p 2 q

bounded operator on L P (S). Moreover Bq,1 can be replaced by B2,1 when

p  °

n+3

As in the symmetric space case ([LRy], [Ta]), one gets as a consequence
the following LP spectral result.

(4.18) COROLLARY. For 1  p  +00, the LP spectrum of L consists of the
parabolic region
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5. - The heat kernel

Consider the heat equation

associated to the Laplace-Beltrami operator L on S. Its solution is given by
the heat semi-group

with corresponding heat kernel ht (x, y). Like all kernels of functions of L, ht
is a radial right-convolution kernel on S:

Its analysis fits into the setting (2.27):

By the inversion formula (2.10),

A better expression is obtained by applying first the inverse Euclidean Fourier
transform T-1 and then the inverse Abel transform 

hence

by (2.24.1 ) when k is even and
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by (2.24.2) when k is odd. Such formulas were previously obtained in [LRy]
for all hyperbolic spaces.

Most of this section will be devoted to establishing the following sharp
heat kernel estimate.

(5.9) THEOREM. We have

for t 

Let us make some bibliographical comments about Theorem (5.9). For

general hyperbolic spaces HN (1F) (and some higher rank symmetric spaces),
the upper bound was given in [An 1 ] . Simultaneously and independently, the
upper and lower estimates were established in [DM] (see also [Dav; § 5.7])
for real hyperbolic spaces HN (1R). The proof can be actually adapted, with
some care, to the general hyperbolic space case ([GM; § 3], [Mu]). Here we

shall extend it further to harmonic A N groups. Recently such upper and lower
estimates were established by probabilistic methods for a much wider class of
radial Laplacians [LRo]. We think however that our proof is not without interest
and in any case simpler in our setting.

We shall first estimate expressions of the form

which constitute essentially the right-hand side of the even case (5.7) and appear
also inside the integral in the odd case (5.8). In order to analyze (5.10), we shall
borrow and improve some arguments from [CGGM; pp. 647-648]. Consider the
modified Jacobi operator

Straightforward computations yield the following shift or transmutation formulas.

(5.12) LEMMA. For any a, fJ E (C,

Set
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where p and q are nonnegative integers with p -+- q &#x3E; 0.

(5.14) COROLLARY. fp q (r ) () .f or some constant c &#x3E; 0.

PROOF. r and 2 ’ q - 2 () are even smooth functions on 1R

satisfying the same differential equation:

For fp,q this follows by induction from Lemma (5.12) and from the trivial

identity d3 r2 = 0. Equation (5.15) has a regular singularity at the origin with
.. (p+q-i,q-1) ....
indices 0 and 120132201320. is known to be (stricly) positive.
For instance

and the hypergeometric function is positive if

a 2: 0, b 2: 0, c &#x3E; 0 and 0 :S z  1. Hence - c~~ ~’~ ~ (~) .
It remains to show that c &#x3E; 0. We shall assume p &#x3E; 0 and p -~ q &#x3E; 1

(the degenerate case p = 0, q &#x3E; 0 is handled like p &#x3E; 0, q = 0 and the case
= is trivial). Then fp,q (r) is equal to’ sinh 1

plus a linear combination of products

with By expanding
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one sees that

as r -~ and consequently

for some constant c’ &#x3E; 0. In particular fp,q (r) &#x3E; 0 for r » 0 and therefore
the constant c is positive.

(5.21) Corollary.

(5.22) PROPOSITION. Let p, q be nonnegative integers with p + q &#x3E; 0. Then

fort &#x3E; 0 and r &#x3E; 0.

PROOF. We have

where a 1 = f p, q , ap+q = 4-p-q and more generally aj is a linear
combination, with nonnegative coefficients, of products ... with
p + ... + p~ - p , q + ... ° + qj ~ q ° Therefore, 

Hence

which finishes the proof of Proposition (5.22).
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This settles the even case (5.7). The estimate (5.9) in the odd case (5.8)
is obtained by combining (5.22) with the following Proposition, which handles
the integral part.

(5.26) PROPOSITION. Assume p &#x3E; 0 and q &#x3E; 1. Then

PROOF. After performing the change of variables s = r + u, the left-hand
side of (5.26) becomes

Using the elementary estimates

the integral in (5.27) is easily seen to be equivalent to

Call Il = the last integral. It remains to show that

To estimate 11 from above, we use the elementary inequalities
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and get

Call /2 = the last integral. For t &#x3E; 1 + r, we have

and, 1 + r,

(5.36), (5.37) and (5.38) give the announced upper estimate (5.32) of 11. For
the lower estimate, we use

and get

Call /3 = 13 (t, r) the last integral. rnin(1 , ~ }, we have

where T = 2 + 2 Performing the change of variables u’ = --,It 2- and

using

we obtain
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For min{l, lt- 1, we have

Performing the change of variables and using this time

we obtain

(5.42), (5.45) and (5.48) give the announced lower estimate (5.32) of Il. And
this concludes the proof of Theorem (5.9).

Since grad ht (r) _ - ar ht (r) = sinh r (- Si h r a,- ~ ht (r) , one obtains sim-
ilarly the following gradient estimate.

(5.49) COROLLARY. For all t &#x3E; 0 and r &#x3E; 0,

The heat kernel upper estimate in Theorem (5.9) implies the following
refined result.

(5.50) THEOREM. The heat maximal operator

is of weak type L 1 --+ L 1.

Since T is trivially bounded on L’(S), it is also bounded on all intermedi-
ate spaces LP(S) ( 1  p  +oo). The weak L~ 1 -~ L~ 1 boundedness of the heat
maximal operator was established in [LZ] for hyperbolic spaces and some higher
rank Riemannian symmetric spaces of noncompact type, in [An4; Corollary 3.2]
for general Riemannian symmetric spaces of noncompact type, in [CGGM]
for groups with polynomial growth and for a distinguished Laplacian on some
Iwasawa AN groups, in [AJ] for general Iwasawa AN groups, ....

PROOF OF THEOREM (5.50). As usual, we estimate separately the small time
maximal operator
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and the large time maximal operator

Consider first To. The purely local maximal operator

where x denotes the characteristic function of the unit ball in S, can be handled
as in the Euclidean case. For instance, it is dominated by the local Hardy-
Littlewood maximal function Mo (3.23). The remaining part of To is controled

r2
by an integrable convolution kernel, thanks to the Gaussian factor e - 4t in (5.9):

Too is controled similarly by a radial convolution kernel, which satisfies the
decay condition of Theorem (3.14):

The last estimate follows from (5.9) by analyzing the function I
which has a maximum at t (r ) - Q + (as r -~ +00). Hence Too is of

weak type L 
1 

--~ L 1. And this finishes the proof of Theorem (5.50).
° 

Eventually let us check the actual values of the various constants in the
inversion formulas

and
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by using the classical heat kernel behavior:

For f = ht and x = e, these formulas read respectively

2
For small time asymptotics, the factor e 4 t can be disregarded.

Consider first (5.57). Using either the explicit expression (2.7) of the
c-function and Stirling’s formula or the explicit computation (2.31) of the
Plancherel measure, we see that

After performing the change of variables h’ and letting t - 0, we
obtain

Since the last integral is equal to ~r(~), (5.56) implies

which was the value given in (2.10).
Look next at (5.58). By (5.23) the expression under consideration has an

finite expansion in negative powers of t, with leading term
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(5.56) implies

which was the value found in (2.24.1 ).
For the last case (5.59), we keep inside the integral the leading term in t,

which was just identified:

After performing the change of variables s’ = 2~ and letting t 2013~ 0, we
obtain

(5.56) implies

which was the value found in (2.24.2).

6. - Further results and open problems

More generally, all analytical results established for symmetric spaces in
[An4] and [CGM] remain valid in our setting. Let us be more specific.
(6.1 ) The Riesz transform is defined by

for smooth functions f E C c 0()(S) and in general as a singular integral operator

i
where K is the (distributional) kernel of (-£)-2 and Ly (z) = yz denotes left
translation in S. Its Lip - Lp mapping properties are stated below. Everything
relies upon the following kernel estimates.

(6.4) LEMMA.
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(ii) The second derivatives of K (x ) are as r = r (x) ~ 0.

(iii) r 2 as r = r(x) - +cxJ .

(6.5) THEOREM. (i) Let 1  p  +00 and f E L P (S). Then

converges in LP norm and almost everywhere, as E ~ 0. The operator ,f’ H Rf
so defined is LP --* LP bounded.

(ii) Let f E L 1 (S). Then lim &#x3E; Ref(x) = R f (x) exists almost everywhere ande-+O

defines an operator of weak type L 1 L 1.

(6.6) The full LP ---&#x3E;. Lq behavior of the heat semigroup etc (0  t  

and of the Bessel-Green-Riesz potentials { (A -  ) I - ,C }-Z (0  A  +oo,4 -

Re z &#x3E; 0) can be determined as in [An4], [CGM]. Notice that Vretare’s recur-
rence formula for spherical functions, which plays an important role in [CGM],
writes here [Vr]:

1

(6.8) The so-called Poisson semi-group e -t ~-~~ 2 (0  t  is the most
basic object in Paley-Littlewood-Stein theory. The subordination formula

which writes

at the kernel level, allows reduction to the heat equation. This yields for instance
the following sharp estimates.

(6.11 ) THEOREM. (i) pt (r )
for t &#x3E; 0 and r &#x3E; 0 small,

otherwise.
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Derivatives of can be estimated above similarly. All this leads clearly to
the same results as in [An4; § 6].

As a conclusion, let us mention some open problems and naive questions,
which are worth studying in our opinion.

(6.12) Problem:
What is the right Lichnerowicz conjecture in the noncompact case? More

precisely, are there harmonic manifolds with (stricly) negative Ricci curvature
beside these AN groups (and the real hyperbolic spaces HN (JR) )? This problem
is of course well recognized among specialists of harmonic spaces ([BTV],
[Sz2]).

(6.13) Question:
Are there similar classes of solvable Lie groups, generalizing Iwasawa AN
groups in higher rank?

(6.14) Problem:
Determine the set of all positive definite spherical functions on S = AN. As
usual there are elementary necessary conditions: If is positive definite, then

is bounded and = which amounts respectively to 
and À E and consequently k E R U In analogy with the
hyperbolic space case, the answer to Problem (6.14) should be:
(6.15)

is positive definite

The easy case h E R was settled positively at the end of Section 2. For

imaginary h’s, we tried unsuccessfully to follow the approach [FK], but got stuck
in the intricate formula for the distance between two generic points in the ball
model ( 1.11 ). B. Di Blasio [Di2] (see also [Di 1; § 4.1 ] ) was more successfull
in her attempt to use reduction to the complex hyperbolic space and
was able to establish this way the implication « in (6.15).

(6.16) Question:
So far spherical analysis on harmonic AN groups has proved to be quite similar
to the hyperbolic space case. (Here we have of course the results in mind, not
the proofs.) It would be interesting to exhibit analytical phenomena reflecting
symmetry or assymmetry among these groups. For this it is likely that one
should go beyond radial function analysis and consider more general functions,
sections of vector bundles, ... on S = AN.
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7. - Later information

Since this article circulated as a preprint in 1994, further progress has been
made. Here are some works we are aware of.

(7.1) The radial LP Schwartz spaces SP(S)Q (see § 2) are characterized in [Di3]
(see also [Dil; § 2.1]) by a better set of intrinsic conditions, namely

where D ranges over the left-invariant differential operators on Sand N over
the nonnegative integers.

(7.2) Formula (2.34) is established in [Di4] (see also [Dil ; § 4.2]) by reduction
M+l

to the complex hyperbolic space 

(7.3) The Fourier transform of general functions on S = AN, which is defined
by means of the series (2.32) of representations 1(À, is investigated in [ACD].

(7.4) Another LP radial multiplier theorem, different from (4.17), is established
in [As].

(7.5) The characterization (6.15) of positive-definite spherical functions has now
been achieved in [DZ] by following the approach of M. G. Cowling in the
hyperbolic space case ([Co2], [Co3], [CH]).
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