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Global Existence and Large Time Asymptotic
Bounds of L™ Solutions of Thermal Diffusive
Combustion Systems on R"

P. COLLET - J. XIN

1. — Introduction

In this paper, we are concerned with the existence of global classical so-
lutions and large time asymptotic bounds of the thermal-diffusive combustion
system:

Ui = Axuy — ujuy,

1.1)

uz, = dAsuy + uguy,

with nonnegative initial data (u1,u2)li—0 = (a1(x), a2(x)) € (Cj ,(R™)?, the
space of uniformly bounded continuous functions on R”. Here x € R", n, m
are positive integers, d > 1 is the Lewis number and A, is the n-dimensional
Laplacian. System (1.1) describes the evolution of mass fraction of reactant A,
uy, and that of the product B, u,, for the autocatalytic chemical reaction of
the form: A +mB — (m 4 1)B with rate k,uju3, k, a positive constant. In
case m = 1, or 2, we refer to Billingham and Needham [S], [6], for details.
System (1.1) also describes the mass fraction, u;, and temperature, u,, of
reactant A, of a one step irreversible reaction A — B; especially when u}' is
replaced by the Arrhenius reaction term exp{—E /u2}, E > 0 being the activation
energy. In this context, system (1.1) is the well-known thermal diffusive system,
see Matkowsky and Sivashinsky [18].

One of the basic questions for (1.1) with L* initial data is the existence
of global solutions and the possible uniform in time bounds of u,. In case of
the Arrhenius reaction, i.e. with ulexp{—ﬁ} replacing uju5 in (1.1), there are
many works on global solutions, see Avrin [2], Larrouturou [14] for results in
one space dimension, among others. Yet their bounds of the solutions grow
linearly in time. It is still a conjecture whether u; is bounded uniformly in time,
see Berestycki and Larrouturou [3], and Manley, Marion, and Temam [15].

Pervenuto alla Redazione il 2 dicembre 1994 e in forma definitiva il 12 agosto 1996.
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On the other hand, system (1.1) on a bounded domain 2 in R" with
homogeneous boundary conditions has been thoroughly studied. The problem
on existence and uniform/bounds of solutions was first posed by R. Martin,
and later solved partially’ by Alikakos [1], and completely by Masuda [17].
See also Haraux and Youkana [12], Hollis, Martin, and Pierre [13] for related
approaches and extensions. System (1.1) on the line with spatially decaying
data in L' N L°(R!) has been investigated recently in Berlyand and Xin [8],
Bricmont, Kupiainen, and Xin [8] for critical nonlinearity m = 2. Global
classical solutions exist for any size initial data and converge to self-similar

solutions with anomalous exponents [8].
System (1.1) with L*® data on R" is very different from either the one

on the bounded domains or the one with spatially decaying data. The system
admits propagating front solutions, from simple traveling wave solutions to the
complicated domain walls. When m = 1,2, existence of traveling fronts is
proved in [5]; in [6], formal asymptotic as well as computational studies are
done for fronts generated from initial data u; = positive constant, #, = bounded
nonnegative function with compact support. In the Arrhenius reaction and high
activation energy limit (E — +00), it is well-known that planar fronts are
subject to (thermal-diffusive) instabilities when d is far enough away from one,
and fronts become chaotic, see Clavin [9], Sivashinsky [19], Terman [20] and
references therein. In the long wave asymptotic limit, the perturbations of the
planar fronts satisfy the celebrated Kuramoto-Sivashinsky equation [19]. For
an interesting study on stable and unstable planar fronts away from the large
E limit, see Bonnet er al. [7]. In spite of the front instabilities, one still has
uniformly bounded solutions if d < 1. This fact is easy to demonstrate by a
simple comparison argument, Martin and Pierre [16]. However, when d > 1,
no comparison argument seems to apply, and a completely different approach

is necessary.
Our method is to seek local L? estimates in space by studying certain

localized nonlinear functionals of solutions. Similar functionals appeared first
in [17], and later in [12]. Since our solutions are only bounded in maximum
norm and have no spatial decay at infinities, the functionals in [17] and [12]
are not directly applicable. As in Collet and Eckmann [11], and Collet [10],
we introduce smooth cut-off functions and convert the global functionals of
previous authors into local ones. The first kind of cut-off functions we employ
are simply: ¢ = @(x) = (14 |x —x0|?) ™", where xg is an arbitrary point in R”,
and is used to translate the location of cut-off so as to achieve uniform L™
bounds in space. With such a ¢ and the resulting local L? estimates, we prove
the existence of global classical solutions. However, the L* norm of solutions
grow exponentially in time. To improve the L* estimates of solutions, we
consider a second kind of cut-off functions which are time dependent solutions
of the backward heat equation ¢; + dAg = 0. Using these time dependent
cut-off functions, we are able to refine the L™ estimates to the order of loglog
growth for any space dimension. Thus the possible growth of u, is practically
extremely hard to observe even if it exists. On the other hand, it remains an
interesting problem to prove or disprove the uniform L* bounds on u;. Our
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main result is:

THEOREM 1.1. Consider the thermal diffusive combustion system (1.1) with non-
negative initial data (uy, u)|;—0 = (a1, az) € (Cp ,(R"))? and d > 1. Then there
exist unique global in time classical solutions (uy, u;) € C([0, +00); (C,?’ u ®"MHHN
CH((0, +00); (C ,(R™))?).  Moreover, let ||(a1,a2)ll0 = max(llailloo, l@2ll0),
then there exists positive constant C = C(n, d, m) such that:

luy (2, x)|Loowry < lla1lloos

(1.2)
luz(t, x)|| Lo@mny < Cli(a1, a2)llc loglog(|l(ai, az) |5t + 2e).

A straightforward modification of our proof of Theorem 1.1 implies:

CorOLLARY 1.1. Consider more general nonlinear reaction term of the
form uy f(uy), where f(uz) is continuous and nondecreasing in u; > 0,
fO)= lim f(uy) =0, and

upy—>0+

1
lim f(uy) > 0, lim —log(f(uz)) = 0.
uy—>00 u—>0 Uy

In particular, this form includes the Arrhenius reaction uiuy exp{~%}, for any

m > 0 and E > 0. Then under the same assumptions in Theorem 1.1, there exists
positive constant C = C(n, d, ||(a1, a2) |00, f) Such that:

llui(t, x)|| Loowny < llailloo,

1.3
(-3 [luz(t, x)||Loomny < Cloglog(t + 2e).

REMARK 1.1. In case of power nonlinearities u;u5, the system has the
following scale invariance property: if u; = u;(¢t,x), i = 1,2, are solutions,
then so are v; = v;(¢,x) = A%ui()?'t, Ax), for any A > 0. That is why the
estimates are also in the scale invariant form in the theorem. In case of the
Arrhenius reactions, we lose the scale invariance due to the exponential term
exp{—%}, hence we do not know the explicit dependence of C on ||(a1, a2)|lco-
The proofs are the same in both cases except for some technical details that
we will point out later.

ReMaRrk 1.2. If the initial data for u,, i.e. the function a; is strictly above
some positive constant, then maximum principle shows that u, stays above this
constant forever, and so u; decays to zero exponentially fast. By Theorem 1.1,
uy is uniformly bounded for all time since u;u3 decays exponentially in time.

The rest of the paper is organized as follows. In Section 2, we use the
first kind of time independent cut-off functions and local nonlinear functionals
to prove the existence of global solutions. In Section 3, we employ the time
dependent cut-off functions and their properties to refine the L> estimates of
solutions and complete the proof of the Theorem 1.1. Then we describe all the
necessary modifications to deduce Corollary 1.1.
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2. — Global Existence of Classical Solutions

In this section, we establish the global existence of the classical solutions
of the thermal diffusive system:
@1 Uiy = Aguy —uuy,
' uyy =dAcuy + uguy,
where x e R*, t >0, n > 1, m > 1, d > 1; the initial data (a;(x), ax(x)) are
bounded uniformly continuous functions on R”, denoted by CS,M(R"). Local
existence of nonnegative classical solutions on a maximal existence interval
[0, Tp) is standard, and we only need to derive estimates of solutions independent
of Ty, so as to continue the classical solutions forever in time. We proceed in
three steps.

Step 1. We derive a differential inequality for a localized nonlinear func-
tional of solutions, [ ¢ F. From this differential inequality, we easily find a time
dependent bound of the functional. Since our system is not a gradient system,
we cannot expect to find a Lyapunov functional of solutions. Nevertheless,
we can find a nonlinear functional that grows in time, yet controls the various
norms of solutions locally in space.

Consider classical solutions u; € C([0, Tp); Cg,u(R")) N CL((0, Ty); C,(,’,u), i =
1,2, for some Ty > 0. Let F = F(u1, up) be a smooth function of u;, such that
F>0, F >0, F,; >0, i = 1,2, here we abbreviate F; = g—F similarly for
the second derivatives. Let also ¢ = ¢(t, x) be a smooth nonnegative function
with exponential spatial decay at infinity.

Writing [ in place of [g,---dx, we calculate using (2.1) and integration by

parts:
3:/(0F=/¢:F+/¢F1u1,t+/¢F2u2,z

=/¢,F+/¢F1Au1 +d/§0FzAu2 —/«)(Fl — Pl
2.2)

=/<ptF—/<oF1,nVu1|2 _d+ 1)/<pF1,2w1 ~ Vuz—d/¢F2,z|Vu2|2

—/F1V¢-Vu1—d/F2V<p-Vu2—/(p(F1 ——Fz)ulug'.
In view of:
——/FIV(p~Vu1 —/F2V<p~Vu2=/A(pF,

we get:
a,/qu =/(¢,+dA¢)F+(d— 1)/F1w-w1

23) - / [FL1IVurP + (1 + d)FiaViy - iy + dFyp [ Vo]

- /(D(Fl — F)uuy,
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which is our basic identity.
By maximum principle, ||u1lleo(t) < |lailloc < C < 400; u; > 0, with strict

inequality for ¢ > 0, any x € R". To apply (2.3), we require:

F >2F,,

24
2.4) (d+ 1)2F2, <dFy Py,

for any (up, u;) € [0, C] x R*. Under the conditions (2.4), we have from (2.3):

o [ oF < /(«)t +dAQ)F +(d — 1)/F1V<o-Vu1

1
2.5) -5 @LF1,1|Vu1)* + dF 2| Vus|*]
1/ F m
- = Uiy .
) priuiu,

As a first application of (2.5), we choose:

1
2.6) v=00) = T P

F(ui, uz) = (A+up +ud)e2,

where x( is an arbitrary point in R” so that we can translate the function ¢ to
achieve uniform estimates of solutions in space; and A, €~! suitably large to
be determined. We verify conditions (2.4) as follows:

Fir = (14 2u;)e™?,
F, = €(A +u; +ud)e2,

SO

2.7 Fy >2F,, for (u;,us) € [0,C] xR!, if 2¢(A+C+C? < 1.

Also:
F1,1 = 26”2,
P2 = €2(A +up + ud)e ™2,
Fip = €e(l 4 2uy)e?,
thus:
@+1PF, _ (+2u)@+1? _ (1+207@+17?
2.8) dFy1F) 2d(A4u;+ud) ~ 2dA ’

_a +2C)%(d + 1)?
2d )

if A




630 P. COLLET - J. XIN

Combining (2.7) and (2.8), we see that for any given C and d, we can first
choose A according to (2.8) then € by (2.7). It follows from (2.5) for ¢ € [0, Tp):

/
/ 1
2.9 8,/¢F < /dA(pF—l-(d—— 1)/F1V(p-Vu1 — 5/¢F1,1|Vu1|2.
AN

Now ¢ has the properties:
(2.10) |Agl < Ko, |Vo| <Kp,

for some constant K > 0, We ccontinue from (2.9):

N
\ 1

o [oF < [axor +@- K [Fpivul- 3 [oFiivip

2

Sl F
< dKf<pE+ —d - 1)2K2/<p—1.
2 Fi

2.11)

Notice that:

FP (14 2u)’e™

< Z(A + up «I»u%)e“‘2 =2F, since A > 1.
Fi 2

2.12)
Finally we end up with:

) / oF < [dK + (d — 1K?] / oF,

or:

2.13) /¢F <Teo.

where

(2.14) o =dK +(d —1)’K%, T <c(n)(A+C + CHelul>,

where c(n) is a positive dimensional constant.

Step 2. We use our bound on the nonlinear functional (2.13) to control the
L? (p € (1, +00)) norms of solutions over any unit cube in space. Here we
rely on the fact that the integrand F is exponential in u2, and so bounds any
powers of u; from above. We prove that inequality (2.13) implies that for any
unit cube Q and any finite p > 1:

(2.15) / lua|? < A™'Te" 2" P (p + 1)PTL.
]
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In fact, we have with any nonegative integer k:

A k2—n
(2.16) e’'T > /¢F> A/goefuz >ekA/ (p— > Gk, /Qu’;,

by taking xo at the center of Q. Hence,

(2.17) / luz|* < A™ITe? 2" %k 1,
Qo

which implies (2.15) by interpolation.

Step 3. We employ the equivalent integral equation of u, and the already
achieved local L? (p € (1, +00)) norms to bound the L*° norm of solutions.
The structure of the heat kernel is essential.

Let i
G.(z) = (471'(11')_%6_33?, z € R,
then
t
(2.18) us(t,x) = Gy xax + /0 Gi—s * (uruy)(s)ds.

The first term on the right hand side of (2.18) is bounded by ||az||cc. Moreover,

n =2
Gis * (u1uy )(s, x) = (4nd(t — 5))" 2 /e =) (uyuy ) (s, y)dy.

Let {Q;}, j =0,1,2,---, be the tiling of R" by unit cubes Q;’s such that x
is at the center of Qy. We have:

_a=p?
el e 4d<t—s><u1u;"><s,y)dy—2 / 45 () s, y)dy.
For y € Q;, we have the inequality:

2
= )2 B (x’!Z)Z _dlSt(X Qj)
e 83(1—.?) S Sup e 8d(t—s) =e ﬁB(t—s) .
yegj

Also there exists a positive dimensional constant ¢; = ¢;(n) such that if y € Qj,
Jj # 0, we have:

(2.20) c1(n) dist(x, Q;) > |x — y|*.
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Applying Holder’s inequality with p > max(l, 5) and its conjugate g, we get:
aeyp? q—y)? 1/q9 1/p
/ & B9 (i) (s, y)dy < (/ ) dy) : / @fu5P)Gs, y)dy
(] 9j Q;
1/p
@21) < e2(m)d™¥ (1 — 5)"* ( / @i uy?) (s, y)dy)
Q)
< (t—9)""Q(n,d,a;,1),
where c;(n) is a dimensional constant and by (2.15):

Qn,d, a;, 1) = c2(n)d" | ay [l oo [A T 2% (mp + 1) +1] /P

(2.22)
= C2(n’ d’ ai)e”t/pé_m(mp + 1)(m+1)/p,
here and below c(n,d,a;) is a positive constant depending on n, d, and

(a1, a2)lloo-
We deduce from (2.18)-(2.22) that:

 dist(x,0))° a2
G % uruy (s, x) < (4md(t — 5))™"/?) "¢ 809 / e 3905 (uyu3') (s, y)dy
(] Qj
dist(x,Q;)?
< (4nd)™’Qn,d,a;, 1)t — )P Pl (=
Q)
o lx= 2
2.23) <@rd)"Q(n, d, ai, )t — s)"2P (/ e mdy+l)
Rn

<@nd)™"*Qn,d, a;, 1)(t — $)"? (c(n, d)(t — 5)"* + 1)

<c(n, d)Qn, d,a;, t)((t — )" + (t — 5)™"/?P)),

with a positive (n,d) dependent constant c(n,d). So integrating (2.23) on
s € [0, t] gives:

@24) w2, Dlloo < lazlloo +c(n, R, d, @, D@5 +172),
where p > n/2. Estimate (2.24) and the standard parabolic regularity theory
then implies the global classical solution (up, u;)(t,x) € (C([0, +00); ngb) A
C1((0, +00); € )2
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3. — Large time asymptotic bounds of solutions

In this section, we improve the L estimates (2.24) from exponentially
growing in time to the order of loglog growth and complete the proof of the

Theorem 1.1. We still proceed in three steps.

Step 1. Derive a differential inequality for the nonlinear functional yet with

a time dependent function ¢, solution of a backward heat equation.
Let us choose as before:

F = F(ui,u2) = (A + uy + u)e2,
yet the function ¢ is now a solution of the backward heat equation:
¢ +dAp =0.

Define:
gw)=A+u+u?

and
g=u +u?.

Let us consider ¢ € [0, T), where T is a suitably large but fixed time.

function ¢ is explicit:

n no__x2
3.1 =09t T;x)=@rd) 2(T —1t) 2¢ %T-D,

With the above choice, inequality (2.5) gives:

1
t — - . Y g
32 0 /‘PF <@ 1)/F1(V§0 Vuy) 2/fp[Fl,lIWll

1
+dF|Vuy|*] — E/thmlug’.

The first integral of the right hand side of (3.2) can be transformed using

integration by parts as follows:

/Fl(w Vuy) = /g’(ul)e‘"Z(w Vi)

. _ / €2V - Vg(uy) = / €2V - Vi(uy)

= —/A<Pe€u2§(u1) - é/eeuzg(ul)vw - Vuy
=J1+ /.
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In view of (3.1), we see that:

Ap = _d—I‘Pt
n n 2 xlz
= —d'(4rd)" % | 2(T — 1)~ 3+ L WD
2 4d(T — 1)**2
n 1 2

3.4 = — - 3(T-1

34 2d(4ndy2 (7 _ g’
n 2 x|

+d - dndy 3 —P_wtt

4d(T — 1)**3
c1(n,d) 1 |x]?
T—t " 42 (T —n2?

which implies that:

__c](n,d) . ey 1/ lx|2 -
65 n=5"2 oguper - e ).

On the other hand,

~2 u ) v 2 62
(3.6) ) < / "iig(i“')—(;"'e‘“z +5 / 0 (1) Vi o2,

Combining (3.2)-(3.6), we get (Fy 2 = €2g(u;)e2):

,d . g2 Vol|?
8t/<oF <d- l)clT(n_,) /(og(ux)e‘“2 +(d - 1)/%;&5“2

37) [ og@onugers - L[ B g
a. — 5 [ v8uuuze a2 | T ¥ 8

gu)  Bw)IVel?
T—t  gung?  (T—t

<cxn, d) <pef"2[ )2g<u1)—g'(u1)u1u;"}.

Notice that:

_ x?
0= 1 1 _. Y o wman
@rd)y"? (7 -3 2d(T —1)
x
(3.8) = —c3(n, d)T—_;‘P’

Vol cs(n, d)lx]?
@? (T —1?
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We see that if A is chosen large enough depending only on the maximum norm
of uy, or that of a;, then:

PulVel P
gung? (T —2s !
2\2 2 2 2
— c3(n. d) (w1 + uy)”|x| _ G+ upixl®

(A+u; +ud)(T —1)? (T -1* ~

It then follows from this inequality and (3.7) that:

Bt/pr < cz(n,ﬂl)/fpe“‘2

1
< cn,d) /‘Peeuz(ul + ud) (T—_t - u?)

1 uy
< 7d’ [ m €42 - . _2
<cn a,)/{xemlu_%iﬁ}we Ui (T — " >
,d

1 L
2me (gl )™ 1 dx
T —1t

u1+u%
t

T a1+ 2u1)u1u’2"]

3.9)

<c3(n,d, ai)/ puie
]Rn
.d
_ CZ_(’;_) /<pe€“2u1u’2".

Step 2. Derive bounds on the space and time integrals of finite powers of
up fort € [0,T—1), and t € [T —1, T] separately. This separation is necessary
because of the singular behavior of ¢ at ¢t = T. Then we use these bounds on
the integrals of powers of uz in the integral equation of u%, for any k > 1, to
derive L* norm bounds on u%. This is similar to Step 2 and Step 3 in Section
2. Again heat kernels play an essential role.

T —1t>1, we get:

x|? 1
at/(pFEM/(T_t) 2e MT— t)eG(Tz—t)m

,d
— _Cir:;’_)/weeu2ulu5"

. n Ix|
(3.10) < 23%’1’_611’_@ /(T —1)"2¢ WT-D €
—t

d
3 c2(’;, )/goef“?ulu?

,d7 l 7d
< C4(; ta) __CZ(n )/(peeuzulufzn’
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which implies that:

c(n,d) [?
2(2 )/) /(peeuzulurzn +/¢F

< /(p(O, T; x)F(ay,a2)dx + ca4(n,d, a;)log T
= ||F(a1, a2)lloo +c4(n,d, a;)logT,

(3.11)

for t € [0, T — 1). It follows from (3.11) that:

T-1
3.12) / dt/ pe2ujuydx < cs(n,d,a;)(1+1ogT)
0 R"

By choosing ¢ = ¢(t, T; x — xo), for any xo € R", we also arrive at (3.12) and
so:

T-1
(3.13) / dt ¢ x (€2uuy)(t) < cs(n,d,a;)(1 +1ogT).
0

Let v =u’2‘, k > 2, then

v = kulzc_luz,,,
Vv = kug_IVuz,
Av = ki Ay + k(k — Dub 2| Vuy 2,

and so v satisfies the equation:
(3.14) v, =dAv — dk(k — 1)u§_2|Vu2|2 + kulugH'k_l,

which implies:
t
(3.15) v(t,x) < Gy *xvy + k/ dsG_s (u1u§+m_l)(s, x).
0

Letting t = T in (3.15) yields:

1 T

T—
u(T, x) < llaz %, +k / dsGr_gx(uuk™ V) (s)+k [ dsGr_gx(uid™ 1) (s),
0 T-1

which shows by (3.13):

u(T,x) < laall, + c1(n, d, a;)e *k!(1 + log T)

3.16 T
(3.16) +k [ dsGr_g* (™1 (s).
T-1
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Now it suffices to consider

/¢(t, T; x)uus ™™ (x),
where t € [T — 1, T].

Let {Q;}3° be a tiling of R” with unit cubes, and 0 located at the center of
Qo. Then:

/(p(t T; x)uud ™™ (x)

3.17)

< can, d)Z/

|2
— ¢ MT- ')uluk+'" Tdx
0; (T —n?
—dist(0,0;)>
<ca(n,d) )

_ 2
— ¢ 8T / e 8d(T—t)u1u]2‘+m_1dx_
o; (T -1)?2 Qj

Following the argument in (2.19) and (2.21), we get

1

aylt— n p

(3.18) / e FTDy it dx <cg(n, d, a;)(T—1)% (/ ué""*’"“%ay)dy) :
Qj Q;

On the other hand, adjusting 7 to 7 + 1 in (3.11), we have for ¢ e~[T —-1,T]

/(p(t T+ 1;x)F(uy, uz)dx < co(n,d, a;)(1 +1og(T + 1))

or

X2

/ HUT+1-) e2dx < c10(n,d,a;)(1 +logT)
or

/ e85 e dx < cio(n, d, a1 +log T)
Using the spatially translated ¢, we find

/ @y < cy(n,d,a)(1 +logT), V j,
gj

or

(3.19) / ydxfy!c“(n,d,a,-)e_y(l+10gT) Yy, J, ezt te [T—-1,T)
Qj
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By (3.19), (3.18) gives by Holder’s inequality:

B
p(BI+D)
ugﬁ]“d)) ,

n B
< cn(n,d, a)(T — 0% (1 + 1)) TEFT 5 (1 4 log 7Y FAFD

__ a2 .
e mulu§+m_ldx S c8(n7 d7 al)(T_t)Z /
(3.20) Jo, 9

where 8 = p(k+m — 1), [B] stands for the integral part of B.

Step 3. Combine the differential inequalities for powers of u,, and optimize
the bounds to complete the proof of Theorem 1.1.
Combining (3.17) and (3.20) and again following the argument in (2.19)-(2.24)
shows for T > e:

/(p(s, T; x)u1u§+m—1(s, x)dx
3.21)
<ci3(n, d, ) (T —s)3 +(T—s) %) ((1B1+1)1) FOFD =5 (1og T) PR,
where p > max(1, %). Integrating (3.21) from 7 — 1 to T shows via (3.16)
that w(T, x) < llall%, + cra(n, d, a;)e *(log T)k!
T eistn,d, a)e™? ((plk +m)Y) " Qog 77,

or:

) (k! 1/p NN

ur(T, x) < |lazllos + c16(n, d, a;) (k!log T + (log T)'/? ((p(k +m))!) '7) ¥,
by Stirling’s formula ((p(k + m))! < c(n, m)ePk1oek):

<cp(n.d, ai’m)(eklogkeloglogT +elog10gTeklogk)1/k
422 <ci3(n,d, a;, m)elﬁ&lkgglﬂogk.
Minimizing the exponent with respect to k shows that we should choose:
(3.23) k =[loglogT]+ 1,
which implies from (3.22), and (2.24) that:
(3.24) u(T, x) < c9(n,d, a;, m)loglog(T + 2e)

for all T > 0, where the constant c¢j9 > 0 depends on n, d, ||(a1, a2)|l00, and
m. In case of power nonlinearities u;u, we first consider initial data such that
(a1, a2)llc <1 and so drop the dependence on a; in the bound (3.24). We
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verify by direct substitution that if u;(¢, x), i = 1, 2, are solutions, then for any
2
A >0, Amu; (A%, Ax) are also solutions. Now choose A such that

2
(3.25) A7 = (a1, @2)llco-

It follows that the L*™ norm of the initial data of the solutions A%ui(kzt, Ax)
is equal to one. By (3.24), we have:

(3-26) AR (1, u2) 328, AX) oo < c(n, d, m) loglog(z + 2e),

which implies:

11, u2)(A2t, X)lloo < c(n, d, m)A~ 7 loglog(t + 2e).

Rescaling time ¢, we obtain:

|1, u2)(t, x)|loo < c(n,d, m)k‘% loglog(A ™%t + 2e),
which is just:
(B2 (1, u2)(t, )lloo < c(n,d, m)||(a1, a2)ll0 log log ([I(a1, a2) 5t + 2¢),

by recalling (3.25). The proof of Theorem 1.1 is complete.

Now we describe briefly the necessary modifications to arrive at Corollary 1.1.
The estimates in Section 2 remain true for f(u;), since it is bounded from
above by the exponential function ¢2 in F of the nonlinear functional, thanks
to the subexponential growth condition on f. In fact, inequality (2.16) now
simply reads:

Te?' > /pr zepAT"/Q (f2))”,

for some constant c, depending on p and f. The remaining estimates of
Section 2 go through as before. Elsewhere we replace uy' by f(uz). Likewise

in Section 3, u3 is replaced everywhere by f(u2). Also in (3.9), 2%(ﬁ)%,

is replaced by f~!(%;). The condition f(u;) being nondecreasing in u is
used in the derivation of inequality (3.10), where:

2
f“(;—;t) < L),

if T —t > 1. Now to ensure that 2 is in the range of f, we note that we can
enlarge the range of f by making a space time scaling transform, x’ = Ax,
t' = A2t, so that A? appears in front of the nonlinear reaction terms =u; f (us)
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in (1.1). The new range of f(u;) is magnified by a factor A2, which when
large enough, ensures that

A2 lim f(up) > 2.
Uy —00

By making such a scaling transform if necessary, we always have f~1(2) < 4o0.
The next nontrivial modification is that the right hand side integral of (3.18):

(

J

=

uf D, y)dy> ,

now becomes:

Sl

( / ug<k-‘>(z,y)(f(uz))"dy) :

Qj

which is bounded by:

(3.28) (/Q

The first factor of (3.28) is estimated just like before. The second factor is
bounded using our subexponential growth condition as:

21_
(3.29) ( /Q | (f(uz)z”)dy> <, ( /Q

J J

J

% %
u%"““”dy) ( /Q | (f(uz))zpdy) :

J

2p 1
e“2dy <cp(1+1logT)2r.

The remaining estimates carry through as before. We omit further details.
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