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On Generalized Fatou Theorems

for the Square Root of the Poisson
Kernel and in Rank One Symmetric Space

OLOF SVENSSON

1. - Introduction

Let Pt (x) be the Poisson kernel in the halfplane

For suitable functions f on R, we define the h-Poisson integral as

where we assume h a 0. The interest in these kernels comes from the fact that
u = P, f gives a solution to the eigenvalue problem

Our interest here is to study boundary convergence. It is easy to see that

t) does not (unless X = 1 /2) converge to 1 when t - 0. Thus if we
want to be able to retrieve the boundary values of a h-Poisson integral we need
to normalize the kernel. For h &#x3E; 0 let = For
h = 0 we cannot do this since Po is not in L 1. Instead, take the function h which
is the characteristic function of a large compact set, and define Po f (x , t ) =
Po f (x, t)/Poh(x, t), for x in the compact set defining h.

Let Q be a region in with (0, 0) E S2. The problem is then to charac-
terize the regions S2 where t) converges to f (xo) for almost all xo E R
whenever (x, t) tends to (xo, 0) in 0’0 + (xo, 0). For the Poisson ker-

nel, the classical Fatou theorem gives that we have nontangential limits almost
everywhere.

Pervenuto alla Redazione il 14 aprile 1995.
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Nagel and Stein showed in [5] that there are convergence regions not

contained in any nontangential region. They also gave a characterization of
the regions where the corresponding maximal function is suitably bounded. To
describe their theorem let S2 c RT+l 1 be an open set and let Q (t) = {x E

be the nontangential
cone. Finally let P f be the Poisson integral of a function in and

MQP f = supq The theorem can then be stated as follows.

THEOREM 1.1 (Nagel and Stein). IfQ C R’+’ satisfies

and

then the operator f H M~ P f is of weak type ( 1, 1 ), and strong type ( p, p) for
p &#x3E; 1.

Conversely, if f + MQP f is of weak type (p, p), for some p 2: 1, then
the set satisfies the size condition ( 1.1 ) in the theorem.

For the ~,-Poisson integrals there are also convergence regions not contained
in the nontangential region. For X &#x3E; 0, the kernels Px behave like the Poisson
kernel, and the characterizations in [5] remain valid. But when X = 0 the kernel
behaves differently and we have convergence in the weakly tangential region

this is a result of Sjogren [7]. Here

In the sequel we consider Po. We prove that there are regions not contained
in any weakly tangential regions where the conclusion remains true.

The second generalization is to a Riemannian symmetric space of
the noncompact type and of rank one. Let P f be the Poisson integral of a
function f in Ll on the Furstenberg boundary x/M. A function u in is
said to be harmonic if Du = 0 for all G-invariant differential operators D that
annihilate constants. As in the halfplane, the Poisson integrals are harmonic
functions. Again our problem is to characterize the regions Q in G/x where
we can recover the boundary values, i. e.

for almost all kIM,

for some fixed element Ho in the positive Weyl chamber. This is true for
the admissible regions .A.F = F compact in G/K. Here
we prove that there are convergence regions not contained in any admissible
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regions. To prove boundary convergence, we consider as usual the corresponding
maximal function. Let

When, for some S2, we have a weak type estimate for this maximal function,
it follows by standard methods that (1.2) holds. And we give a necessary and
sufficient condition for the weak type ( 1, 1 ) of the maximal function. A rank
one symmetric space can also be considered as a homogeneous space; this has
been studied by Sueiro [10] and by Mair, Philipp and Singman [4]. We give a
different proof of this result, and we prove a more general result saying that,
under some condition on S2, the distribution functions of and are

equivalent, with no further assumptions on the functions u than measurability.

Acknowledgement. This article is part of the author’s thesis, and he wishes
to expresse his sincere gratitude to the advisor Professor Peter Sjogren for his
guidance and support.

2. - The square root of the Poisson kernel

The Pof integral was defined as t ) for h the charac-
teristic function of some compact set. If we take the kernel of P and let x be
in the interior of the compact set defining h and do some estimations, we get

Another way of defining the normalized square root of the Poisson kernel
in is to take the kernel in the unit disc and make a transformation to the

halfplane. If we do this we get the same, result for small x and if x is large
we get that the kernel behaves like 1 / log If we use this later method we
need some extra assumptions on the function f than just f E L 1 to be able to
prove some weak type estimates for the Pro maximal function. We choose the
technically easier way, and consider

For a region S2 C the cross-section at height t is
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To prove convergence results, we as usual consider the corresponding maximal
function for a function u in R2

where QX is the translation (x, 0) + SZ .
In Nagel and Stein’s theorem it is required that = Q. If we replace

the nontangential cone here with the weakly tangential region ,Ca, the condition
obtained is satisfied only when Q is the entire halfplane.

Instead we add the region ,Ca to an Q, and prove that if this enlarged
set has the same bound on the cross-sectional area as the region ,Ca, then the
maximal operator is of weak type ( 1, 1 ) .

THEOREM 2.1. IfQ C satisfies

then

As always a convergence result follows from this. If S2 is as in the theorem

~o f converges to f almost everywhere within the region The proof of
Theorem 2.1 follows with the same methods as in Andersson and Carlsson [ 1 ],
with some minor differences. Instead of repeating their argument, we examine
whether the conditions are sharp. The condition (2.1) is not necessary for (2.2)
as we shall see below, but we also show ((2.4) in Proposition 2.2) that the
bound cannot be replaced by anything larger. However filling out
the region with ,Ca is not necessary, as we shall see. But it is obvious that
we need some condition like this, since there are many regions with cross-
section area much smaller than t log I /t with the maximal function unbounded,
just take almost any curve which approaches the boundary tangentially. Instead
of adding the weakly tangential region, we can use the nontangential cone
Ca = {(x, t); Ix I  at). If we now assume that Mn is of weak type (l, 1), we
can prove the following estimates.

PROPOSITION 2.2. If
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and

The proof of these necessary conditions follows by the same methods as
in [ 11 ], we do not go into any details here. However, the idea is to choose a
suitable function, use the weak type inequality, and do some estimations of the
distribution function, just as in the proof of Theorem 3.3 below. To prove (2.3),
consider fc = · For the proof of (2.4), use fc = 

We also give examples that show that the estimates in Proposition 2.2 are
sharp. That (2.4) cannot be improved follows directly from the boundedness of

For the sharpness of (2.3) we prove in Proposition 2.3 below a weak type
result for an S2 for which (2.3) is the best possible estimate of the cross-sectional
area.

The estimate (2.4) shows that if we assume that a region is filled out with
the nontangential cone, in the sense that S2 = S2 + Ca, the condition on the
cross-sectional area is necessary. Now we could hope that this would also be
sufficient, but it is not in general. The condition that guarantees that Mu is
of weak type ( 1,1 ) when Q = S2 + C,,,, is C t . The sufficiency follows
from e.g. [1]. If IQ(t)1 ~ then it is in general not true that the
maximal operator is of weak type ( 1,1 ), as shown in an example below. This
means that there is no condition on which is necessary and sufficient
when S2 = Q 

So if we want a necessary and sufficient condition we must find something
different. There are no obvious candidates for these conditions, if there are any.

2.1. - A weak type result

Here we prove a weak type estimate for an Q that does not satisfy the
condition (2.1) in Theorem 2.1. Consider the tangential curve (y(t), t), for
small t &#x3E; 0, with

We want to define a sequence r in from which we get our S2 by adding
the nontangential region Ca . Take a t1 which is sufficiently small; what this
means will be explained below. Let xl = y (tl) and let

where [.] denotes the integer part. Then take N(tl) points xk - xl - (k -
1 ) tl log 1 / tl for k = 1,..., We want these points (Xk, t1) to be outside
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the nontangential cone C2, hence take a t1 that satisfies XN(t,) &#x3E; 2t,, which is
possible if t1 is small enough. The first points in the sequence r will
be 

Then the idea is to repeat this construction. We first have to choose t2  tl.
We want the point (t2, y (t2)) to be such that (t2, y (t2)) + Ci does not contain
the previously chosen points of the sequence r. And t2 should be small enough
so that we can get an estimate of the cross-sectional area. This will work if
we take t2  t1 satisfying

As in the previous case, take N (t2) points xk = y (t2) - (k - 1)t2 10g 1 / t2, for
k = 1,..., N (t2 ) . The next N (t2 ) points in the sequence r are {(~,~2)}.
k = 1,..., N (t2) . And continue in the same way for t3, ...

Let S2 = r + C1. This S2 has some properties that we need:

and

If instead we add the weakly tangential region ,Ca , then ( S2 -~ ,Ca ) (t ) ~ I / (t log 11 t)
will not be bounded and hence MQ+£a cannot be of weak type ( 1,1 ).

PROPOSITION 2.3. If 0 is as above, then

To prove this we use a slightly modified lemma from [6], where we have
replaced by R’.

LEMMA 2.4. Assume the operators Tk, k = 1, 2, ..., are defined in Rnby

where the K, are integrable and non-negative in and the index sets Ik are such
that Tk f are measurable for any measurable f. Let for each i = 1,..., n a
sequence (yki)’, be given with yki ? Yk+1,i &#x3E; 0 and assume the Tk are uniformly
of weak type (1, 1 ), and
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and

where for S E Ik

for some fixed natural number N. Then the operator

is of weak type (1, 1 ).

PROOF OF PROPOSITION 2.3. In the proof we assume that the function f
is positive. First we divide the kernel Kt into two parts, one that is easy to
handle and the central part of the kernel which is the tough part:

Define K2, t as

if

otherwise.

We can handle the easy part by realizing that -~ x’)  when

x’ E 0 (t). From this we see that MgK2,t * f  CMCaK2,t * f. By the usual
methods, the weak type ( 1,1 ) estimate for this part follows.

Now we turn to the more difficult part. Let rk be that part of r with
second coordinate equal to tk, i. e.

We can split the operator as

The equality defines the operator Tk. To use Lemma 2.4, we need to prove
that the operators Tk as uniformly of weak type ( 1,1 ) and of the type in (2.5),
and construct a sequence yk.
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For the weak type ( 1,1 ), we first consider that part of Qk that lies between
the levels tk and 2tk log 1 / tk, which is S2k = { (x, t)  t  2tk log 
This part, S2k, consists of N(tk) non-tangential cones with vertices at the points

The last inequality follows from translation invariance. If
we can estimate by

If we make a dyadic decomposition of this kernel, we get

The upper limit in the sum does not vary much if t E [tk, 2tk log lltk], which
enables us to replace [log log here by This gives a sum
with a number of terms that does not depend on t. Thus we can estimate the
maximal operator by the usual Hardy-Littlewood maximal function, which gives
the weak type ( 1,1 ) for the operator f uniformly in k, if k &#x3E; 1.

The weak type ( 1,1 ) for 1 
follows by the same method. First take that part

of Q1 1 which lies between the levels t1 and tl log Here the L 1-norm of the
kernel Kl,t corresponds to the number of nontangential cones in as above.
When t &#x3E; tl log Iltl, the region S21 is contained in a weakly tangential region,
and the weak type ( 1,1 ) is proved.

For the rest of Qk, i. e. if tk_ 1, then Qk consist of one
interval. For the size of these, we have the estimate Hence,
the weak type ( 1,1 ) of the operator

follows, since the region we take the supremum over is contained in a weakly
tangential region. This completes the proof of the uniform weak type ( 1,1 )
of Tk.
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To use Lemma 2.4, the operator should be defined as in (2.5). This means
that we must ’hide’ the translations in the kernel. If we let the index set Ik be
equal to Qk and set for s = (x’, t) E Ik,

Then Tkf(x) = To estimate the support of Ks = K(x,t), we see
that the support is largest when t = which is the largest t in the index set Ik.
The support of 1 

is contained in the set tk-1 (log 1 / tk _ 1 ) 2 }, hence
we can as bound for the support of Ks, S E Ik, take yk = 3 tk - 1 (log Iltk-I)2. If
we take N = 3, then E Ik, if x E supp Ks, since yk+3  tk /2.
This follows from the definition of the sequence r. With an x outside the

support of Ks, we need only increase the support of the kernel Kl,t. Hence

From this it follows that the integral is bounded by some constant Co, for all
s E UIk. Lemma 2.4 now gives the weak type ( 1,1 ) for SUPK Tk, and hence for
MgK1,t.

Finally, we have proved a weak type estimate for both and 
which means that we have proved the proposition. 0

2.2. - Example

Here we will show that in general we cannot have more than a constant
number of distinct points at the different levels in S2 when a weak type result
holds. By distinct points we mean points with distance at least ~ in Q(t).
Thus, if Q = then this shows that if is allowed to be unbounded,
then it is easy to construct an example which violates these restrictions. That

is, we can take an Q with an increasing number of points in Q (t) which are
separated by at least and the following shows that MQ cannot be bounded.

Now fix a value of t and assume that Q (t) contains N points with distance
~; then we show that we have an upper bound on N that does not depend on t.
To do this, we consider the convolution with Po and the characteristic function

and a simple calculation gives t’) rv 1 when Ix’l s ui
and t’  t. Thus 

-

This is easily seen since if 0 (t) contains one point then
contains an interval of length fi, as seen above, and since there are N points
in which are separated by at least we get this bound.

If Mo is of weak type ( 1,1 ), we get

If we use these two inequalities, we get N  C, and we have proved our claim.



476

3. - Symmetric space

Let X = G/K be a Riemannian symmetric space of real rank one. Then
G is a semisimple Lie group with finite center, and K a maximal compact
subgroup. The Lie algebras of G and are g and t, respectively. The Cartan
decomposition of g is g = t (D p, where p is a linear subspace of g. Let a be a
maximal abelian subgroup of p, and A the corresponding connected subgroup
of G. The real rank is the dimension of a, here equal to one. By the adjoint
representation ad we arrive at the root space decomposition of the Lie algebra
0 = If X E ga, then ad (H)X = a(H)X, for H E a. The nonzero a’s are
called (restricted) roots. The dimension of the root spaces are ma. Let a+ be
one of the components of the subset of a where none of the roots vanishes; this
is the positive Weyl chamber. A root a is called positive if a (H) is positive
for all H in a+. Let a and possibly 2a be the positive roots. The Killing
form (X, Y) = Tr(ad(X) o ad(Y)) allows us to identify the dual of a with a.

Let p = (ma + 2M2,,,,)ot/2 denote half the sum of the positive roots.
Let n be the sum of the root space 9. The sum over the root spaces

corresponding to the negative roots in n, which is also the image of n under the
Cartan involution 0. The connected subgroups of G associated with n and n,
are N and N, respectively. Any n E N can be written as n = exp(Xi ) exp(X2),
Xi E Qia. For N there is a similar expression, where the product is taken over
the negative roots.

The Iwasawa decomposition is G = KAN. This means that any g E G can
be uniquely written as g = k(g) exp (H (g)) n (g) , with k(g) E K, H(g) E a and
n(g) E N. From the Iwasawa we obtain the NA model of the symmetric space.
For this decomposition the group N corresponds to the Furstenberg boundary
K/M. This decomposition, NA, is the description of the symmetric space we
will work with. Let S2 be a subset of NA and 0 (H) the cross-section at

height H : 
-

We fix an Ho in the positive Weyl chamber a+, such that a (Ho) - 1. The
conjugate nH is exp(H)n exp(-H). Choose a homogeneous gauge Inl in N

Here ~ = (- (X, 0 X)) 112 for any X E g is the norm coming from the Killing
form, and c = (ma + 4m ~ ) -1 /4. The reason for this c will be clear after we
have defined the Poisson kernel. We have for some C &#x3E; 1,
and = e-tlnl. The admissible region can be described by

When F = 1 we often omit the index F. The ball centered at the origin in
N of radius r is Br = n ~  r}, and the ball centered at n is nBr. The
measure of the ball Br is proportional to r~, where D = ma + 2m2a is the
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homogeneous dimension of N. Let Qr = E Br, t
The maximal function MQ is defined for functions u in N A by

In a rank one symmetric space, we have an explicit form for the Poisson kernel,
see e.g. Theorem 3.8 page 414 in [3]. If n = exp(Xi)exp(X2), where Xi E fI-ia
then 

~

The last two terms in the denominator sum up to n ~ 4, which is the reason for
the constant in the definition of the homogeneous gauge. The Poisson integral
of a function f in L 1 on the boundary N is then

Four u = P f , we know that the admissible maximal operator f 1-* is
of weak type ( l,1 ), this result can be found in [9]. As before we want to prove
boundedness in regions not contained in any admissible ones. The conditions we
had in the previous cases were one condition on the cross-sectional area of the
regions, and one expressing that the regions should in some sense contain the
classical regions, in this case the admissible region. To describe this in more
detail, we first define a region AF(no, to) which is similar to an admissible
region, expect that it has the vertex at a point in X instead of N:

Now we can define what we mean by adding an admissible region to S2. Let

If we do this for the admissible A then the result A + A is possibly not
contained in A. This comes from the failure of the triangle inequality. But
since we have chosen a homogeneous gauge, even if we continue this process,
the result will still be contained in a fixed admissible region not depending
on how many times we have ’added’ the region. A similar result holds for
arbitrary regions Q:

LEMMA 3.1. If Q c X then there exists a region Q such that Q C Q + AF
and ~2 + A = The constant F is independent 

We prove this lemma at the end of this section. This shows that it is
reasonable to assume that the region Q satisfies Q + A = Q. We shall also see
that this is also natural, at least for the Poisson maximal function.
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THEOREM 3.2. If Q c X satisfies

and

then

and

The LP estimate (3.5) follows immediately from (3.4). The condition of
the cross-sectional area (3.3) is what we would get if we let S2 be the admissible
region 

The condition (3.2) also implies that for some C (this is what we use in
the proof)

then

If we take u = P f then we get the following characterization of the region
Q where f f--~ MS2 Pf is of weak type ( 1,1 ) or strong type (p, p), for some
p &#x3E; 1.

THEOREM 3.3. If X is a symmetric space of rank one and Q C X then the
following are equivalent 

__ _

The sufficiency of (iv) for the weak type ( 1,1 ) and strong type (p, p) of
the maximal operator follows from Theorem 3.2 and the known properties of
MAF Pf . As usual, it follows from (i) that P f (n exp(tHo)) converges to f (n 1 )
for almost all n, 1 as t --* oo when n exp (t Ho ) E n 1 SZ . Before we can prove
Theorem 3.2, we need some lemmas. First a covering lemma.

LEMMA 3.4. For every family of rectangles in N, with U I  00,

there is a subfamily of disjoint rectangles such that each rectangle n Re-r
in the given family is contained in an enlargement of some rectangle in the

subfamily, i. e.

for some C  oo that depends only on X.
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The proof of this follow the usual methods, which can be found in [2].
Since we will follow the ideas from Andersson and Carlsson [1] we need

an outer measure that satisfies a Carleson type inequality. For measurable sets
E C X, define the outer measure psz as lin; nQ n E # 0}1.

LEMMA 3.5. If Q is as in the theorem, then

We will assume this for a moment and begin with the proof of the theorem.

PROOF oF THEOREM 3.2. Let Ex = I &#x3E; h) which is a subset of X. It is

easy to see that &#x3E; À}I = J-LQ(EÀ). The set Ex is contained in 
where the union is taken over all points _n exp(t Ho) E E~, . The family 
has a corresponding family in N, and by use of Lemma 3.4 we can
choose a disjoint subfamily To use Lemma 3.4, it is required that
I I  oo, we can clearly assume this, since otherwise is &#x3E;

h) = oo, and in this case there is nothing to prove. We also get a subfamily
From 3.7 we see that

Hence

PROOF OF LEMMA 3.5. The first inequality below comes from the fact that
if n E then t’  t implies n E S2 (t’Ho) and the second inequality
uses (3.6). We have

PROOF OF THEOREM 3.3. The theorem follows if we prove that (i), (ii)
and (iii) implies (iv). To do this we assume that f H MQP f is of weak

type (p, p), for some p &#x3E; 1. From this we deduce that the region S2 satisfies
Ce-tD . From this the result follows since the other implications

follows directly from Theorem 3.2. Since S2 c Q + it suffices to show the
estimate of the cross-sectional area for Q + AF. We can also for simplicity
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assume that F = 1. Choose For the L p norm of f we have
The Poisson kernel can be estimated by

If we use this to estimate the Poisson integral of f, we get

if n 1 exp(tl Ho) E Qe-t . From this we see that

It is obvious that

So if we can prove that

it will follow that CE-ID if we combine these estimates. In

the right-hand side of (3.10) there is a constant that does not appear in (3.8),
this can be taken care of if we change f to XBCe-t *

To prove (3.10) take some n E 1}. Then there is a point
n 1 exp(tl Ho) E that n 1 exp(tl Ho) E Qe-t means that e-t
and t1 &#x3E; t. Since n 1 exp (tl Ho ) E n(Q -~ ,~4.) there are points n 2 exp (t2 Ho ) E n Q
and n’ exp(tl Ho) E A(n2, t2) such that

Hence we see that n = n2n’ or n’ = n21 n 1 and with the estimate of n’ we see
that

It follows that n 2 exp (t2 Ho ) E QCe-t, hence n E and we have

proved (3.10). With this, Theorem 3.3 follows if we combine (3.9), (3.8) and
(3.10). 0

PROOF OF LEMMA 3.1. Let S2k-1 + ,,4 and Qo = S2. The region 1i
is defined as S2 = U. It is obvious that S2 + A = S2, and to prove that
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SZ c Q + if suffices to prove that Qk C S2 + for some F independent
of k. Take a point n exp(tHo) in Qk. Since S2k = S2k-1 -E- ,,4., we can write the
point n exp (t Ho ) as

where n’exp(t’HO) E 1 and We see that tk = t. If we

repeat this, we get that

This is for 1  i  k, and n 1 exp(tl Ho) E Q. From this we shall prove an
estimate for I that shows that Qk is contained in with F independent
of k. To see this, we use the Campbell-Hausdorff formula to see what can
happen when we multiply points in N. Let n = exp(Xi) exp(Yi), where X i E

We can easily see that n2n3
induction we get

From (3.11) and the definition of the homogeneous gauge, we get

If we now use these estimates in (3.12), we see that we get an upper bound
on I which does not depend on k. This concludes the proof of
Lemma 3.1. 0
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