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Fundamental Tones and Buckling Loads of Clamped Plates

MARK S. ASHBAUGH - RICHARD S. LAUGESEN

1. - Introduction and definitions

Lord Rayleigh conjectured last century that among all clamped plates with
a given area, the disk has the minimal fundamental tone. N. Nadirashvili [25]
recently proved this conjecture by improving a technique of G. Talenti [34],
and M. S. Ashbaugh and R. D. Benguria [3] have established the analogous
result in R3, where now the "plate" has a given volume.

We extend these methods to 4, and prove Rayleigh’s conjecture
up to a constant factor dn, with d4 ~ 0.95, for example. Since dn ~ 1 as

n ~ oo, one can say that Rayleigh’s conjecture holds asymptotically for high
dimensions.

Our results provide a computable lower bound for the fundamental tone of
an arbitrary clamped plate in terms just of its volume. The bound is the best
known of this type, improving on the earlier work of Talenti by a factor of
almost 2, in high dimensions.

Inspired by Lord Rayleigh’s conjecture, G. Polya and G. Szego conjectured
in 1951 that among all clamped plates of the same area subjected to uniform
lateral compression, the disk has minimal buckling load. The conjecture remains
open, but by straightforwardly generalizing an observation of J. H. Bramble and
L. E. Payne [5] to higher dimensions, we establish the best partial result to
date, proving the conjecture in Rn up to a constant factor Cn with Cn -~ 1 as

n -~ oo. Thus the Polya-Szego conjecture also holds asymptotically in high
dimensions. Note that these results provide a computable lower bound for the
buckling load of an arbitrary clamped plate in terms just of its volume.

In this first section we define the eigenvalues to be used and estimated,
namely the critical buckling load A of the plate and the fundamental tones r
of the plate and ~. I of the membrane. Then in Sections 2 and 3 we present
our lower bounds on A and r respectively, with Sections 4 and 5 containing
the proofs. In Sections 6 and 7 we examine a few particular plane domains for
which good estimates on the buckling load and fundamental tone are known

Partially supported by National Science Foundation Grants DMS-9114162 (Ashbaugh), DMS-
9414149 (Laugesen) and DMS-9304580 (Laugesen).
Pervenuto alla Redazione il 5 dicembre 1994 e in forma definitiva il 12 febbraio 1996.
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already. While estimates of the type in this paper do not improve on these
known bounds, they do give results of very much the right order of magnitude.
This seems a satisfactory outcome: since our results apply to all shapes of plate,
we would be surprised if they were the best known for any intensively-studied
particular shape. In Section 8 we mention related results and open problems.

Now we commence the definitions. Given a bounded, connected open set
S2 in 2, define the buckling load of Q to be

where dx denotes Lebesgue measure on Rn. A smooth function ui I exists that
attains the infimum for A (Q) and satisfies

By virtue of its definition, A (Q) is the principal eigenvalue of this equation.
Physically, when n = 2 the eigenfunction u 1 models the transverse deflec-

tion of a homogeneous thin plate Q with clamped boundary that is subjected to
a uniform compressive stress or load on that boundary. We have expressed the
clamping implicitly: roughly speaking, each function u in the Sobolev space

vanishes on the boundary of Q, as does its normal derivative 
The critical buckling load of the plate is proportional (see [36]) to the eigen-
value A (Q), and so to establish a buckle-free stress level for the plate we must
estimate A(Q) from below. This we do in Theorem 1 and Corollary 2

Notice that since we defined A as an infimum, to obtain an upper bound for
it we have only to choose a test function u E and compute the integrals
of ( 0 u ) 2 and IVuI2. There is no obvious method for computing a lower
bound for A, and this is also the case for the fundamental tone, defined below.
Nevertheless, several authors have developed and applied methods for obtaining
lower bounds. We mention A. Weinstein’s method of intermediate problems [41]
(see also D. W. Fox and W. C. Rheinboldt [ 11 ] and H. F. Weinberger [40]),
G. Fichera’s method of orthogonal invariants [10], and the methods of B. Knauer
and W. Velte [15,38] and J. R. Kuttler [17]. There are also methods that can

yield a good bound for one of the eigenvalues of an equation, without telling
which eigenvalue it is, e.g. [4]. For further references to the various methods,
see [38].

Next, define the fundamental tone of the plate Q to be

Again, a smooth function v, exists that attains the infimum for and
satisfies
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and is the lowest eigenvalue of this equation.
When n = 2, we interpret the eigenfunction v, physically as describing a

transverse mode of vibration of the homogeneous thin plate Q with clamped
boundary. The frequency of vibration of the plate is proportional (see [20,
(1.5)]) to r(Q)1/2. In order to establish a lower bound on that fundamental

frequency, we estimate from below in Theorem 4.

Thirdly, we have the familiar Rayleigh quotient for the fundamental tone
of Q regarded as a fixed membrane:

and a smooth eigenfunction w 1 exists that attains the infimum for ~,1 (Q) and
satisfies

Of course, is the principal eigenvalue of -A.
Write S2 I for the volume (i. e., Lebesgue measure) of Q, and employ Q#

to denote the open ball centered at the origin of R’ having the same volume
as Q. Let

We will often use the fact that the ball Br of radius r has buckling load
A(Br) = j2 llr2 and fundamental tone I(Br) = these formulas can be

proved by separation of variables, using the J,~ , I,~ , and spherical harmonics. (In
Section 4 we provide also an alternative method for evaluating A(Br).) Notice
that consequently A (S2#) and r (S2#) = 

Our thanks go to the referee of an earlier version of this paper, whose
comments and references improved substantially our coverage of the literature
regarding the fundamental tones of particular domains, in Section 7. Also, we
are obliged to W. Velte for sending us the work of J. W. McLaurin.

2. - Estimates on the buckling load

We would like to be able to prove the following conjecture, estimating
from below just in terms of the volume of S2.
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CONJECTURE

with equality if and only ball.

This conjecture remains open, but we prove a partial result.

THEOREM 1. 
1"B I 1"B 1"B I

COROLLARY 2 (BRAMBLE-PAYNE [5, (3.14)]). In particular, when n = 2 and S2
lies in the plane,

We prove Theorem 1 in Section 4 by generalizing J. H. Bramble and L.
E. Payne’s proof of Corollary 2 to higher dimensions in a straightforward way.

Theorem 1 falls not too far short of Polya and Szego’s conjecture, since

and since

as n - oo, by [ 1, p. 371, eq. 9.5.14]. In particular, (2.1 ) and Theorem 1
show that the Polya-Szego conjecture holds asymptotically as the dimension n
approaches infinity.

Note also that almost fifty years ago, G. Szego [33] did prove the P61ya-
Szeg6 conjecture under the additional hypothesis that an eigenfunction u 1 cor-

responding to A(Q) never changes sign. Szego’s hypothesis fails to hold for

many domains, however, and we discuss this further in Section 8.
In Section 6, we examine several simple plates in the plane and compare the

estimate on A provided by the Bramble-Payne bound A (Q) &#x3E; 2Jr j)/Area(Q)
with previously-known bounds.

3. - Estimates on the fundamental tone

For the vibrating plate, too, an outstanding conjecture motivates our work.

CONJECTURE (Lord Rayleigh [30, p. 382]).

with equality if and only if SZ is a ball.
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In the plane, the conjecture has been proved.
THEOREM 3 (Nadirashvili [25]). When n = 2 and Q lies in the plane,

with equality if and only if S2 is a disk.

Furthermore, M.S. Ashbaugh and R.D. Benguria [3] have proved Rayleigh’s
conjecture in R3 (and R2) by means of the same general method. This method
cannot prove Rayleigh’s conjecture in dimensions 4 and higher, but we exploit
it nonetheless to obtain the best known partial result, estimating from
below in terms simply of the volume of S2.

THEOREM 4. For n &#x3E; 4,

Under the additional hypothesis that an eigenfunction v 1 corresponding to
never changes sign, G. Szego [33] did prove Rayleigh’s conjecture by

techniques that apply in all dimensions. It soon became clear, though, that

just as for the buckling load, Szego’s hypothesis fails to hold for many simple
domains; we provide references for this in Section 8.

Theorem 4 provides the best known partial result for Rayleigh’s conjecture
in 4, and the constant dn can easily be evaluated:

and

as n - oo, by (2.1) and the fact that kv  (See [21] for this and
other facts about kv.) Thus Rayleigh’s conjecture holds asymptotically as the
dimension n approaches infinity.

G. Talenti [34] proved that in Rn, n ? 2, with

and d n &#x3E; 1/2, for all n. Note that Nadirashvili’s result in R2 and Ashbaugh-
Benguria’s in R3 improve both the constants d 2 and d 3 to 1, and that our
inequality &#x3E; is stronger than Talenti’s for n = 4, 5, 6, since

dn &#x3E; d n for those values of n.
In fact, our inequality is stronger than Talenti’s for all n &#x3E; 4, as we show

in Section 4. We further show that 1/2: thus our Theorem 4

improves Talenti’s result by a factor of almost 2 for large n.
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In Section 7, we consider several simple plates in the plane and compare
the estimate on r provided by the Nadirashvili bound with
bounds from the literature.

Before we commence the proofs, it is interesting to note that the estimate
&#x3E; which is weaker than Theorem 4, follows easily for

all n &#x3E; 2 from Theorem 1 and the facts that r &#x3E; AÀI (almost trivially) and
(by the Faber-Krahn Theorem [13, p. 89]). Bramble

and Payne [5, (3.15)] used this weaker estimate in the n = 2 case. An even
weaker estimate, which still improves on Talenti’s result for high dimensions,
is that r(Q) &#x3E; this follows from Faber-Krahn together with A.
Weinstein’s observation [41, p. 191] that r &#x3E; X2

4. - Proof of Theorem 1

Write X2(Q) for the second eigenvalue of the Laplacian on Q with Dirichlet
boundary conditions. Payne [27, p. 523] proved that

Theorem 1 follows now from the next lemma, proved by E. Krahn [16]. (P.
Szego later rediscovered this lemma; see [28, p. 336].)

LEMMA 5. 
-,I-- 1’B I,--

For convenience, we include a modem proof of Lemma 5. Let w2 E

W~’~(~) be a (smooth) eigenfunction of the Laplacian on Q with eigenvalue
A.2(~), so that -Ow2 - ~,2(S2)w2· Put S2+ := {x E Q : w2(x) &#x3E; 0} and
Q- := {x E Q : W2(X)  0} . Neither Q+ nor Q- can be empty, because the
first eigenfunction wi I of the Laplacian on Q, corresponding to ÀI (Q), is positive
and satisfies = 0. Since the restriction of W2 to S2~ belongs to

Wo’2 (S2) and satisfies -AW2 = 03BB2(03A9)w2. we have that À2(Q) is an eigenvalue
. Hence

where the second inequality rests upon the Faber-Krahn theorem [13, p. 89].
Summing this last inequality over SZ+ and Q- gives that
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since S2+ + f S2 I and since t H is convex. If equality held
throughout (4.1) then Q+ and Q- would have to be (disjoint) balls, by the
equality statement of the Faber-Krahn theorem [13, p. 92]. Since they would
also need to have volume each, Q would not be connected. This proves
Lemma 5.

Next we prove that 11 (SZ#) a fact needed for the equality
in Theorem 1. By a dilation we may assume I Q = vn and Qo equals the unit
ball B. We show A(B) = j +1. I Define a radial function

Then u is smooth on R’ and both u and its normal derivative vanish on the
boundary of B since [1, p. 361, eq. 9.1.30].
Thus u E W0 (B). From Bessel’s equation we get that u satisfies a Helmholtz-
type equation Au + + = 0, so that A AU + j2 = 0, and
hence A(B). For the reverse inequality, notice that A(B) ~!! h2(B) by
Payne’s inequality above, and h2(B) = j2 1. Therefore A(B) = j2

As an aside, we elaborate a little on Payne’s proof that Å2(Q),
using his notation. First, although Payne states the theorem in the plane, his
proof extends directly to R’ for all n &#x3E; 2. Second, in the language of Sobolev
spaces, the functions 1/1 belong to Wo ’ 2 (D) and the function W, belongs to

W6’ (D). Third, the constants a 1 and a2 in the proof cannot be chosen in the
desired manner if dA = 0, but in that case WI itself is admissible for
h2 and so the inequality h2 follows from (43).

5. - Proof of Theorem 4; comparison with Talenti’s results

We begin by roughly outlining the approach developed by Talenti [34],
Nadirashvili [25] and Ashbaugh-Benguria [3]. Every step works in each 
2, until the end.

Divide the region S2 into two pieces, S2+ and S2 _ , in which the fundamental
mode v 1 is positive and negative respectively. Then split both the numerator
and denominator of the Rayleigh quotient = into

integrals over Q+ and Q-. The value of this Rayleigh quotient does not

change when we replace in it the functions -0394 v1 1 on Q+ and 0 v 1 on Q- with
their symmetric decreasing rearrangements f+ and f-. The Rayleigh quotient
decreases when we replace v 1 on Q+ and Q- with the functions w+ _ - 0 -1 f+
on Q* and w- = 0-1 f_ on Q~ respectively. One has still to estimate from
below this new type of Rayleigh quotient, a quotient involving integrals over
the two balls Ba := Q* and Bb := Q~. Call this quotient Q(a, b).



390

At this point, Nadirashvili takes n = 2 and applies a transplantation method
to shrink one of the balls to a point and to expand the other ball up to 00,
showing that the least possible value of Q(a, b) decreases under the transplan-
tation and that its value approaches r(S2#). In contrast, Ashbaugh and Benguria
proceed more explicitly, determining the least possible value of Q (a, b) for each
choice of a and b subject to the constraint that vnan+vnbn = I = 
After rescaling, they are able to assume that 1, 0  a  b  1. We
simply quote their result (see (32) and (39) of [3]), which holds for all n &#x3E; 2:

where kv(2-I/n) := 2 llnj, and kv(a) is defined for 0  a  2-I/n to be the
first positive zero k of

with fv defined by

Regard the parameter a as fixed, in the definition of he. See [1, 39] for
information on J, and Is. Notice that fv(0) = 0 and so kv(0) = k.

Ashbaugh and Benguria [3, p. 9] show that when n = 2, 3, the inequality
= k, holds for all a, which proves Rayleigh’s conjecture in view

of (5.1 ) and the remark near the end of Section 1 that = 

Ashbaugh and Benguria emphasize that one can only hope to prove Rayleigh’s
conjecture via (5 .1 ) in dimensions n for which 21/n jv = ~(2"~") &#x3E;: kv ; this

inequality fails, however, in dimension 4. (Actually, it fails for all n &#x3E; 4, but
that is a consequence of Theorem 4, which we are in the process of proving.)
The problem with the above approach to proving Rayleigh’s conjecture seems to
be that when we split Q into two pieces and symmetrize each piece separately,
we lose too much information about the function vi. In dimensions 2 and 3
the method scrapes home regardless, but not in dimensions higher than that.

Nevertheless, the method suffices to establish the partial result in Theo-
rem 4: we prove below that for any n &#x3E; 4,

Clearly Theorem 4 follows from this and (5.1 ), together with the fact that the
inequality in (5.1) is strict if a = 2-I/n (since S2+ and SZ_ cannot both be balls
and so either (21) or (22) of [3] is strict).

Geometrically, we can summarize by saying that for dimensions 2 and 3
the worst case in (5.1 ) is when a = 0, b = 1, and the ball Ba has degenerated
to a point, but for dimensions n &#x3E; 4 the worst case occurs when a = b = 
and the balls Ba and Bb have the same size.
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We start the proof of (5.2) by collecting in this paragraph some useful facts
from [3, p. 10]. In what follows, we denote by jv,m the m-th positive zero of
Jv, so that jv = jv,l. Also, we assume always that 0  a  2’~". Then fv is
defined except at the zeros jv,m of Jv, and fv increases strictly on its intervals
of definition. Hence fv is positive on (0,~i) and increases from -oo to 00
on (jv,l, jv,2). Since Jv,l  ,jv-I-1,1  Jv,2 and fv(jv+I,I) &#x3E; 0, it follows that

 7p+i,i. · By similar reasoning, h v (k) increases strictly wherever it
is defined, and it is defined on the interval  k  min( jv,1 /a, jv,2/b).
Plainly kv(a) lies in this interval for 0  a  2*~". Incidentally, this shows
that = 21 ~ n jv , since kv (a ) lies between jv,l/b and jv,1 /a .

Notice that

with the first inequality justified, for example, by applying Theorem 1 to a

ball. Hence   min ( j",1 /a, jv,2/b). Thus we aim to show
that  0, for then the strictly increasing nature of hv implies that

1  which is (5.2). Writing

we see that our goal is to prove

From now on, we regard a as the variable, not k. Notice that Fv is continuous
for 0  2-1/n.

We begin proving (5.3) by showing that

From evaluating Bessel’s equation . at

~, and from the following recursion relations

we get that
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Hence for x near

and
For a near 2- lln , both and are near 1, and so by writing

, we get from the preceding formula that

since n = 2v + 2. We have yet to show that this last quantity is negative.
From the recursion relation for J,+, and the infinite product representation

of Jv [1, p. 370] we deduce that
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In particular,

by the series expansions for Jv and By (5.6) and (5.7),

with the final inequality following from the bound
p. 486]. We conclude that

since 2v + 2 = n &#x3E; 4, which proves (5.4).
Given (5.4), our desired goal (5.3) will follow (in the case that a &#x3E; 0)

once we establish the following:

Towards that end, recall from Appendix 1 of [3] that

Suppose that 0  a  and Fv(a) = 0. Since

where
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Next, from (5.5) and (5.6) we see that

since each term in the numerator is nonnegative and each term in the denomi-
nator is positive; here we use that n &#x3E; 4. The positivity of G, establishes (5.8)
and thus proves (5.3) when a &#x3E; 0. By continuity, then, Fv(0) s 0.

We must still prove the a = 0 case of (5.3), i.e., that F" (0)  0. When
n = 4 and v = 1, we simply compute that Fv (0) = f 1 (21 ~4 j 1 )  0; equivalently,
21/4jl ~ 4.56  4 . 61 ~ k 1. For the remainder of this part of the proof, we
assume n &#x3E; 4. Assume in contradiction to what we desire that Fv (0) = 0, so
that 0 and thus fv(2 llnjv) = 2(21/njv)n-1 1 by (5.9). The Taylor
expansion of fv around 2 llnjv is

and i for a near 0, so that for a near 0 (and b near 1),

On the other hand, (5.5), (5.6) and (5.7) yield that for x near 0,

for some positive constant C. Thus for a near 0,

Since n &#x3E; 4 by assumption in this part of the proof, we deduce that

for all a near 0. Because this contradicts the fact proved above that F" (a)  0
for 0  a  2-I/n, we must conclude that F" (0)  0, as desired. We have

proved (5.3) and hence also Theorem 4.
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Finally, we show that Theorem 4 improves on the results of Talenti [34]
mentioned in Section 3.

By the values given in Section 3, we know that dn  dn for n = 4, 5, 6.
For any n, putting t = 1/2 in [34, (2.18)] yields that

using Talenti’s function "p(t)". By [34, Th.2] we get that p(l) = and that

Z := ( 1 /2) 1 ~n p ( 1 /2) -1 ~4 is the smallest positive root of the equation

Observe that P (z)  1 for all 0  z  jv, that P (z) is undefined at z = jv, that
P (,z) &#x3E; 2 when z is just larger than j", and that = 1. Hence jv  2  k" .
From this and (5.10) we deduce that for any n,

For 5 9, direct calculation shows that
- . -

. For

where the third inequality results from applying the Payne-P61ya-Weinberger/
Thompson bound 1 -f- 4/n to a ball -see [2 p. 1631] for this and
related inequalities.

We have established that d’  dn for all n. Furthermore, 
1/2 by (5.11), and so our Theorem 4 improves Talenti’s result by a factor of
almost 2 for large n.

6. - Buckling plates in the plane

We examine here various planar regions S2 and the lower estimates for the
buckling load A(Q) provided by Bramble and Payne’s Corollary 2. We do not
claim that these lower estimates are the best known; our goal here is rather to
show that they are at least of the right order of magnitude.

In the following table, the three columns list the domain Q, the lower bound
on A(Q) provided by Corollary 2, and for some domains, a better lower bound
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on the buckling load taken from the literature (truncated to three signi
figures).

For ellipses with a/b equal to 1.25, 2 and 3 respectively, Y. Shibaoka

[31, p. 532] showed that A most probably has values approximately equal to
15.3/ab, 20.9/ab and 29.8/ab. For ellipses with a/b equal to 1.2, 1.4, 1.6, 2
and 4 respectively, J.W. McLaurin [23, p. 40] found that A is greater than or
equal to 15.1 /ab, 16.1 /ab, 17.5/ab, 20.81ab and 39.0/ab.

For each domain considered above, Corollary 2 provides a respectable, if

conservative, lower bound for A (Q). Furthermore, Corollary 2 is extremely
easy to apply in practice, as we need only compute the area of Q.

Note that most of the numerical estimates quoted above have been rescaled
from the original references, by the relation A(tQ) = 

Keep in mind that for a geometrically "nice" domain, we might be able to
use Payne’s inequality A &#x3E; h2 directly (without resorting to Krahn’s Lemma 5)
by somehow finding the exact value of À2, or at least a good lower bound. For
a square of side a this gives A ~ h2 = 57r la &#x3E; 49.3/a2, which is remarkably
close to the actual value 52.3/a 2 of the buckling load. For a rectangle of
sides a, b, we get A &#x3E; h2 = Jl’2(a-2 + 4b-2). For ellipses, B.A. Troesch [37,
p. 769] has shown that À2 ~ 12.3/ab, which improves somewhat on the table
entry above. We can also obtain results for the buckling loads of domains with
re-entrant comers. For example, the L-shape made up of three squares of side
a has h2 &#x3E; 15.1 /a2 (see [ 12]).

We do not claim to have exhausted in this section the list of particular
domains treated by other authors; we simply hope to have provided a few
enlightening examples.

To finish the section, we point out three other methods for estimating
the critical buckling load. When Q is very nearly a disk, the perturbation
methods of Polya and Szego [29] apply. For more general domains, P.-Y.
Shih and H. L. Schreyer [32] have exploited a variational method for bounding
A(Q) from below, using certain Rayleigh quotients of the vibration of Q under
prescribed loads. They get A &#x3E; 28/a2 for the square. Their paper also surveys
work in recent decades on buckling problems. Lastly, the method of inclusion
sometimes yields useful bounds: first find a larger domain Q’ D Q for which
a lower estimate on A(Q’) exists, then use the fact that A(Q’) since
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7. - Vibrating plates in the plane

As in the previous section, we examine various planar regions Q, but this
time we focus on the lower estimates for the fundamental tone r (Q) provided
by Nadirashvili’s result Theorem 3. These lower estimates are not the best
known for any of the domains considered. One should regard that as the price
to be paid for the unusual breadth and ease of application of Nadirashvili’s
result: it applies to all domains, and to apply it one need only compute the
area of the domain. Even so, the price paid need not be too great; the table
below indicates that for domains that are not too elongated in any direction,
Theorem 3 gives lower bounds of the right order of magnitude.

The three columns of the following table list the domain Q, the lower
bound on r (Q) provided by Theorem 3, and the best lower bound on the
fundamental tone known to us (truncated to four significant figures).

Considering ellipses with a /b equal to 1.25, 2 and 3 respectively, Y. Shiba-
oka [20, p. 37] found that r most probably has values approximately equalling
109.8/a2b2, 189.0/a2b2 and 359.7/a2b2. For ellipses with a/b equal to 1.1,
1.2, 2 and 4 respectively, J. McLaurin [22, p. 681] found that r is greater than
or equal to 105.7/a2b2, 109.4/a2b2, 187.3/a2b2 and 587.2/a2b2.

Note that most of the numerical estimates quoted above have been rescaled
from the original references, by the relation = 

For a rectangular plate Q of sides a and b, Theorem 3 gives that r (Q) &#x3E;

1030/a2b2. For long rectangles, say with b/a &#x3E; 2.2, it turns out that a better
bound is

When S2 is very nearly a disk, Polya and Szego’s [29] perturbation methods
apply, and for arbitrary domains Q, the inclusion method of Section 6 again
sometimes yields useful bounds.

As in the previous section, we have aimed simply to provide a small,
representative sample of work on particular domains. For further reading we
suggest in particular the rigorous works of A. Weinstein and W. Stenger [41],
N.W. Bazley, D.W. Fox and J.T. Stadter [4], and J.R. Kuttler and V.G. Sigillito
[18,19]. See also the books of A. W. Leissa [20] and G. Fichera [10] for

expositions of much numerical and theoretical work on the first few eigenvalues
and modes of vibration.
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8. - Related results and open problems

A number of questions about buckling and vibrating plates remain open. To
begin with, does the Polya-Szego conjecture ~1 (S2) ? A (S2#) hold true? Next,
can one characterize geometrically the domains for which a first eigenfunction
u I does not change sign? For these domains, Szego has proved the Polya-Szego
conjecture. We must regard such domains as exceptional, however, since u 1
does change sign for every rectangle and also for certain smoothly-bounded
convex regions, by recent work of V. A. Kozlov, V. A. Kondrat’ev and V. G.
Maz’ya [14]. 

’

For vibrating plates, does the Rayleigh conjecture r (S2) &#x3E; r (S2#) hold in
Rn , n &#x3E; 4? Also, can one characterize geometrically the domains for which
a first eigenfunction v, does not change sign? Szego has proved Rayleigh’s
conjecture for such domains, but we must again regard these domains as excep-
tional. Indeed, over forty years ago R. J. Duffin and D. H. Shaffer found that a
sufficiently thick annulus will have a nodal line (and a principal eigenvalue of
multiplicity two); see [7] for references and recent work. C.V. Coffman [6]
showed that for a domain whose boundary contains a right angle, a principal
eigenfunction must oscillate infinitely often along every ray approaching the
right angle. Even worse, perhaps, is that principal eigenfunctions change sign
for certain smooth simply connected regions, again by Kozlov, Kondrat’ ev and
Maz’ya’s work [14]. Incidentally, a number of authors have considered the sim-
ilar question of the positivity of the Green function for the biharmonic operator,
a question first raised by Hadamard. This Green function is positive for the
unit disk and for ellipses of small eccentricity, but changes sign for very eccen-
tric ellipses and oscillates badly if the domain has a right-angle comer in its

boundary, as S. Osher [26] showed. Positivity of the Green functiori can result
in surprising properties: P.L. Duren et al. [9] found contractive zero-divisors
in each Bergman space AP, 1  p  oo, over the unit disk by exploiting the
positivity of the Green function.

E. Mohr [24] contributed in a different manner to the work on Rayleigh’s
conjecture: he showed that if among all bounded domains of a given area there
exists one that minimizes the principal frequency, then the domain must be
circular. The question of the existence of a minimizing domain remains open.

Returning to buckling plates, we might hope that by adapting Nadirashvili’s
proof (or Ashbaugh-Benguria’s) from the vibrating plate in R2 to the buckling
plate, we could get that A (S2) &#x3E; However, this approach merely pro-
vides another proof of Theorem 1. We cannot explain intuitively why this line
of proof succeeds completely in showing the minimality of the ball’s principal
eigenvalue for the vibrating plate yet succeeds only partially for the buckling
plate.

Since we are unable to solve the original problem, we raise an easier one.

(’)For descriptions of recent work by Behnke, Owen and Wieners, see Section 2 of E.B. Davies,
"LP spectral theory of higher order elliptic differential operators", preprint.
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CONJECTURE.

with equality if and only if 0 is a ball.

In view of the Faber-Krahn inequality, this last conjecture would follow
from the one of Polya and Szego in Section 2, and hence is presumably easier
to prove.

Another way to improve our results might be to restrict attention to plates
Q that are convex, which is reasonable for applications. For convex Q, Krahn’s
estimate on h2 in Lemma 5 is no longer optimal, since Q can no longer
approach the case of two disjoint balls. Thus even a partial result for the

following problem might improve our bound on A.

PROBLEM. Minimize X2 (Q), assuming S2 is convex and has fixed volume. De-
scribe the shape of the extremal domain Q, if possible.

B.A. Troesch [37] raised this problem and found the minimum for elliptical
regions in the plane. We remark also that an extremal domain is known to exist
for the general version of the problem, at least in R2, by work of S.J. Cox and
M. Ross [8, Th.2.3]. Still, for general convex membranes S2, we do not know
of any explicit lower estimate on h2(Q) in terms simply of the area/volume of
Q, except for Krahn’s Lemma 5.

One final lower bound for A(Q) deserves mention, in light of Theorem 1.

By Green’s formula, Cauchy-Schwarz and the definition of r(Q), we obtain
that

Thus for dimensions n &#x3E; 4, our estimate on the buckling load in Theorem 1

follows from our estimate on the fundamental tone in Theorem 4. Any im-
provement in Theorem 4, such as a proof of Rayleigh’s conjecture, would
hence improve Theorem 1, when n &#x3E; 4. Notice, however, that for
n = 2, 3, and so combining (8.1) with Nadirashvili’s and Ashbaugh-Benguria’s
results does not improve Theorem 1 in the case that n = 2, 3. Interestingly, that
2 llnj, &#x3E; k, for n = 2, 3, is precisely what allows the proofs of Nadirashvili
and of Ashbaugh and Benguria to succeed; for n &#x3E; 4, however, taking to be
a ball in Theorem 4 shows that kv &#x3E; 2 lln jv.

To conclude the paper, we summarize for the reader’s convenience several

inequalities used in the above discussions:
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