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Holomorphic Extension to Open Hulls

GUIDO LUPACCIOLU

1. - Introduction

Let M be a Stein manifold of complex dimension n &#x3E; 2.
If S is an arbitrary subset of M, denotes, as usual, the algebra of

complex-valued functions on S each of which is holomorphic on some open
neighborhood of S, and if K c S is compact, ko(s) denotes the O(S)-hull of
K, i.e., 

-

For the purposes of this paper we also need to consider hulls of nonnec-

essarily compact subsets of M. If E is an arbitrary subset of S, we use the
notation that denotes the union of the O(S)-hulls of all compact subsets
of E, that is, 

- -

where K ranges through the whole family of compact subsets of E.
It turns out that, if Q c M is an open set, is open as well (Section 2,

Lemma 1); moreover it is plain that is O(M)-convex, in the sense that,
if G c S2o(M) is compact, then C hence is a Stein and

Runge open subset of M, and is the smallest such subset which contains Q.
We shall be concerned in particular also with the O(M)-hull of

the complement CD = M B D of the closure of an open domain D c M. Of

course, if D cc M, is the whole M, but in general CDO(M) is a

proper subset of M. 
---

It may happen that bD, the boundary of D, is contained in A
sufficient condition is that every holomorphic function on C D extends through
bD to be holomorphic on a neighborhood of CD, in other words the restriction
map O(lD) - 0(CD) is surjective (Section 2, Lemma 4). Thus, in particular,
if b D is smooth of class C2 and at each point z E b D the Levi form of b D,

Pervenuto alla Redazione il 15 settembre 1994 e in forma definitiva il 6 ottobre 1995.
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restricted to T7c (b D), has a positive eigenvalue, it follows that
However the above mentioned sufficient condition is not necessary. For example,
the domain D = {~ E (C’ : )zi )  1 { verifies = (Cn , but certainly the
restriction map - is not surjective.

Let us fix some further notations. If S is an arbitrary subset of M, we
denote by £!,q(S), Zp,q (S) and H!,q(S) the space of C°° (p, q)-forms on open
neighborhoods of S whose supports have compact intersections with S, the

subspace of Sp,q (S) of a-closed forms and the a-cohomology space

respectively. In the case when S is open and in the case when S is locally
closed these spaces will be regarded as locally convex topological vector spaces,
with respect to the standard topologies. We refer to the first section of the recent
article of Chirka and Stout [5] for a discussion, particularly suited to our needs,
on these topologies and related matters.

Moreover we use the notation that, if V is a topological vector space, ’V
denotes the Hausdorff vector space associated with V, i. e., the quotient space
of V modulo the closure of the zero element.

This article is devoted to establish some new results on holomorphic ex-
tension of holomorphic functions and of CR-functions, with the principal aim
of pursuing the development of the subject of removable singularities for the
boundary values of holomorphic functions, after the recent extensive work of
Chirka and Stout [5]. The following theorems state the basic results of the
article. The applications to the above mentioned subject can be found in Sec-
tion 4.

THEOREM 1. Let Q C M be an open set. Then for a function F E the

following two conditions are equivalent:
(la) F is orthogonal to the space

for every form, w, in that space. (1) &#x3E;

(lb) F extends uniquely to a function in 

THEOREM 2. Let S2 c M be an open set. Then the following two conditions are
equivalent:

(’)The proof of the theorem will show also that
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THEOREM 3. Let D C M be an open domain, such that I Then

moreover, if bD is a real hypersurface of class cl, for a continuous CR-function f
on bD the following two conditions are equivalent:

(3a) f is orthogonal to the space (D), i.e.,

for every form, 1/1, in that space.
(3b) f extends uniquely to a function in

In connection with Theorem 2 and the corollaries below, let us recall that,
if S is an open, or locally closed subset of M, the vanishing means

the following: For every form 1/1’ e one can find a sequence 
of forms in p’q-1 (S), such that as (in the topology of

We wish to mention a couple of straightforward consequences of the above
theorems.

COROLLARY 1. Let S2 C M be an open set. Then the condition that
= 0 is sufficient for S2 to be "schlicht ", i. e., to have a single-sheeted

envelope of holomorphy

COROLLARY 2. Let D ç M be an open domain, such that b D C as

in Theorem 3, with bD being a real hypersurface of class C1. Then the condition

(D) = 0 is sufficient in order that every continuous CR-function on bD
may extend uniquely to a function in n bD).

Indeed Corollary 1 is a trivial consequence of Theorem 2, and Corollary 2
follows at once from Theorem 3, since, if = 0, by Stokes’s theo-
rem every continuous CR-function f on b D verifies Condition (3a ) . (Stokes’s
theorem can be applied, though f is only continuous, since f is a CR-function.
See [10, Proposition 1.9].) 

..-

Notice that a domain D C M, such that bD C 
0, automatically verifies the condition that the restriction map -~ 

is surjective (which was mentioned above as being one which implies that

bD C As a matter of fact, since CD C if the restric-

tion map --&#x3E; were not surjective, a fortiori, the restriction map
2013~ would not be surjective too: A contradiction with Theo-

rem 2, since it is assumed = 0. On the other hand the preced-
ing condition obviously implies that, if also the restriction map -

is surjective, then so is the restriction map
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as well. Therefore Theorem 2 and Corollary 2 imply (in view of Lemma 4 of
Section 2 too):

COROLLARY 3. Let D C M be an open domain, such that the restriction map
is surjective. Then

moreover, if bD is a real hypersurface of class C1, the following two conditions are
equivalent: 

- 

’

(b) Every continuous CR-function on bD extends uniquely to a function in

We emphasize that in the above theorems and corollaries it is not assumed
that the open set Q should have compact complement, nor that the domain
D should be relatively compact. This is the novel aspect of these theorems
and corollaries, since in the cases when C S2 and D are compact they reduce
to essentially well-known results. Indeed, if K c M is a compact set, then

éKO(M) = M and H!,q(K) = hence the condition that ’ 
0 is just equivalent to saying that CK is connected (see [11]). Therefore the

equivalence of (2a ) and (2b ) stated in Theorem 2 reduces, when C S2 is compact,
to the version of the Hartogs extension theorem given in [16], whereas both
of Corollary 2 and Corollary 3 reduce, when D is compact, to the extension
theorem for CR-functions often referred to as the Hartogs-Bochner theorem (see
[8]). Theorem 3 in turn reduces, when D is compact, to the characterization
of the boundary values of functions in C°(D) n O(D) in the case that bD may
be disconnected. Such characterization was provided by Weinstock [19] for

relatively compact domains in C’, under stronger smoothness assumptions. A
considerably more general result in this direction can be found in [12] and in
[5]: it concerns a relatively compact domain D of an arbitrary non-compact
complex-analytic manifold and provides the characterization of the CR-functions
on b D B E which may be the boundary values of holomorphic functions on
D B E, when E is a compact set with = 0; namely, if b D B E is
a real hypersurface of class C l, then a CR-function in C° (b D B E) is the boundary
values on bD B E of a unique function in Co (D B E) n 0 (D B E) if and only if it is
orthogonal to the space (D B E). At the end of the article we will discuss
a new derivation of this last result as well as of another result in the same

general direction which also can be found in [12] and in [5].
As a quite natural complement of the above stated results, we shall also

discuss here a cohomological characterization of the open subsets of M whose
O(M)-hulls fill the whole M, namely:

THEOREM 4. Let S2 c M be an open set. Then the following two conditions are
equivalent:



367

We do not linger here over writing the statements of the results which follow
by combining the last theorem with the preceding theorems and corollaries;
however in the final part of the article (Section 5) we will discuss the results
in the direction contemplated now which are obtainable in the general setting
of an arbitrary complex-analytic manifold.

Acknowledgment. I would like to express my thanks to E.M. Chirka and
E.L. Stout for several interesting discussions on problems in the area of remov-
able sets. It was above all their geometric characterization of weakly removable
sets (see Section 4) which inspired to me the idea of this paper.

2. - Preliminaries

Presumably the following result is generally known. Since we do not know
any reference for it, we include a proof here. 

LEMMA 1. C M is an open set, the O(M)-hull 00(m) is open as well.
PROOF. Let us first consider the case where M = If ~ is any point

in there exists a compact set K c Q with ~ Let c be
a positive real number small enough that K C Q, with Bn(e) being
the open ball with center the origin and radius e. Since, for every z E en,

= + ,z, it follows that K-O(Cn) + JRn(E) C In

particular ~ C hence is open.
Now let us consider the general case. In view of Remmert’s embedding

theorem, it is no loss of generality to assume that M be a closed complex
submanifold of It is known that M admits a neighborhood basis of
Stein domains which are Runge in C2n+l (see [15]) and that there exists a

holomorphic retraction p : V - M of an open neighborhood V C c2n+ 1 of
M onto M (see [7]). Combining these facts gives the existence of a Stein
and Runge domain R C C2n+ 1 and a holomorphic retraction p of R onto M.
Since R is Runge, if U C R is open, then hence, by
the above, is open as well. In particular is open. On the

other hand, it is plain that C and it can be readily checked
that C therefore Qo(m) = p(P-=í(Q)O(R»’ and the
conclusion follows, since p is an open map. El

The following lemma will play a fundamental role in the proofs of our
extension theorems.

LEMMA 2. If S2 c M is an open set, the restriction map p :
is an injective topological homomorphism of Frechet spaces.
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PROOF. Since the O(M)-hull of every compact set K C M has no connected
components which do not meet K, it is readily seen that there cannot exist any
connected component of which is disjoint with SZ; hence p is injective.

Clearly p is a continuous linear map of Frechet spaces. As such, in order
that it may be a topological homomorphism, it is necessary and sufficient that
its image should be closed (see [6, p.162]). Therefore it suffices to show that, if

is a sequence in such that p(Fv) --~ 0, as v - oo, in the

topology of then Fv --~ 0, as v -~ oo, in the topology of 
Let G c be a compact set. Then there exists a compact set K C S2
with G c hence, for every v E N,

Therefore, on the assumption as v - oo, it follows at
once that ||Fv||G --&#x3E; 0, as v ---&#x3E; oo, which implies the desired conclusion. D

Is worth noticing a straightforward consequence of the proof of Lemma 2:

COROLLARY 6. C M is an open set such that the restriction map -

has dense image, then is the envelope of holomorphy of Q.
This result is essentially equivalent to a result pointed out previously by

Casadio Tarabusi and Trapani [3, Lemma 1.1].
Next we prove:

LEMMA 3. C M is an open set, the following two conditions are equivalent:
(1) = M.

(2) The restriction map r : O(M) - O (Q) is a topological homomorphism
of Frechet spaces. 

’

PROOF. It is a straightforward consequence of Lemma 2 that (1) implies (2).
To prove that conversely (2) implies (1), let us consider also the restriction map
r’ : O(M) --~ Since is Runge in M, r’ has dense image,
hence, invoking again the property mentioned in the proof of Lemma 2, we
see that the condition that r’ be a topological homomorphism is equivalent to
the condition that r’ be surjective. Moreover, since is Stein, the latter
condition is in turn equivalent to (1). Now, if we consider p and r as maps
into Im(p) rather than into C~(S2), we have that p is, by Lemma 2, a topological
isomorphism of Frechet spaces and we may write r’ = p-ir, from which we
conclude that, if (2) holds, r’ is a topological homomorphism. D

We conclude this Section by proving:
LEMMA 4. Let D C M be an open domain. Then the following two conditions

are equivalent:

Moreover these equivalent conditions are satisfied in the case when the restriction
map --~ is surjective.
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PROOF. It is evident that (i i ) implies (i ) . Let us prove that (i ) implies (i i ) .

Obviously (i ) implies that = CDO(m), hence it suffices to prove that

As a matter of fact, let K c C D be a compact set and let
.&#x26;. - ,---"

Then, if f is a holomorphic function on a neighborhood of S and 03B6 E S, the
Rossi’s local maximum modulus principle implies that

where bS means the boundary of S relative to Since

it follows that
Therefore we have:

Then, since the inclusion holds for evei

compact set K c CD, and plainly

the validity of (2.1 ) follows at once.

- 
Finally, the second statement of the lemma follows from the fact that

is a Stein open set, hence an open set of holomorphy. Consequently, the

surjectivity of the restriction map implies that

3. - Proof of the main results

PROOF OF THEOREM 1. On account of the Serre duality theorem [17], the lin-
ear map L : -~ Hom C) defined by L(F)(w) = fQ FúJ,
for every F E and E induces a topological isomorphism
of onto Hom C), which we denote by ig. Clearly,
if 1r : and are the canonical

projections, and : ,, Condition ( 1 a ) amounts to

saying that vanishes on

Let be the continuous linear map induced by
inclusion and , the induced continuous linear
map of the associated Hausdorff spaces. Since Qo(m) is Stein, is

Hausdorff, hence ia p = i. Now we show that
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Let and be the linear

maps induced by inclusion. It is clear that

and since ) is Runge
in M, i’ is injective (again by the Serre duality theorem), hence

from which (3.1 ) follows at once.
Therefore Condition ( la ) is equivalent to saying that F satisfies

Then let us prove that also Condition (lb) is equivalent to (3.2). There is
a commutative diagram

where i* is the transpose of if. Since -rQ are topological isomorphisms
and p is an injective topological homomorphism (Lemma 2), it follows that

also i* is an injective topological homomorphism and that Condition (lb) is

equivalent to saying that F satisfies

Now, consider the exact sequence

Since i* is a topological homomorphism of the strong duals of spaces of type
(DFS), it follows that i, is a topological homomorphism as well (see [4]). This
implies that also the transpose of the above sequence,

is exact (see [16]), which in turn implies that

Hence we may conclude that (3.2) and (3.3) are equivalent conditions.
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PROOF OF THEOREM 2. In view of the preceding proof, it is clear that
Condition (2b ) amounts to saying that (3.2) holds for every F E C~ ( S2) . Then,
since rQ : (C) is surjective and ’ Hn,n (0) is,
by definition, a Hausdorff space, it follows that (2b) is equivalent to having

Then, let us prove that also Condition (2a) is equivalent to (3.4). There is
the exact sequence

(where the linear map induced by inclusion is denoted by I", as in the proof
of Theorem 1, so i’i). The coboundary map 8 is continuous (see [5,
Section 1 ] ), therefore it induces a continuous linear map

Let us prove that also the sequence

is exact. Since the space 7~"(M) is Hausdorff, 8 is a topological homomor-
phism (see [4]), and we already know from the proof of Theorem 1 that also

ia is a topological homomorphism. This implies that and K er (ia )
coincide with the projections of Ker(8) and Ker(i) into and

~ H~’n (S2), respectively (ibidem). Since K er(8) = 0, the first projection is the

zero element of hence

moreover, since is Hausdorff, and so the second
- L 1 

projection coincides with that of Ker (i ), hence

(where the projection map of is denoted by p, as

in the proof of Theorem 1 ). On the other hand, i’i , with i’ :

being an injective continuous linear map of Haus-
dorff spaces, it follows that

hence

Finally, it is plain that

and hence we conclude that

Now, by the exactness of the sequence (3.5) and the equality
K er(ia), we immediately infer the equivalence of (2a) and (3.4).
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Proof of Theorem 3. The first assertion of the theorem is contained in

Lemma 4. The proof given below of the equivalence of Conditions (3a ) and
(3b) depends on Theorem 1 and proceeds for a substantial part by quite standard
arguments.

Consider the current
which is defined by
function,

and since , it follows that there exists a distribution

Moreover, since supp(T) C bD, it follows that

there exist holomorphic functions j i and G E O(D) such that

Now we prove that Condition (3a ) is equivalent to saying that the preceding
function F verifies Condition ( 1 a ) with S2 = C D . Given a form (0_ E

, clearly there exists a form 1/1 E ~~ ~n-1 (M) with
and a1/1’ = 0 on a neighborhood of D. Then * E and therefore, if

f verifies (3a ), it follows that

hence F verifies ( 1 a ) with Q = CD. Conversely, if there is

an open neighborhood U of D such that If

is a C°° cutoff function, h = 1 on a neighborhood of it is

clear that Therefore, if F verifies ( 1 a ) with
it follows that

hence f verifies (3a ) .
That being established, to conclude the proof of Theorem 3 it suffices, on

account of Theorem 1, to prove that (3b) is equivalent to

Indeed, if (3.6) holds, # - F is a distribution on such that # - F = 0 on

By [8, Lemma 5.4], the function
has a continuous extension to

(2)Here r c denotes the family of supports in U of the closed subsets of U which are relatively
compact in M (see [5, Section 1]).
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that coincides with f on bD. Hence there is
with flbD = f. The uniqueness of f follows from the fact that there are no
connected components of bDo(jj) which do not meet bD. Hence (3.6) implies
(3b). Conversely, if (3b) holds and f is the extension of f, consider the

distribution, on , where
- 

is the characteristic

function of If we have

(by Stokes’s theorem, since Therefore

which implies that The uniqueness of F follows from the
fact that there are no connected components of which do not meet C D .
Hence we conclude that (3b) implies (3.6). D

PROOF OF THEOREM 4. Using notations coherent with those of Lemma 3
and of the proofs of Theorem 1 and Theorem 2, we can write a commutative
diagram

and an exact sequence

Now, if (4a) holds, i.e., = 0, it follows 
is a surjective continuous linear map of spaces of type (DFS), hence a

topological homomorphism, which implies that its transpose i~ * is a topological
homomorphism as well (see [4]). Then also r is a topological homomorphism,
and hence, by Lemma 3, = M, i. e., (4b ) holds.

Conversely, if (4b) holds, we have, by Lemma 3 and the preceding commu-
tative diagram, that is an injective topological homomorphism. It follows,
by the Hahn-Banach theorem and the reflexivity of spaces of type (DFS) (see
[6] and [4]), that i" is surjective. Then i" is surjective too, which implies that
(4a ) holds. 0
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4. - Applications to removable boundary sets

Now we show applications of the preceding results to the subject of re-
movable singularities for the boundary values of holomorphic functions.

We recall that, if D C C M is a relatively compact open domain and
K c bD is a compact set, such that bD B K is locally the graph of a Lipschitz
function, the set K is said to be removable if every continuous CR-function on
bDBK extends to a function in moreover the set K is said to
be weakly removable if the same extension property is valid for every continuous
CR-function f on bD B K that is orthogonal to the space B K), i.e.,
satisfies the moment condition = 0, for every C°° a-closed (n, n -1)-

form 1/1 on a neighborhood of D, such that is empty.
We refer to the already mentioned article of Chirka and Stout [5] as the

best and most complete account on the subject of removable boundary sets. An
earlier account can be found in [18].

Related to this subject is the problem of describing, for a nonnecessarily
removable or weakly removable compact set K c bD, the hull of holomor-
phy of bD B K, with respect to the whole family of continuous CR-functions,
or with respect to the subfamily of the CR-functions that are orthogonal to

(D B K). This problem is discussed in [13] and in [5] for the case of the
whole family of continuous CR-functions. The following corollaries of Theorem
3 state new results in this direction.

COROLLARY 5.Let D cc M be a C 2-bounded strongly pseudoconvex domain
and K C b D a compact set, and put r = b D B K. Then for a continuous CR- function
f on r the following two conditions are equivalent.

(*) f is orthogonal to the space B K).
(**) f extends uniquely to a function in Co (P n o(r o (V) B r).
PROOF. Let A cc M be a C2-bounded strongly pseudoconvex domain such

that K c bA and D B K is (i.e., = 

for every compact set G c D B K). A can be obtained by pushing b D away
from D by a small perturbation of class C2 that leaves K fixed pointwise.

We may apply Theorem 3 to the Stein manifold A, in place of M, in which
the closure and the boundary of D are D B K and bD B K = r, respectively.
Since r is strictly Levi-convex, the restriction map 
is certainly surjective, hence the required condition that r c (CA(D B K))~~(A)
is verified. Theorem 3 implies at once the equivalence of (*) to

(4.1) f has a unique extension to a function in 

But since D B K is it follows that rO(5BK) = r OeD)’ hence (4.1)
is equivalent to ( * * ) . D

COROLLARY 6. Let D, K and r be as in Corollary 5. The following two
conditions are equivalent:
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(t) The restriction map Hn,n-2(Ð) -~ has dense image.

--(tt) Every continuous CR-function on r extends uniquely to a function in

PROOF. Let 0 be as in the proof of Corollary 5. Since rO(5BK), it
follows from Corollary 3, applied to A, in place of M, that (tt) is equivalent
to having

On the other hand, there is the exact cohomology sequence

where r denotes the restriction map under consideration. The coboundary map
8 is continuous (see [5, Section 1]); moreover, since D is a Stein compactum,
a : - is a topological homomorphism (it being the inductive
limit of a sequence of surjective topological homomorphisms of locally convex
vector spaces (3) ), and this implies that 8 is a topological homomorphism as well
(see [4]), i.e., being surjective, 8 is an open map. Then it is readily seen that
(t) and (4.2) are equivalent conditions. D

REMARK. For n &#x3E; 3, since D is a Stein compactum, one has H n,n-2 (D) = 0,
hence (t) amounts to having a Hn,n-2(K) = 0, which is also equivalent to having

0 (see [12, 1.2]). On the other hand, for n = 2 (t) amounts to
saying that the restriction map O(D) - O(K) has dense image (ibidem), and
this is equivalent to saying that the restriction map 2013~ O(K) has

dense image. The latter implies that the restriction map O(Ko(D)) 2013~ O(K) is
actually surjective, i.e., is the envelope of holomorphy of K, since the
preceding restriction map has closed image (see [14]).

Corollary 5 expresses in particular that the hull of holomorphy of b_D B K
with respect to the continuous CR-functions that are orthogonal to (D B K)
is single-sheeted. This is in contrast with what may happen to the hull of

holomorphy of bD B K with respect to the whole family of continuous CR-
functions, since in [5] one can find an example of a C°°-bounded strongly
pseudoconvex domain D C C c2m, m 2: 2, and a compact set K C bD, with
b D B K being connected, such that the envelope of holomorphy of b D B K is
not single-sheeted.

~3~ We refer to [1, pp.227-228], or to [2, p.276], for the property that the topological direct sum
of a sequence of topological homomorphisms of locally convex vector spaces is a topological
homomorphism as well. This property implies the parallel property for the inductive limit of
a sequence of surjective topological homomorphisms of locally convex vector spaces, since an
inductive limit space is topologically isomorphic to a quotient space of a topological direct sum
space (see [6, p. 142]).



376

Moreover Corollary 5 implies at once the geometric characterization of

weakly removable sets due to Chirka and Stout [5], that is, with D, K and r
being as in Corollary 5, K is weakly removable if and only if = D B K.

In this connection we recall that another necessary and sufficient condition
in order that K may be weakly removable is that (K) = 0 (see [12], [5]).
We are now in a position to discuss a new derivation of this last result as a
simple consequence of Theorem 4. As a matter of fact, with A being as in the
proof of Corollary 5, we know that

Therefore, by the above mentioned geometric characterization of weakly remov-
able sets, the weak removability of K amounts to having (Co (D B K))~~o~ = A.
By Theorem 4, applied to A in place of M, with Q = lA(D ( K), the latter
condition is equivalent to having _H~ ’n (D B K) = 0. Then the conclusion follows
at once from the fact that, since D is a Stein compactum, the coboundary map

~ is bijective.
Corollary 6, iq its turn, states a sufficient condition in order that the hull

of holomorphy of bD B K with respect to the whole family of continuous CR-
functions may be single-sheeted; moreover, coupled with Corollary 5, it implies
the already known result that K is removable if and only if it is weakly removable
and the restriction map H n,n-2 (D) -~ H n,n-2 (K) has dense image (see [ 12], [5]).

In connection with the subject of this Section, we recall that, by an earlier
theorem on extension of CR-functions, given D, K and r as in the above two
corollaries, it is true in general that every continuous CR-function on r has a
unique extension to a function in B nO(D B and that for

n = 2 D B is Stein, and hence for n = 2 the envelope of holomorphy
of r is exactly D B KO(Ï5). (See [ 18], [13] and the references cited there.) A
particular consequence of this theorem which is meaningful for the present
discussion is that the inclusion D B K o (Ï5)- C P 0(75) is always valid. Indeed, since

a Stein open set containing r, there exist CR-functions on r
(of class C2) which cannot be holomorphically extended through any boundary
point, in D, of B K))~;(,), and hence, granted the validity of (4.3), if
the preceding inclusion were not true, there would follow a contradiction to the
recalled result. 

’

We point out a consequence, in dimension two, of Corollary 6 and the
above mentioned theorem.

COROLLARY 7. Let n = 2 and let D, K and r be as in Corollary 5. The

following three conditions are equivalent:
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REMARK. A comment is in order, since here above we have discussed

envelopes of holomorphy of non-open subsets of M. We recall that in general
the envelope of holomorphy E (S) of an arbitrary subset S of a Stein manifold
M can be defined as the union of the components of S = spec(O(S)) which
meet S. It is not always true for a non-open subset S c M that S is embedded
in a complex manifold in a natural way. On the other hand, if there exists a

holomorphically convex set S’ c M containing S, with the property that the
restriction map (9(~) 2013~ is bijective, then E(S) may be identified with
S’. In this connection we also recall that if a subset of a complex manifold
admits a fundamental system of Stein neighborhoods, then it is holomorphically
convex. (We refer to [9] for all these facts.)

5. - Holomorphic extension in general manifolds

Combining Theorem 4 with the preceding theorems and corollaries stated
in Section 1, one can obtain corresponding results concerning the holomorphic
extendability to the whole ambient manifold for functions holomorphic on an
open set and to the all of a domain for CR-functions on the boundary of
the domain, respectively. The formulation of these last results does no longer
involve mentioning hulls of any kind and thus implicitly referring to convexity
properties of the ambient manifold. Hence there arises the natural question
whether these results might be still valid, at least for a substantial part, under
less restrictive assumption on the ambient manifold than it being Stein. We
wish to show that the answer is in the affirmative, even in the most general
case of an arbitrary complex-analytic manifold as the ambient manifold.

Thus let X denote an arbitrary complex-analytic manifold (connected, count-
able at infinity) of dimension n &#x3E; 2. Then the following extension theorems
hold true:

THEOREM 5. Let S2 g X be an open set, such that .
be orthogonal to the space Then F extends uniquely to a
function in (

THEOREM 6. Let S2 g X be an open set, such that. and the
restriction map I has dense image. ~5) Then the restriction
map I is bijective.

THEOREM 7. Let D C X be an open domain, with bD being a real hypersurface
of class Cl, such that H;,n(D) = 0. Let f be a continuous CR-function on bD that

(4) Stokes’s theorem implies immediately that such orthogonality condition is also necessary for
extendability. The same remark applies to Theorem 7 below.
(5) Such density condition is more general than the condition that ’ 0. The two

conditions are equivalent in case ’ (X) = 0.
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is orthogonal to the space Then f extends uniquely to a function in

Note that Theorem 7 implies at once:

COROLLARY 8. Let D g X be an open domain, with bD being a real hyper-
surface of class Cl, such that ’ H n,n-l(-D) = Hcn n (D) = 0. Then every continuous
CR-function on bD extends uniquely to a function in CO(D) 

To prove Theorem 5 and Theorem 6, we can proceed along the same
general lines of the proofs of Theorem 1 and Theorem 2. We sketch the proofs
using in part the same notations as in Section 3.

PROOF OF THEOREM 5. Let j : : be the continuous
linear map induced by inclusion the induced
continuous linear map of the associated Hausdorff spaces. In the first place it

is clear that F is also orthogonal to the space n (where
means the topological closure of in £;,n(x)), and hence

= 0. On the other hand the thesis amounts to having E

Im(j,*). Secondly, since = 0, j is surjective, and hence so is ja too.
The surjectivity implies that ja is a topological homomorphism and then
it follows that j; is an injective topological homomorphism, the point being that
the spaces under consideration are of type (DFS). Then the conclusion follows
by the same reasoning as in the final part of the proof of Theorem 1. D

PROOF OF THEOREM 6. The thesis amounts to proving the bijectivity of the
2013~7~"(X). We can apply the exact sequence

Since 0, j is surjective, hence so is ja too. Moreover, since

Im(r) = and 3 is continuous, we have Ker(j) = Im(8) = 8 (Im(r)) _
i. e., Ker(j) is contained in the closure of zero in

H~ ~n (S2), which implies that ja is injective. D

REMARK. One can prove that the conditions on Q of Theorem 6 are also

necessary for the bijectivity of the restriction map O(X) -~ under the

assumption on X, indeed rather general, that be Hausdorff (which, by
the Serre duality, amounts to H 1 (X, C~) being Hausdorff). The main point is

that, if is Hausdorff, the preceding coboundary map 8 is a topological
homomorphism (see [4]).

To prove Theorem 7, it does not seem to be possible to adapt the procedure
of the proof of Theorem 3, the point being that, since may not be

null, nor even Hausdorff, the existence of the distribution 6 cannot be inferred
in like manner. We need instead to consider cohomology with supports in a
closed set and to apply the relative duality theorem of Serre type [2; VII.4.15].
For the convenience of the reader we state a particular version of the mentioned
duality theorem which is sufficient for our purposes.
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Let S C X be a closed set and p, q integers with 0  n. Then
the spaces Qq ) and can be made in a natural way into

locally convex topological vector spaces such that the associated Hausdorff

spaces are in topological duality, moreover is Hausdorff if and only
if S2n-q) is Hausdorff. (6)

We also need to refer to a description in terms of currents of the coho-
mology with supports in the closed 

Consider, for a fixed q, the complex of topological vector
spaces defined as Cq’r = and d(r)(T, U) = (aT, (TICS) -
5 U), for every (T, U ) E Cq’r , where each of the spaces is given the direct
sum topology of the strong topologies of its summands. Then is

topologically isomorphic to the p-dimensional cohomology space derived from
{Cq,r,d(r)}rEZ.

PROOF OF THEOREM 7. Consider the current T 1 T

is orthogonal to the space in the sense that  T, w &#x3E;= 0 for ev-

ery form W E (D), hence, by the relative Serre duality, the element of
represented by (T, 0) belongs to the closure of zero. On the other

hand, since 0, the relative Serre duality also gives that 0)
is Hausdorff, and hence we infer that the mentioned element is zero. It fol-
lows that there is a distribution 6 E such that (T, 0) = (aiJ, iJICD).
Since supp(T) c coincides on D with a holomorphic function. Then,
by [8, Lemma 5.4], D has a continuous extension F E C° (D) such that

= f. D

In connection with the results of this Section, let us recall three facts

concerning a compact set I~ ç, X, all of which derive (see [11]) from the
well-known result that every complex-analytic manifold of dimension n with no
compact components is (n - I)-complete:

(i) For every integer p one has = = 0.

(ii) If X is non-compact, C K has no relatively compact components if and
only if the restriction map - H n,n-I (K) has dense image.

(iii) If X is non-compact = 0, then CK has no relatively
compact components if and only if C K is connected.

In view of (i), if we consider the preceding results for the cases where _CS2
and D are compact, we see that the assumptions that and 
be null may be .dropped from the statements, since they do not impose any
restrictions on the compact sets C S2 and D.

In particular Theorem 6 reduces to the assertion that, if K C X is a com-
pact set, then the restriction map O(X) -~ is bijective~~~, provided the
restriction map - (K) has dense image. The latter condi-
tion on K is stronger than the merely topological condition that CK should

~6&#x3E;Notice that the topology of H:- P (S; coincides with that defined by means of Dolbeault’s
isomorphism, i.e., there is a topological isomorphism H:-P (S; S2n-q ) "’ (S).
(7) Of course, if X is compact this means that C.
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be connected; however the preceding result is not, for X non-compact, just
a weaker version of the Hartogs extension theorem for general non-compact
complex manifolds of dimension n &#x3E; 2, since it does not contain the usually
required hypothesis that H1 (X, 0) = 0. In fact such hypothesis amounts, by the
Serre duality, to having = 0, and then it follows immediately that
the map ~ induced by inclusion of supports has dense
image and, in view of (iii), also that C K has no relatively compact compo-
nents if and only if it is connected; hence the condition that the restriction map
H:,n-l (X) - Hn,n-I (K) has dense image can be readily seen to be equivalent
to (ii), and both of the conditions are equivalent to C K being connected.

A similar remark applies to Corollary 8, considered in the case where X
is non-compact and D cc X. The condition that = 0 is stronger
than the merely topological condition that C D should be connected, but the
former condition is needed to compensate the absence of the hypothesis that
Hcl (X, 0) = 0, under which the extension theorem is known to be valid provided
the latter condition holds (see [8]). However, if Hcl(X, 0) = 0, the vanishing

and the connectedness of CD are equivalent facts.
Now we show that Theorem 7 allows one to obtain a quick new derivation

of the characterization of boundary values mentioned in Section 1 before the
statement of Theorem 4. Indeed, one has the exact sequence of a -cohomology
with compact supports

On account of (i), vanishes, and, by assumption, so does 
Hence B E) = 0, moreover, in view of (iii), C E is connected. Then
the desired conclusion follows at once from Theorem 7 applied to CE in place
of X.

Finally, we wish to show also a new derivation, by means of Corollary 8,
of the following other theorem on extension of CR-functions (see [12] and [5]).
Consider, for X being non-compact with Hcl (X, 0) = 0, a domain D cc X and a
compact set E C X, such that bD B E is a real hypersurface of class C1, C(D U E) is
connected, Hn,n-l (E) = 0 and the restriction map Hn,n-2(x) -~ Hn,n-2 (E) has
dense image. Then every continuous CR-function on bD B E is the boundary values
on bD B E of a unique function in C° ( D B E) nO(D B E).

All one has to prove, in order to be able to infer the thesis from Corollary
8 applied to C E in place of X, is B E) = 0. One has the exact
sequence

Since the restriction map has dense image, the same
is true of r : hence lm(3)

.ch implies that i
is bijective. It remains to prove that
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This is a consequence of (iii), 0 (by assumption, via the
Serre duality) and C(D U E) is connected.
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