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Polynomials Homologically Supported on Degeneracy Loci

PIOTR PRAGACZ (*) - JAN RATAJSKI (**)

Introduction

The aim of this paper is to extend the main theorem of [P] concerning
"polynomials supported on degeneracy lbci" to some other homology theories.
Let H( ) be a homology theory with properties specified in Section 1. Fix

integers m &#x3E; 0, n &#x3E; 0 and r &#x3E; 0. Assume that (c., c.’) = (cl, ... , cn, ci, ... , cm) is
a sequence of m + n variables with deg ci = deg c~ = i.

We say, following [P], that P E Z [c., c.’] is universally supported on the
r-th degeneracy locus if for every scheme X, every morphism ~p: I - £ of
vector bundles on X, rank 6 = n, rank 7 = m and every a E H(X)

Here, for

the map i : Dr(p) - X is the inclusion, and i*: H(X) is the induced
morphism on the homology.

Define Pr to be the set of all polynomials universally supported on the r-th
degeneracy locus. It follows from the projection formula for i that Pr C Z [c., c.’]
is an ideal.

In [P] the first named author gave a description of Pr in the case of the
Chow homology. In this work we show that the same result holds true for other
homology theories.

The homology we consider here are endowed with a "cl-map": Ak( ) --&#x3E;
H2k( ), where Ak denotes the Chow homology, and overlap the Borel-Moore

(*) This research started during the author’s stay at the University of Bergen, supported by
the N.A.V.F. and has been finished at the Max-Planck Institut fur Mathematik as a fellow of the

Alexander von Humboldt Stiftung. While preparing the paper the author was partially supported
by KBN grant No 2 P301002 05.

(**) Supported by KBN grant No 2 P301002 05.
Pervenuto alla Redazione il 20 Ottobre 1994 e in forma definitiva il 6 Luglio 1995.
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homology (both the original ones and also those in characteristic p defined by
Laumon). Independently we consider also the singular homology. Unfortunately
the Chow homology proof of the main theorem of [P] does not go through for
these homology. A serious obstruction is provided by the fact that even for such
a nice homology theory as the Borel-Moore homology, the schemes used in the
proof in [P] have nontrivial odd homology groups (see Remark 2.3). Notice that
similar arguments show that the complex affine determinantal varieties Dr can
have nontrivial odd Borel-Moore homology. Hence the problem of computation
of HBM (Dr ) is more difficult than computation of A*(Dr) calculated in [P], and
IH*(Dr) (the intersection homology of Dr ) calculated by Zelevinsky in [Z].

Therefore to prove that the main theorem of [P] holds true also for
other homology theories one needs a method different from that used in [P].
The key point is to use a suitable compactification of the main construction
(13) in [P]. While the loci used in [P] were some closed subsets in the total
space of a certain Hom-bundle, the loci used in the present paper are closed
subsets in a Grassmannian bundle whose standard coordinate chart is given
by the above Hom-bundle (via identifying a morphism with its graph). (We
have learned the idea of this compactification from [K-L].) More precisely our
strategy here is as follows (the notation used is explained in Section 2). We
use the above mentioned compactification Dr of the construction [P, (13)] and
its natural desingularization q : Z - Dr embedded via a closed immersion j into
the total space of a certain Grassmannian bundle 7r: G - X. Then by using
the rank-stratification of Dr, the induced stratification of

Z(Zk = and proving that clDk and clzk are isomorphisms, we show
that the induced pushforward map r~*: H(Z) -~ H(Dr) is surjective. Also, by
analyzing the geometry of Z, we show that j * is surjective. This implies, by
the projection formula, that Im j* is a principal ideal in H(G) generated by the
fundamental class [Z]. It follows then, from the commutative diagram

that Imi* _ 7r,,([Z]H(G)). This identity together with some algebra of symmetric
polynomials (which allows to express explicity [Z]H(G)) yields the desired
assertion about Im i*. In this way we obtain a proof which is valid both for
Chow homology and other homology theories simultaneously.

We treat also the case of morphisms with symmetries. This case is
somehow more difficult to tackle. In order to overcome additional difficulties
we prove a certain result about surjectivity of morphisms of Chow groups of
stratified schemes (see Proposition 3.5).

The setup of the present paper is borrowed from [R-X]. In addition to the
homology theory treated there we prove the theorem in the singular homology
case.
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Notice that the Borel-Moore homology variant of the theorem, being
the main "raison d’dtre" of this paper, has been recently used in [P-P] as a

crucial tool in the computation of the Chem-Schwartz-MacPherson classes of
degeneracy loci associated with a general vector bundle morphism.

We thank A. Bialynicki-Birula and W. Fulton for encouraging us to think
about this problem. Thanks are due to L. Kaup and Z. Marciniak for useful
informations about the Poincare duality in different homology theories and to A.
Parusinski for useful comments. The first named author thanks S.A. Stromme
for his hospitality in Bergen where this research started.

NOTATION

1. Homology groups
Let X be a scheme.

Ak(X) denotes the Chow group of k-dimensional cycles modulo rational
equivalence; A(X) : = 0153 Ak(X) (also for singular X).

k
If the ground field is C, Hk(X, Z) denotes the singular homology

group (in the notation of [B] this corresponds to Hk(X, Z »; and 
denotes the k-th singular cohomology group (in the notation of [B] - 

Moreover, HBM(X) denotes the Borel-Moore homology (with closed
supports) or "homology with locally finite supports" (in the notation of [B],

or 

2. Partitions 
"

By a partition we mean a sequence of integers I = (it,..., ik) where

Instead of (i,..., i) (1~ times) we will write 
For partitions I = (ii , ... , J = ~Ji , ... , I + J will denote the sequence

(i +7i?... ? ~ + jk), and I c J will mean that for every h.

1. - Homology theories used in this article

Let k be an algebraically closed field. By a "scheme" we shall understand
an algebraic k-scheme of finite type which can be embedded as a closed

subscheme of a smooth k-scheme of finite type. The restriction on k comes
from the fact that in our arguments we use a homology theory satisfying
properties (a)-(e) below. In the characteristic 0 case it is the homology with
locally finite supports, or the Borel-Moore homology ([B-M], [B, Ch. 5], [F, Ch.
19], [I, Ch. 9]), and if k has positive characteristic p, then the homology theory
is defined as some suitable .~-adic cohomology, £ a prime number different from
p ([L, Sect. 6]).

Recall, for instance, that the Borel-Moore homology of a complex variety
X, denoted is defined as the singular homology of X if X is proper,
and as the relative singular homology of X modulo XBX if X is not proper and
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X is a compactification of X. In [B-M], [B, Ch. 5] a sheaf-theoretic construction
of HBM(X) is given (in the notation of [B] this is Hi’,(X, 7) where :F = Z and
p = cld).

By Hi we will denote a "cl-homology" theory, that is, a functor from
schemes to abelian groups that is covariant for proper maps and contravariant
for open embeddings. Moreover, we assume that the following conditions are
satisfied:

(a) Let X be a scheme, Y a closed subscheme and U = XBY. Then there
exists a long exact sequence

(b) For any finite disjoint union of schemes Ci Xj and for all i,

(c) For all schemes and all integers i there exists a map

that commutes with pushforward by a proper morphism and with restriction
to open sets. is here, and in the sequel, the Chow group of
i-dimensional cycles modulo rational equivalence (see [F] for a precise
definition and properties).
In characteristic 0 we shall say that "clx is an isomorphism" if clx is an
isomorphism and = 0 for all i.

In characteristic p &#x3E; 0 we shall say that "clx is an isomorphism" if for
prime 

is an isomorphism for all i, and = 0 for all i.

(d) If X is a scheme such that clx is an isomorphism then for every vector
bundle 6 on X the map is an isomorphism, where pee) is the

Projective bundle associated with f.

(e) (Chem classes). Given a vector bundle C on a scheme X there exist

uniquely defined Chem classes ci(E)n -, which are operators on H(X).
They satisfy the conditions specified e.g. in Theorem 3.2 in [F]. Note
that [F, Theorem 3.2 (d) - the pullback property] requires a map
/*:~f(X) 2013~ H(X’) associated with a flat morphism f. In the case of
the Borel-Moore homology, such a f * exists by [V, Sect. 3.2].
In the case of cl-homology in char p, f * exists for a flat f by [L, Sect. 5].
For a definition of Chem classes operators in this case see [L, Sect. 7].
Note also that for every polynomial P in the Chem classes of a vector
bundle E and every cycle a on X,
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Pushforward formulas for Grassmannian bundles, like [P, Proposition 2.2],
are valid for these homology theories and singular homology H(-, 7~ ), when
appropriately formulated.

Finally, recall that for the Grassmannian bundle 7r: G,(,6) --+ X, parametri-
zing rank r (sub)bundles of G, the map

is surjective for every i. This follows, for instance, from [P, Proposition 2.2];
or can be obtained by Noetherian induction on X (cf. the second step in the
proof of [P, Lemma 3.7]).

2. - Generic morphisms

Assume that a sequence (c., c.’) = (c, .... c’ 1&#x3E; ... &#x3E; c’ ) m of m + n variables
is given. Define si inductively as follows:

Then define by the formula

Finally, for a given partition I = (it, ... , ik) we put

Let pr denote the partition (m - r)m-r. Let us denote by 1r the ideal in
Z [c., c.’] generated by sI(c./c.’) where Dr. It is known [P, Proposition 6.1] ]
that Ir is generated by a finite set

The ideal Pr of all polynomials universally supported on the r-th degene-
racy locus (see the Introduction) admits the following description.

THEOREM 2.1. For any homology theory specified in Section 1, we have
pr - 11 -

1 It is an open problem whether this set gives a minimal set of generators of the ideal for
m&#x3E;n. We thank S.A. Stromme for helping us to check with "MACAULAY" that this holds true
for a large number of cases.
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The proof of the inclusion Ir c Pr is verbatim after [P, Ch. 3]. The
essential problem is to prove the opposite inclusion. Let us first introduce some
notation.

Let W, V be vector spaces over k of dimension w = dim W, v = dim V.
Let Gm = Gm(W ) be the Grassmannian parametrizing m-quotients of W
and let Gn = be the Grassmannian parametrizing n-subspaces of V.
Denote by Q the tautological rank m quotient bundle on Gm and by R the
tautological rank n (sub)bundle on Gn. Moreover let Flm,r = Flm,r(W) be the
flag variety parametrizing the flags of quotients of W of dimension m and r,
and Flr,n = Flr,n(V) be the flag variety parametrizing the flags of subspaces of
V of dimension r, n. Let C be the tautological flag on Flr,n.

A forthcoming Remark 2.3 will show that the proof of Pr c Ir from [P]
does not work for the Borel-Moore homology. We begin with the following
useful fact.

LEMMA 2.2. Let X be a complex space and Y C X be a closed subset.
Assume that XBY is a 2 dim X-homology manifold. Then there is an exact

sequence

where Hl(-, Z) denotes the singular cohomology.
PROOF. The assertion follows from the long exact sequence (a) for the

Borel-Moore homology and the isomorphism

valid for the 2 dim X-homology manifold X. The latter isomorphism follows
from [B-M, Theorem 7.9 with 0 = cld and I = ~ ] (see also [B, Ch. 9]). For a
particularly transparent treatment of such a Poincare-type duality see [K]. The
isomorphism in question follows from [K, Theorem 2.1 with A = ~, ~ _ ~ and
p = cld] and [K, Theorem 4.2 with 7 = Z and p = cld] in the notation from

[K]. D

REMARK 2.3. We prove that for Dl from construction (13) in [P] we
have This construction will be recalled in Step 1 of the proof of
Theorem 2.1, where a morphism ~p’ is defined. Here, we take k = C, m, n &#x3E; 2
and write Di for Note that obviously is a 2 dim Di-homology
manifold, so we can apply Lemma 2.2.

We have a locally trivial fibration

with the fibre Gl( 1 ). We use the spectral sequence of fibration
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Invoking H° (Gl( 1 ), Z ) = ~ ) _ ~ and Hi (Gl( 1 ), Z ) = 0 for i &#x3E; 2, we

get = 0 for q &#x3E; 2 and all p. Moreover, denoting d = dim Dl we get in Ei*

Hence rk. The following segment of the exact sequence

In particular, if we take a standard desingularization

we see that r~*: is not surjective because the even

Borel-Moore homology groups of Z are zero. This obstructs to extend the first
proof of Pr c Ir from [P, Ch. 3] to the Borel-Moore homology case. The second
proof (see [P, Ch. 7]), not using a desingularization, does not go through as well
because the remark shows that the restriction map 
is not surjective.

REMARK 2.4. Similar arguments show that for the affine determinantal

variety Dl (over k = C) we have (here, we use the notation of [P,
Ch. 4], and assume m, n &#x3E; 2). Indeed, a locally trivial fibration

with fibre Gl( 1 ), gives rise to the spectral sequence

We have E2P,q = 0 for q &#x3E; 2 and all p. Moreover,
Arguing similarly as in the preceding remark we obtain

Finally the exact sequence (#)
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This remark shows that the problem of the computation of HBM (Dr ) (and
probably also a similar question about singular homology) is more subtle than
the computation 6f A(Dr) (see [P]) and IH*(Dr) (see [Z]).

We give now a proof of the inclusion Pr c Ir, which is valid for homology
theories from Section 1.

NOTATION. Given two vector bundles 6 and F, the polynomial sj(c., c.’)
specialized with ci = ci(ê) and c~ = will be denoted 5,(E - 1).

STEP 1 (A construction from [P]). Define

On X’ there exists a tautological morphism W’: 7’ -&#x3E; fB Note two properties of
this construction:

1) The Chem classes of C’, 1" are algebraically independent (over Z) if w,
v - oo.

2) The matrix of p’ is given locally by a m x n matrix of indeterminates.

- 

STEP 2 (A compactification of X’). The following construction is inspired

X is a relative Grassmannian over GG and is endowed with the tautological
rankm (sub)bundle S c ( Q (B We define a morphism (of fibrations over
GG) from X’ to X. Fix a point (M, N) E GG. We assign to ,f E Hom(M, N)
(in X~M~N~) the point given by

This assignment defines an open immersion X’ - X. We have 
and the value of the restriction of S 2013~ (Q 0 to X’, in the point
(M, N, f : M - N) E X’, is given by

such that 7

Therefore, if we define ~: = S, e: = R x and p as the composite:

we have Finally, we put Dk : = Dk (~p).

LEMMA 2.5. (1) The map Dr c X - GG is a locally trivial fibration; its
fibre over a point (M, N) E GG is the r-th determinantal Schubert variety in
G = Gm (M 0 N) given by the inequality
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(2) If w, ~ 2013~ oo, the Chem classes of e and 7’ become algebraically
independent (over Z) in A(X).

PROOF. (1) The required trivialization is given by where { Ua } is
the standard covering of Gn trivializing the bundle R and { Ua } is the standard
covering of Gm trivializing the bundle Q.

(2) The assertion is a consequence of property 1) from Step 1 because

STEP 3. (A desingularization of Dr). Consider the diagram of schemes

where Q is the tautological quotient bundle on G.

LEMMA 2.6. The inclusion j: Z - G can be identified with the following
inclusion of Grassmannian bundles on GF = Gm x Flr,n :

PROOF. A point of G is represented by (M, N, K, L) where W-M and
dim M = m; N c V and dim N = n; and dim K = m ; and finally
L C N and dim L = r.

A point of is represented by (M, L C N, K) where W -M
and dim M = m; N c V and dim N = n, dim L = r; finally K c 
dim K = m.

This allows us to identify G and Gm(QGF ED 2 GF A point (M, N, K, L)
belongs to Z iff the composite map

is zero. This means that K c M 0 L and therefore Z is identified with

COROLLARY 2.7. is surjective.

PROOF. Let 5 be the tautological rankm (sub)bundle on 
Then the tautological rankm (sub)bundle on is 51z. The
assertion now follows from a well-known description of A(Gm(QGF ED 
and A(Gm(.QGF 0 P-(*) )) as free A(GF)-modules with bases given respectively
by Schur polynomials sI(S), I c (n)m and I c (r)m (see e.g. [F, Chap.
14]), and from the equality j*(sI(S)) = sI(S IZ). D
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Define

LEMMA 2.8. Under the above identification Zk is given in
by the inequality

In other words Z’~ is the determinantal Schubert subvariety in

PROOF. Let x e Dk. Then x can be represented by (M, N, K) where
W -M and dim M = m, N ~ V and dim N = n, K C M ® N and dim K = m.
Moreover, rk(K - M 0153 N - N)  k. The point is then represented by
(M, N, K, L) where dim L = r, L c N and K C M 0153 L. Since then

the assertion follows. D

STEP 4 (clDk and clzk are isomorphisms). We say, following [F, Ex. 1.9.1],
that a scheme X has a cellular decomposition if there exists a filtration

such that the Xi are closed, and each is a disjoint union of locally
closed subschemes Cij isomorphic to the affine spaces Ali. The Cij will
be referred to as cells of cellular decomposition. It is well known (see e.g.
[R-X, Corollary]) that if X admits a cellular decomposition then Ai(X) is a

finitely generated free abelian group for which the classes of closures of the
i-dimensional cells form a basis.

We record the following result due to Rossello and Xambo (see [R-X,
Theorem 2]).

THEOREM 2.9. Let X be a scheme which admits a cellular decomposition
and let f : X’ ~ X be a morphism such that for all cells Cij of the decomposition,

= Cij x F where F is a fixed scheme. Then

(i) For all i there exists an epimorphism

(ii) If CIF is an isomorphism and is free for all i, then (##) is an

isomorphism for all_ i and clx, is an isomorphism.
We apply this result to Dk, Z~.

0

Let, for a sequence I:1  i l  ...  i~  w, denote the following
Schubert cell in (taken with respect to a fixed flag in W) with the generic

2 A similar analysis was done earlier in [Kl-La].
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point given by a matrix: ("*" means a place occupied by a free parameter, empty
places are occupied by zeros).

The Plucker coordinate p(I) given by the minor taken on columns i 1, ... , im
o

is not zero. Thus S2(I) c G’(W)BZeros(p(I)) which is a set over which
the tautological bundles are trivial. If we repeat the same consideration with

o

Schubert cells Q(J) in Gn(Y) (here J: 1  j,  ...  jn  v), then we see that
the fibrations GG and Z~ -~ GF ~ GG are trivial over 0.(1) x Q(J).
Moreover, the fibre of Dk - GG is a Schubert variety and the fibre of Z’~ --&#x3E; GG
is a product of a Schubert variety and a Grassmannian. Thus these fibres have
cellular decompositions and we infer from Theorem 2.9 the following result.

COROLLARY 2.10. For any "cl-homology" theory from Section 1, clDk and
clzk are isomorphisms. In particular, we have = Hodd(Zk) = 0.

STEP 5 (Final calculations). From Step 4, we get for every i a commutative
diagram with exact rows

Since clDk, clZk are isomorphisms we have for

is a Grassmannian bundle, the induced map

is surjective (see Section 1). Thus by induction on l~ and a diagram chase in
(###) we get:

PROPOSITION 2.11. T/*: H2i(Z) ---t H2i(Dr) is surjeetive for every i.

The Proposition implies 7r *(Imj*). To compute the latter group we
can use the Chow groups because of Corollary 2.10. Now, we will mimic the
arguments from [P, p. 431] and prove
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At first, Im j* is a principal ideal in A(G) generated by [Z] = Ctop(.1J ® Q) =
.1G). Indeed, by Corollary 2.7 for z E A(Z) there exists g e A(G)

such that z = j* (g). Then, by the projection formula,

Secondly, we know that every element g E A(G) has a presentation g -

by using successively the factorization formula [P, Lemma 1.1 ] and the push
forward formula [P, Proposition 2.2].

This proves Theorem 2.1 for "cl-homology" theory, because if w, v - o0
the Chem classes of C and I are algebraically independent, so (####) is
sufficient to get the assertion.

The same proof works for singular homology because Dr, G and Z
are proper and thus their singular homology coincide with the Borel-Moore
homology. D

REMARK 2.12. The "Borel-Moore homology" version of Theorem 2.1 plays
a crucial role in the proof of Proposition 2.5 in [P-P] and consequently allows
one to compute explicitly the Chem-Schwartz-MacPherson classes of degeneracy
loci associated with a general vector bundle morphism.

3. - Morpisms with symmetries

In this Section we will deal with symmetric and antisymmetric vector
bundle morphisms. We assume here char k ~ 2. We will treat first the symmetric
case; necessary modifications needed for the antisymmetric case will be specified
in Remark 3.10.

Assume that a sequence (c.) = (cl, ... , cn) of variables is given (deg c2 = i).
We say, following [P], that P E Z [c.] is universally supported on the r-th

symmetric degeneracy locus if for every scheme X, any symmetric morphism
p: of vector bundles on X, rank e = n, and every a E H(X)

where ~:~(D~(~)) 2013~ H(X) is the induced homology-morphism associated
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with the inclusion i : X. Define pr to be the ideal of all polynomials
universally supported on the r-th symmetric degeneracy locus.

In this Section the following polynomials QI(c.) indexed by strict partitions
1 3 will play a crucial role. First define si inductively as follows

Then define

and

Finally, for a given strict partition I = (i 1, ... , ik) we put

(we can assume k even by putting ik = 0 if necessary).
Let Ar denote the partition (n - r, n - r - 1,..., 2,1 ). Let us denote by Ir

the ideal in Z [c.] generated by QI(c.) where I D Ar. It is known [P, Proposition
7.17] that Ir is generated by a finite set

THEOREM 3.1. For any homology theory specified in Section 1, we have
pr = 7..

The proof of the inclusion Ir C pr is verbatim after [P, Ch. 7]. In the proof
of the opposite inclusion we will follow the notation from Section 2. Moreover,
given a vector bundle £, the polynomial Qj(c.) specialized with ci = ci(E) will
be denoted by 

STEP 1 (A construction from [P]). Define

On X’ there exists a tautological morphism ~p’ : - 61. Note two features of
this construction:

1) The Chem classes of 6’ are algebraically independent if v - oo.

2) The matrix of p’ is given locally by a n x n symmetric matrix of
indeterminates.

STEP 2 (A compactification of X’). Let o be a symplectic form on 

3 Recall that is strict if il &#x3E;...&#x3E;ik.



112

given by the matrix

n x n identity matrix.
Denote by

where here, and in the sequel, I denotes the

the relative Grassmannian parametrizing rank n subbundles of RV that are

isotropic with respect to 1&#x3E;. X is endowed with the tautological rank n (sub)
bundle S c (RV 0 We define a morphism (of fibrations over Gn ) from X’
to X. Fix a point N E Gn. We assign to a symmetric f E Hom(N", N) (in XN)
the point given by

We need:

LEMMA 3.2. If f is symmetric then the graph of f is an isotropic subspace
of NV 0 N (with respect to 1».

PROOF. If A is a matrix of f then the graph of f is spanned by the

columns of a matrix Then the assertion follows from the equality

where A is symmetric.

The above assignment defines an open immersion
and define the following symmetric morphism on X,

where W is given by

LEMMA 3.3. We have

PROOF. The assertion follows from the equality

where A is symmetric. D

LEMMA 3.4. (1) The map Drip) c X -~ Gn is a locally trivial fibration;
its fibre over a point N E Gn is "the r-th determinantal Schubert variety" in
G~ = EÐ N) given by the inequality
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(2) If v - oo, the Chem classes of E become algebraically independent.

PROOF. The proof of (2) is analogous to the proof of Lemma 2.5 (2). As
for (1), we invoke here the following fact from [L-S, page 366]. It follows from
[L-S] that there exists an irreducible Schubert subvariety in G° such that its
restriction to the open subset ,S2N is the r-th determinantal variety in S2N. The
above inequality defines also an irreducible subvariety in GID as a calculation
in local coordinates shows. Moreover, by Lemma 3.3, the restriction of this

subvariety to 82 N is the r-th determinantal variety. Our assertion follows. p

STEP 3 (A desingularization of Drip)). Consider the diagram of schemes
(y~ is symmetric)

where Q is the tautological bundle on G.
Now, in order to mimic the proof from Section 2 we will use the following

fact 4

PROPOSITION 3.5. Let D = Dr D ... D D-1 1 = 0 be a

sequence of closed schemes. = Let x: G - D be a morphism
and j : Z ~ G a regular embedding. Then j*: A(G) - A(Z) is surjective provided
j’ : A(Gsk ) -~ is surjective for k = 0, ... , r. The latter property holds true,
e.g., if Zsk, are Zariski locally trivial fibrations with the fibers F(k) and
G~~~ respectively, and the following conditions 1. and 2. hold. Let be
an open covering of Sk trivializing both the fibrations simultaneously and let,
under this trivialization, the map j I Zu(k) - is equal to

The conditions are:

1. h* : A(G (k)) -~ A(F(k» is surjective for k = 0, 1, ... , r.
2. Either 2’) can be choosen to consist of schemes isomorphic to open

subsets in or 2") F (k) admits a cellular decomposition (k = 0, 1,..., r).
Then j * : A(G) ~ A(Z) is surjective.

PROOF. We show that it suffices to show the surjectivity of jk associated

4 Note that Proposition 3.5 and Lemma 3.6 give an alternative proof of Corollary 2.7 and
2.10.
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to . We have a commutative diagram

with exact rows. To be more precise, the vertical maps are "refined Gysin
homomorphisms" constructed as in [F, Ch. 6.2] from fibre squares

and

We denote the Gysin morphism associated to the latter fibre square by jk to
emphasis its dependence on k. The commutativity of the left hand side diagram
follows from the fibre square

and [F, Theorem 6.2(a)]. The commutativity of the right hand side diagram
follows from [F, Theorem 6.2(b)]. Assuming by induction the surjectivity of the
left vertical map (for k = 1, it becomes jo) and of jk, we get the final assertion
by a diagram chase.

In turn, the surjectivity of jk can be proved by Noetherian induction. Take
an open subset U C Sk trivializing simultaneously Zsk and Gsk . We have a
diagram with exact rows

Again, the diagram is commutative by [F, Theorem 6.2(a) and (b)]. Since

dim(SkBU)  dim ,Sk, we get the surjectivity of the left vertical map by
Noetherian induction. Assuming 1. and 2’), use a commutative diagram
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where the are isomorphisms, to get the surjectivity of ( 1 x h)*. Assuming
1. and 2"), use a commutative diagram

where "x" denote the exterior product ([F, 1.10]). Since FCk) admits a cellular
decomposition, XF is surjective ([F, 1.10.2]), and the desired surjectivity of
(1 x h)* follows. D

We record also the following fact which combines Theorems 1 and 2 from
[R-X].

LEMMA 3.6. Let D = Dr-i 1 D ... D Do D D-1 1 = 0 be a sequence
of closed schemes. Put Sk = DkBDk-I and assume that S’k has a cellular

decomposition. Let ~-: Z --~ D be a morphism such that the restriction of

71": ZSk -~ Sk is a locally trivial fibration. Assume that its fibre FCk) satisfies:
is an isomorphism and A(FCk» is free (k = 1,..., r).
Then, for every k, clzDk is an isomorphism.

PROOF. It follows from Theorem 2.9 and our assumptions that clzsk are

isomorphisms. To end we proceed by induction on k. In the char 0 case, it
follows from the commutative diagram

that In the char p case we tensorize all Chow groups by
Zi and repeat the arguments. Moreover,

implies = 0. 0

In the notation before Proposition 3.5 we put Dk : = and Z: =

COROLLARY 3.7. In the notation before Proposition 3.5, the map j * : ~L(G) -~
A(Z) is surjective.
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PROOF. We use Proposition 3.5 and its notation. In our situation, it is
sufficient to find an open covering of X, trivializing the bundle S. Take
first an open covering { U } trivializing R. Then denoting by p the projection
X = E9 R) - Gn, we have p-’(U) = U x E9 N) where dim N = n;
so if we take an open covering ~ U’ } of trivializing the tautological
vector bundle on it, we obtain an open covering { U x U’ } trivializing S.

Since we have G (k) = Gr(A), dim A = n; F (k) = Gr-k(B),
B c A, dim B = n - k; and the embedding h: F (k) 2013~ G~~~ is given as follows.
Let A = B E9 C, then L E Gr-k(B) is sent via h into L E9 C E Gr(A). Clearly
under this embedding the tautological quotient bundle on G (k) restricts to the

tautological quotient bundle on F~~~ . This implies the surjectivity of j * because
of the well known description of the Chow ring of a Grassmannian in terms
of Schur polynomials of the tautological quotient bundle (see e.g. [F, Ch. 14]).

0

COROLLARY 3.8. For any "cl-homology" theory from Section 1, clDk and
clzk are isomorphisms. In particular, we have Hodd(Dk) = Hodd(Zk) = 0.

PROOF. Since the fibre of G is a Schubert variety (in an isotropic
Grassmannian), the assertion for Dk follows from Theorem 2.9. Since DkBDk-I
as a difference of two Schubert varieties has a cellular decomposition, the
assertion for Zk is a consequence of Lemma 3.6. D

STEP 4 (Final calculations). From Step 3, we get as in Section 2:

PROPOSITION 3.9. r~* : H2i (Z) -~ is surjective for every i.

The proposition implies To compute the latter group we
can use the Chow groups in virtue of Corollary 3.8. We will now mimic the
arguments from [P, Ch. 7] and prove

At first, Im j* is a principal ideal in A(G) generated by [Z] = 
A2Q)) = ctop(R ® Q + S2Q) = ctop(R ® Q)Qo, (Q), where R is the tautological
subbundle on G. Indeed, by Corollary 3.7, for z E A(Z) there exists g E A(G)
such that z = j*(g). Then j* (z) = ~0*~) = [Z]. g. Secondly, we know that every
element g E A(G) has a presentation 9 = L ajs,(Q) where aI E A(X) and
I c (r)n-r (see e.g. [F] Ch. 14). Thus

by using successively the factorization formula [P, Lemma 1.13] and the push
forward formula [P, Proposition 2.8].
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This proves Theorem 3.1 for "cl-homology" theory, because if v - oo the
Chem classes of f are algebraically independent, so (#####) is sufficient to get
the assertion.

The same proof works for singular homology because Dr, G and Z
are proper and thus their singular homology coincide with the Borel-Moore
homology. D

REMARK 3.10. One can prove similarly an analogous assertion for

antisymmetric morphisms. In the proof of Theorem 3.1 one makes the following
modifications: take r-even and in all stratifications use even l~; replace C by q¡
and vice versa in all definitions and calculations; replace polynomials QI(c.) and

by P-polynomials 2-l(¡)Q¡( -) (see [P] for details); and finally, change Ar
to the partition Or : _ (n - r - 1, n - r - 2,..., 2,1 ). The "antisymmetric version"
of Theorem 3.1 is:
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