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Compensated Compactness and
One-Dimensional Elastodynamics

GUSTAF GRIPENBERG

1. - Introduction and Statement of Results

One of the standard methods of solving nonlinear equations is to replace
the equation with another one involving a regularizing parameter E, show that
this equation has a solution and then pass to the limit e J, 0. One of the
difficulties is then to show that one obtains a solution in the limit. Usually it
is not too hard to show that the approximating solutions converge weakly in
some sense, but if the equation is nonlinear, this is not of much use because if
u, - u weakly then f (uE) need not converge weakly toward f (u). If one knew
that u, - u in some stronger sense this would not be a problem in most cases.
Thus the issue is one of lack of compactness.

In the context of certain conservation laws, in particular the equations of
one-dimensional elastodynamics of the form

there is successful theory of how to, under certain assumptions, compensate for
this lack of compactness with other reasonable assumptions that can be shown
to hold true in many cases. Luc Tartar invented the method which first appeared
in [11] (see also [12]) using a crucial lemma due to Murat [7]. DiPema [2]
was the first to find out how to use the method for systems (as in ( 1 )) and in
[10] a more abstract question related to Tartar’s method was considered. Later
developments can be found in [5] and [6]. The lecture notes [3] are useful as
a general reference.

The purpose of this paper is to show that this theory works for conservation
laws of the form (1) under weaker hypotheses on u (concerning the zeroes of
the second derivative) than those used in e.g. [2] and [10]. Moreover, these
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assumptions are not too restrictive in terms of what one usually has to assume
of the nonlinearity in order to obtain the apriori bound, see e.g. [ 1 ], although
there is cleary still room for improvements. Note that these results are applicable
to equations that are perturbations of (1) as well, see [8].

Recall that a continuously differentiable function q : R2 --+ R is an entropy
for the conservation law (1) with corresponding entropy flux q if

for every smooth solution (w, v) of (1). Such pairs (11, q) are obtained as solutions
of the system of equations

THEOREM. Assume that

(i) u E is such that infuER u’(u) &#x3E; 0 and there exists a point
w, E I~ U such that a’ is nonincreasing on (-oo, wo) and nonde-
creasing on (wo, oo).

(ii) If the point. w,, in (i) cannot be chosen to be ~oo, then it is unique,
u E C(R; R), and (w - &#x3E; 0 on the interval (wo, wo + 6) or on
the interval (wo - 6, wo) for some 6 &#x3E; 0.

(iii) w,, v, E x (0, oo); R ) for each E E (0,1 ) and

(iv) For every continuously differentiable entropy-entropy flux pair (77, q)
of (1) and for each bounded open set U c lI~ x (0, oo) the

functions 77 (w,,, v E) v E) CE(O, 1) belong to a compact set in

H-1(U;R)

Then there exist functions w and v E Ll (R x (0, oo); R) and some sequence
such that Wfj --+ w, --+ u(w), and v weakly-* in

x (0, oo); R) as ej 1 0. Moreover, if a’ is not constant on any open
interval, then Wfj --+ w, and Vfj --+ v pointwise in II~ x (0, oo).

In [2] and [10] it is, instead of (ii), assumed that U is twice continuously
differentiable and (1" vanishes at one point at most, in which case (ii) must
clearly be satisfied.

In [4] it is shown how one can construct a function U which satisfies (i)
(with wo = 0) and is such that U E C2«-00,0)U(0,00);R) and wu"(w) &#x3E; 0

when w ~ 0, but so that (iii) and (iv) do not imply
the second conclusion of the theorem.
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The boundedness assumption (iii) could easily be replaced by the

assumption that Wo Vf E x (0, oo) ; R) for each f E (0, 1) and that one has
for every bounded open set U c R x(0,oo),

if a corresponding small change is made in the statement of the conclusion.
One sees from the proof below that if a’ is strictly decreasing on (-oo, wo)

and strictly increasing on (w,,, oo), then one can find a subsequence so that we.
and vej, converge pointwise almost everywhere. Moreover, if one can take 6 in
(ii) to be infinite, then it is not necessary to assume that there is only one point

for which (i) holds.
When proving that the functions wE and v, are bounded and when deciding

which of perhaps many weak solutions of (1) is the physically relevant one, it
is in most cases of crucial importance that the entropies one studies are convex.
In this paper, the entropies are not necessarily convex.

2. - Proof

It follows immediately from (iii) that there exist a sequence (ej) and
functions w and v E x (0, oo); R) so that Wfj --+ w and vE~ --+ v weakly-*
in x (0, oo); R) as Ej 10.

By the Div-Curl Lemma (see [3, p. 53] or [7]) we conclude that if &#x3E;
denotes the Young measure at some point (x, t) (see [3, p. 15]) associated with
some subsequence then it follows (for almost every (x, t)) that

where (~, q) and (1]*, q*) are two continuously differentiable entropy-entropy flux
pairs, see [3, p. 60].

Suppose for the moment that we have already shown that it follows from
(3) that (1’ is constant on an interval containing the set {w E E 

We know that at the points where the support of the Young measure u
consists of a single point the functions Wfj and vll, converge pointwise, see

[3, p. 16]. For the other points we deduce by a similar argument that the
distance from to an interval where (1’ is constant tends to 0. Because
the sequence fwjl converges weakly in for every measurable bounded
subset E of R x (0, oo) as well, there are convex combinations of this sequences
that converge in the norm of L2(E; R) (see, [9, Thm. 3.13]) and hence some
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subsequence of these convex combinations that converges pointwise. But if for
some point (x, t) the distance from the point to an interval where a’ is
constant tends to 0, then

00

where L 1 and thus we can conclude that the weak-* limit 

j=k
must which, of course, is the crucial point in the statement of the
theorem.

In the remaining parts of the proof, in view of the above argument, we
only have to show that it follows from (3) that is constant on an interval
containing the set ~w E E or, in particular, that the support
of JL consists of a single point. In this argument we may and shall without loss
of generality assume that we have w,, = 0 unless Iwol = oo.

Although the entropy-entropy flux pairs that we shall consider and the
first steps of the proof are almost standard ones, we shall for completeness and
notational convenience describe them in fairly close detail. The entropies are
of the form 

0..

and the corresponding entropy fluxes are

where k &#x3E; 0 and order for (2) to be satisfied the function
1/; It must be a solution of the differential equation

(Note that with this formulation of the entropy-entropy flux pairs the expansions
usually employed are in way hidden in the relation (5)). We require that 1/J1t
satisfies the initial condition

where M is some sufficiently large number so that the support of it is contained
in [-M, M] x [-M, M]. With this initial condition (5) has a global solution.

Next, we investigate how 0,, behaves when lit -~ oo and we assume that
(J is twice continuously differentiable. Let
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It is clear that px is a solution of the equation

and if we solve this equation we obtain the following expressions for px:

Is is straightforward to see that if 0,,(w) &#x3E; infsER does not hold for some
w E [-M, M], then we get a contradiction from (5). Therefore it follows from
(7) that

We claim that it is possible to conclude from (7) that in addition

To see this, consider for example the case x &#x3E; 0 and note that

when -M - 1  t  w  M. Thus it follows from (7) that

The proof of the claim now follows from the fact that
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and when x - oo the first term converges to 1 / (2F) and the second to
0 (by (8) and the continuity of ~’ (· )), both uniformly for w e [ - M, M].

If 03C3 is not twice continuously differentiable, then the distribution derivative
is a continuous measure with locally bounded variation and it is easy to

see that (8) holds, and although (9) need not hold we have at least

and that will be sufficient for our purposes in this case.

Finally we let

A simple calculation shows that

If we integrate both sides of this equality over (w 1, w2 ), do an integration by
parts, and use the definition of §x once more, then we conclude that

Thus it follows from (9) and the definition of 0,, that

This completes our investigation of the function 
Let 03A9 = a, 03B2 E { -1,1 }, and let

w

(see the picture below). The functions are the so-called Riemann

o
invariants and one could take them as independent variables instead of wand v.
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We denote by (wa,o, va,o) the point where the curves r«,_a intersect
and by (wo,,8, vO,,8) the point where the curves r a,,8 and r-,,,,6 intersect. (If (J’ = 1
and Q = + v (  1 }, then (wa,o, va,O) is actually the point (a, 0) and
(wo,,8, vo,a) is the point (o, ~3)).

Let be a probability measure that one obtains as the weak limit (of
some subsequence) of the sequence of probability measures

as k 2013~ 00. It is quite easy to see from (6), (8), and ( 12) that the support 
of is contained in 

Let us now choose ’q * = and q* = in (3) where a, /?~{-!,!}
and k &#x3E; 0. If we divide both sides of (3) by f and let

a
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l~ --~ oo, then we obtain from (4), (8), and the definition of that

Next we take q = ?7-.,-P,k and q = q-,,,-P,k, divide both sides of equation (13)

by f 77-,,-P,k(W, and let A; 2013~ oo. The conclusion we shall get is that

Q

If then (14) follows from the fact that in this case we have

If on the other hand r~ = T’_a,_p, then if follows that the function
w

(w, v) ’2013~ a + ,Qv is constant on S2 and if we combine this result

0 w w

a 

with (10) and with the fact that = e 0 ~ 
1 then

we see that = ~-~,-/3 and this gives, of course, (14).
From (13) and (14) we furthermore deduce that

Next we show that



235

Since all cases are similar it suffices to prove that va,o) c 0’a:,¡3. · Suppose
that this is not the case. Then we take q = and q = qa:,-¡3,k in ( 13), divide

both sides by v)li(dwdv) and let k --&#x3E; oo. Because we assumed that

0
the support is bounded away from the curve r«,_a we conclude that

Thus we get

and since ~’ is strictly positive, we have a contradiction.
Let /3* E { - l,1 } be such that who,,. &#x3E; who,-;. Then w &#x3E; w’ for all

(w, v) E f2l,,8. and (w’, v’) E SZ_ 1,_,~* . Therefore it follows from (14) (with a = 1
and ~3 =/3*) and (16) that if (1’ is monotone on [w-i,o, w i,o], then it must be a
constant.

Thus it remains to consider the case where u’ has its minimum point 0
inside the interval [w-,,o,wl,ol and we shall derive a contradiction from the
assumption that S2 is not a single point.

First we consider the case where wo,,3* &#x3E; 0 or  0. Suppose that
the first inequality holds. Because the inflection point 0 of (1 is unique by (ii)
we know that Q’ (wo,,~* ) &#x3E; u’(0).

w

Denote by p+ the value of on IFI,,6* and by p- the value
o

on r_ l,_,~* . It follows from our choice of {3* that we must have p+ &#x3E; p- unless
S2 consists of exactly one point. Note that on the sets Ql,,3* and S2_l,_a* we

w

have ~3*v = p± 2013 ~ Thus we can, when integrating over these sets,
o

replace 03BC±1,±03B2* by measures v± supported on [wo,,6*,wi,ol and 
respectively.

In (15) we take « = 1, ~3 = /3*, ?y = and q = where k &#x3E; 0 and
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use the notation presented above. By (4) and (6) we then have

Let G be the support of u". From the fact that &#x3E; Q’(o) it follows
that we must have G n (o, wo,a* ) ~ ~. Therefore we conclude from (7) that for
sufficiently large values of k we have

for some positive constant cl . On the other hand we have by (8) and (10) that

where c2 is some positive constant. Inserting these two inequalities into (17)
we get

tU

-k f 
where c3  cie o . Moreover, it is easy to check that because

w 
-

- + is constant on the curve connecting the points
0

and we have

W-t,0

Because  0 we have  0 and therefore it follows from

o

( 16) and ( 19) that ( 18) gives a contradiction when k --4 oo and the proof is
completed in this case.
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The final case that we have to consider is the one where wo,,6. = = 0.
In order to simplify the notation we define w+ = wl,o and w- = w-l,o.

Let us first show that the supports of v+ and v- cannot intersect the set
To do this we multiply both sides of (17) by ke-kp+ and using

the fact that p+ &#x3E; p- we get by (9) when k --+ oo that

Since u" is nonnegative on the support of v+ it follows that this support cannot
intersect the set where u" is strictly positive. Similarly one shows that the
support of v- cannot intersect the set where u " is strictly negative.

Let us, without loss of generality, assume that u"(w) &#x3E; 0 if 0  w  6,
where 6 is some positive number. When we combine this assumption with (16)
and with the result derived above, we conclude that

and

In (15) we now take a = 1, ,Q = 1, 77 = 77-1,1,k, and q = and k &#x3E; 0.
w

By (4) and the fact that v = P::J:. - f on Qij and Q-i,-i, respectively,
o

we have

and, since by (19), we get
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Therefore it follows from (20) and (21) when we let k - oo that v- must have
a point mass at w-. More precisely, we see from (9) that we must have

Because the support of v- cannot intersect the set we have

~ "(w_ ) = 0 = Q "(o) and it follows from (9) that

and we get from (11) and the definition of §k that

Since

we see by (the first part of) (23) and (24) that

where
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because wo = 0 was unique. From the second part of (20) we see that there is
some positive constant c4 so that

If we insert (25) and (26) in (21) we conclude with the aid of (the second part
of) (23) that 

’

If we now let k  -+ oo we get a contradiction from (22) because 1 &#x3E; 0. This

completes the proof. D
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