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Extensions of Holomorphic Motions

ZBIGNIEW SLODKOWSKI

Introduction

Holomorphic motions are families of injections depending holomorphically
on a complex parameter. They were explicitly defined and studied by Mane et
al. [13], and further investigated by Sullivan and Thurston [20] and Bers and
Royden [2], although implicitly they were used much earlier, cf. Hubbard [9],
Kuranishi [11].

Below C denotes the complex plane, C = C U {oo} the Riemann sphere,

and D = D(0,1 ) denotes the open unit disc.

DEFINITION. The map (z, w) --+ fz(w) : D x E --&#x3E; C is a holomorphic
motion of E in C over D if (i) fo = idE, (ii) fz is an injection for every z E D,
and (iii) the map z --+ fz(w) : D - cC is holomorphic for every w E E.

Although no continuity in w is assumed, the remarkable lambda lemma of
Mane et al. [13] asserts that (z, w) --+ is continuous, has unique extension
to a holomorphic motion of the closure E, and that the injections extend to

quasiconformal homeomorphisms of the Riemann sphere.
Holomorphic motions have already found many applications in complex

dynamics, Teichmüller theory and the theory of Kleinian groups, cf. [4, 5, 6,
13, 18, 19]. The two cornerstones of this success are the lambda lemma and
the local extension theorem due to Sullivan and Thurston [20]:

Every holomorphic motion can be extended to a holomorphic motion
(z, w) - Fz(w) : D(O, a) x C - C of the whole Riemann sphere, defined over a
smaller disc D(0, a), a &#x3E; 0.

This result was improved by Bers and Royden [2], who obtained a

canonical extension parametrized by D (0, . ). Whether the extension can bep y ( 1/3)
defined over the full given disc D(0,1 ) remained an open problem till 1989.

Pervenuto alla Redazione 1’ 11 Giugno 1993 e in forma definitiva il 23 Novembre 1993.
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The solution was given by the author in [16].

THEOREM 1. Let (z, w) --+ fz(w) : D x E -&#x3E; holomorphic motion.
Then there is a holomorphic motion (z, w) --+ Fz(w) : D x C~ -~ cC such that

Fz|E=fz for zE D
The next result, a special case of Theorem 1 (and a step in its proof), is

often more useful in applications than Theorem 1 itself. It was conjectured by
Sullivan and Thurston [20], who named it "the holomorphic axiom of choice".

THEOREM 2 [16]. Let (z, w) --+ fz(w) : D x E --+ CC be a holomorphic
motion. Then for every wo E C BE there is a holomorphic function g : 
such that g(0) = wo and g(z) E for z E D.

We apply this theorem in Section 3 to obtain invariant extensions of

holomorphic motions.

THEOREM 3. Let f : D x E -&#x3E; C, where E is closed, be a holomorphic
motion. Assume that the sets z E D, admit holomorphically varying
groups of conformal automorphisms. Then a holomorphic motion Fz : (~ --~ t,
z E D, extending f, can be so chosen that it commutes with these automorphisms
(cf. Theorem 3.1 below for detailed formulation).

This theorem was conjectured by Curt McMullen [14]. A similar but
somewhat less general result was independly derived from Theorem 2 above
by Earle et al. [6], who used it to obtain a new proof of Royden’s theorem.

The proof of Theorem 1 given in [16] was short, although deceptively
so, as it was based on some results in several complex variables [7] that
were neither short nor simple. In Sections 1 and 2 below we present a new,
relatively simple and virtually self-contained proof of Theorem 1, or more ac-
curately, its main step, a proof of a finite version of Theorem 2. This finite ver-
sion, formulated in Theorem 1.1 below, easily implies both Theorems 2 and 1.

In Section 4 we apply Theorem 3 to obtain an extension theorem
for holomorphic motions in a natural class of families of Riemann surfaces
(Corollary 4.2) and characterize such families (Proposition 4.1). Finally, in
the context of Kleinian groups, we give examples of holomorphic families of
Riemann surfaces traced by holomorphic motions.

ACKNOWLEDGEMENTS. The response to [16] has been very encouraging
and the author owes gratitude to more people than he can name here. First of
all, Herb Alexander, Howard Masur and Eric Fomaess did a lot to popularize
Theorem 1.

Although the results of this paper were all obtained in the Fall of

1990, personal circumstances have prevented the author from publishing them
earlier. In the meantime several mathematicians have contributed comments and

suggestions that have helped to simplify and shorten the exposition in Sections
1 and 2. Those of Dennis Sullivan (during the seminar in CUNY, November
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1990) and of Adrien Douady and John Hubbard (during and after seminar in
Orsay, October 1992), have been most helpful. And, needless to say, without
the questions and suggestions of Curt McMullen, Sections 3 and 4 would not
have been written.

1. - Extensions of Finite Holomorphic Motions

In this section we outline the basic steps and the conclusion of the proof of
the "finite holomorphic axiom of choice" (Theorem 1.1) which is a special case
of Theorem 2 when E has finite cardinality. (We add convenient but inessential
assumptions of boundary regularity.)

The more technical details of the proofs are postponed to Section 2.
As for the derivations of Theorems 2 and 1 (in this order) from Theorem

1.1 we may briefly mention that they are done in the same way as the derivation
of these theorems from the finite holomorphic axiom of choice in [16, Section
3], and we need also to reduce the case of finite holomorphic axiom of choice
with nonnecessarily smooth fj’s to the case when fj’s are analytic on D, covered
by Theorem 1.1. This is done exactly like in [16, Section 2, p. 352].

THEOREM 1.1. Let fo - 0, f l, f2, ... , fn be functions holomorphic on the
closed disc D = 1 }_. Assume that their graphs are mutually disjoint and
let R &#x3E; E D, j = 1, 2,..., n}. Then there is a continuous function
F : D x C - C, which is a holomorphic motion of C in C, such that

(i) F(z, f~ (0)) = E D, j = l, 2, ... , n

(ii) F(z, w) = w for Iwl &#x3E; R.

The proof rests on the construction of a real-analytic family of "radial
structures" (terminology of John Hubbard) in the discs x D(O, R), where
D(0, R) = DR = C : Izl  R}.

PROPOSITION 1.2. There is a family of simple real-analytic arcs all

contained in the disc DR (eiO, a) E aD x aDR, with a one-to-one (and onto)
parametrization, s --+ b(a, eio, s) : [0, 1] ] --&#x3E; Xai,, which is nonsingular, i. e.

and such that
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(vi) are values oi,...,a1 e  ~DR such that io) C Xaj i03B8 for .0 e 9D,(vi) there are values al, ... , an E 9DR such that E Xaj for eze E OD,
j = 1,...,n. 

Note: We do not require that a 1, a2 ... an be distinct.

To obtain the extended holomorphic motion required in Theorem 1.1 we
need to construct a number of holomorphic functions in D whose graphs (=
analytic discs) are mutually disjoint and fill D x CBgraphs of I fo, fl, ... , f,,, 1.
We will achieve this by considering analytic discs whose boundaries slide over
the totally real surface U x a E aDR. Specifically, we denote A(D) =

eie
the class of holomorphic functions in D with continuous boundary values, and

Noticing that

( 1.1 ) constant functions fo = 0 and a belong to la,

(1.2) fi c Y-ai, j = 1, 2, ..., n,
(by conditions (iii), (vi) of the last proposition), we conclude that the proof
consists in showing that the graphs of the functions in 1 form a foliation of
the bidisc D x DR.

The construction of functions in la relies on a local argument, that given
a function g in ya, e.g. g(z) - a, we can perturb it slightly to obtain an open arc
of functions in la containing g (Lemma 1.4). In order to continue this process
to show that la is a continuous arc of functions we need uniform estimates

which, in our case, are provided by the following application of the reflection
principle. 

We denote by C!(8D) the space of complex-valued Holder continuous
functions of ex onent i and b i 2 its subs ace consistin of all real-valuedfunctions of exponent 2 

and by R its subspace consisting of all real-valued
functions.

LEMMA 1.3. There are constants c &#x3E; 0 and 0  K  oo such that every
g Ei 7 has a holomorphic extension g E HOO(D1+ê) such that sup K.

zEDI+E
Furthermore

It was Dennis Sullivan who suggested to the author a more systematic
use of the compactness argument provided by this lemma.

To motivate the local existence argument suppose for a moment that we
have a differentiable arc of functions t --+ gt : («, ,Q) -~ la c A(aD). Then
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d
&#x3E; 0}, where r(eil, w) denotes the unit tangentdt 

, _

vector to the curve Xae at w. If we assume that z E D nowhere

vanishes, and that ~(’) E C112, then we obtain 
dt

(where T = f-’/’ , is the Hilbert transform) that is gt can be conceived
as a solution to an O.D.E.

in a suitable function space. John Hubbard has pointed out to the author this
method of obtaining local families of discs in la, in place of the less elegant
argument based on the implicit function theorem, used earlier by the author.

We will define the equation (1.4) in the complex Banach space E =

C1~2(aD) n A(D) with the help of the Hilbert transform T : C2.
To summarize classical results, cf. Duren [3], for every f E 

2?r

there is exactly one g e such that = 0 and the Poisson

~ ~ 

o

extension of l(eiO) + ig(eae) is holomorphic in D. We let T I = g. Then

i 1 

( 1.5) T : Cj is a bounded linear transformation.

We want to define F(.) of (1.4) in an open subset of E. Observe that the map
defined above, can be represented as follows

where w = b(a, eio, s), (a, eze, s) E aDR x aD x (0, ]. The properties of b(.,.,.),
cf. Proposition 1.2, imply that

is a well defined, real-analytic function, and so it can be extended to a unique
real-analytic map

Then we define F(.) as the right-hand side of (1.3) in the open set
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By the definition of U, the continuous branch of "arg" in (1.3) does exist, but
we found it more convenient to handle the ambiguity of "arg" by means of the
following, topologically obvious observation.

PROPOSITION 1.4. There is a real-analytic function

such that

The function a is unique up to an additive constant 21rn, n = 0, ±1, ±2,....

PROOF. Once the continuous branch a is selected, its real analyticity is
obvious. Observe that the arc lal = R, is wholy contained in DR and has
its endpont a on 8DR. Hence a), the unit tangent vector to at a has
the property

which implies that the map

is homotopic to a constant map. Consequently all the maps

which form a continuous family, are homotopic to constant maps, and so for
each value p E (o, R+b) a continuous branch ap : = p} 2013~ R, satisfying

can be selected. Since ap’s are unique up to additive constants 27rn, and since
the parameter set (0, R + 6) is simply connected, a simultaneous continuous
choice of a is assured. 0

The standard arguments of local theory of O.D.E.’s combined with the
uniform bounds of Lemma 1.3 will yield the following conclusion.

LEMMA 1.5. For g E U, cf. (1.6), let = a(eiO, g(e’o)), eio E aD.
Then the function

maps U c E = C 1 I (aD) fl A(D) into E and is locally Lipschitz in U. For every
go E U, the initial value problem



191

has a unique solution in some interval (ao, ,Qo), ao  to  ~30. Furthermore,
whenever go E la, a E aDR, then gt E ya as long as gt  R. If I is the

largest interval in which gt exists and belongs to la, then I = {t : a  t  ~3},
for some a, /3, and

(i) ga(e$e) - a,
(ii) t im 1 = 0.

t ci+ I

It turns out that the set {O} U {gt : a  t  /3} exhausts la. It is convenient
to reparametrize la and 7 U la as follows.

lal=R

COROLLARY 1.6. For every wo E DRB{o} there is a unique a E aDR such
that Wo E Xi and a unique g E Fa such that g( 1 ) = wo. If wo = 0, there is a

unique g in 1 such that g(l) = 0 = wo, namely g(z) - 0. We denote such g by
gWO. Hence 7 = {gw° : R}. Furthermore, for every a E aDR and for every
eae E aD, the map wo - gwo(e iO) : Xa 1 --+ Xe e is a homeomorphism.

PROOF. When wo = 0, it follows from Lemma 1.3 (b) that g(z) =- 0
is the unique function g such that gEl and g( 1 ) = 0. When wo f zero, by
the construction of Proposition 1.2 (iv), (v) there is a exactly one a E aDR such

that wo E Xa.1 Solve the equation = F(gt) with initial condition go m a andI dt
let I = (a, 0] be the maximal interval of existence as in the last lemma, such
that gt E Ta for t E 1. Then, with ga - 0,

is a homeomorphism onto, for every by (2.7). In particular, there is a unique
to E [a, 01 such that = wo. We let gw° := gto. Clearly = wo, gw° E la.

Suppose now that there is a different g* E la such that g*(I) = wo.

We solve the equation with the initial condition g* = g*. Letq dt t 9t1 g

I* = (o!*,/3*] ] be the maximal interval of existence such that gt E la, as in
Lemma 1.5. Replacing t by t + ~3* we obtain solutions gt in 1* = (a*, 0] with
the initial condition g0*= a = go. By the local uniqueness of solution, and the
maximality of I and I * with the stated properties, we obtain that g* = gt for
t E 1’ = I*. Hence g* is equal to one of gt’s, and so to gto = gwo.

Finally, the property that wo --+ gwo(eiO) : Xi --+ e is a homeomorphism
onto is an obvious consequence of (2.7) of the relations (i), (ii) of Lemma 1.5
and of the fact that {O} U Igt : t E J} = wo E 0

. 

PROOF OF THEOREM 1.1. Since the continuous D(O, R)
is one-to-one, by Corollary 1.6, and since 7 is compact in Ci , the inverse map

is continuous.
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Observe that whenever DR, then maps aD into C B10).
In case wo E Xi , wi e Xb, and this is clear because B and

E X§;o, while n = {O}. (Note that = 0 for some efo only
when 0 i.e. wo = 0.) In case wo, wi E (eiO) by Corollary
1.6.

We conclude that the continuous family of nonvanishing maps

consists of maps of the same index, since the parametrizing set DR x DR - =

is connected. The index must be 0 throughout because = a - b =

const when lal = Ibl = R. Consequently the analytic function gwi does not
vanish in D and so for every zo E D the map

is one-to-one. Denote cPzo(w) = gw(zo). Then 0, : DR --~ DR is a one-to-one
continuous map which is an identity on aDR (for ga =- a if a ~ = R) and so is a
homeomorphism of DR onto itself. If we define F(z, w) = Fz (w ), F : D x C --+ C,
by the formula

and

then F is well defined and continuous, Fo = idc and Fz is a homeomorphism
for each z E D. Furthermore, for every w E C, Fz(w) = 
where wo = ~01 (w), and so the function z --+ Fz(w) is holomorphic in D for
every 

We conclude the proof by observing that = = 0,1, ... , n.
Since fj E 7, by Corollary 1.6 it is of the form gw, i.e. fj(z) = Hence

4Jz(fj(I») = gfi(l) = .fj(z) and D

2. - Proofs of Technical Propositions

PROOF OF PROPOSITION 1.2 (Sketch).

ASSERTION 1. There is an isotopy 4Jr,eiO, 0  r  1, eio E aD, consisting
of real-analytic automorphisms of DR such that the map (r,e~,~) 2013~ 
is real-analytic in [0, 1 ) x aD x DR and

(i) 4Jr,éo is an identity on aDR = = R};
(ii) 4Jo,eiO is an identity on DR;
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This fact is intuitively obvious and well known to topologists. For a proof
construct a complex-valued vector field Y on [0, 1] x D x C such that

(a) Y is real-analytic on a neighbourhood of [0, 1] x D x DR;
(b) Y vanishes on [o,1 ] x D x aDR;

c Y r ei03B8 
a 

for r eze E 0 1 X aD and = 0 1 2 ... n;(c) ar [0, 11 x aD &#x3E; &#x3E; &#x3E; n;

(d) Y(r, eiO, w) is Coo everywhere and vanishes for large 
Since Y is bounded and uniformly Lipschitz the well-known O.D.E. results

Hartman [8, Ch. II, Theorem 1.1 ] imply that the initial value problem

has a unique solution r --~ y(r, eio, wo); [0, 1] - (~ . Furthermore, by classical
results the solution y(t, eio, w) is real-analytic on [0, 1] x aD x DR+ê, ê &#x3E; 0. Let

= y(r, eze, w). Then 0,,,,io is a diffeomorphism of C. By (b), is an

identity on aDR, hence it is an automorphism of DR which is real-analytic
on DR and has a real-analytic inverse. Property (iv) follows by uniqueness of
solutions, namely y(r, eie, , fj(O» and fj(reiO), are two equal solutions, by (c).

To construct the "radial structure" we simply take the trivial
radial structure in the disc {0} x D, i.e. Xo = {sa : 0  s  1 } and transform it
by i.e. Xe = In other words, we define the parametrization

The special values R, j - 1 2 ... n. All thep 1 &#x3E; &#x3E; n j ifi(O)i ( 
.7 &#x3E; &#x3E; &#x3E;

properties (i)-(vi) of K:i, B required in Proposition 1.2 follow quickly from the
properties (i)-(iv) of the isotopy 0 and from the properties of linear radial
structure over z = b. We omit the trivial details.

PROOF OF LEMMA 1.3. We use the real-analytic parametrization 
of Proposition 1.2. For each a E aDR the real analytic map

is invertible, with real analytic inverse (cf. condition (i) of Proposition 1.2) and
so it can be extended to a map
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mapping biholomorphically a neighbourhood of aD x [o,1] in C2 onto a

neighbourhood of Xa = U x Xe e in c~ 2. Clearly there are 0  p  1,
ei° E8 D

,Q &#x3E; 0, independent on a E aDR, so that all the maps (~, w) --+ (~, B~ (w)),
for a E aDR, are defined, holomorphic, and one-to-one on the compact
neighbourhood

of aD x [0, 1]. Denote the image of S under the map (2.1 ) by Na. Then the set

is a compact neighbourhood of the set,

clearly compact.

ASSERTION. There is 0  r  1 such that for every g E F

with a determined by the relation g C Fa.
By the above construction, the map

is well-defined and holomorphic, and if g, r are as in the assertion, the formula

defines a holomorphic function in r  i~l  1, with continuous boundary values,
such that = 0 for eie E aD and /3 (because (eiO,g(eiO) E Xe e
and = [0, 1]). By the classical reflection principle h(~) has an
extension to a holomorphic function

(since S’ is symmetric). The formula
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defines a holomorphic extension such 1  z  1 C N ,
(because of (2.5)). If K = E N} then k r finite(because of (2.5)). If K = supflwl : : (a, z, w) E NJ then finite

(by the compactness of N) and by the maximum 

sup g(z)| : I  ZI 1  K.K.

Part (c) of the lemma is now clear.

PROOF OF PART (b). Suppose that g E la, g t 0, but g(eie) = 0 somewhere.
Since g has a holomorphic extensions g, it has at most finitely many zeros

on aD. Let h be defined as in the first part of the proof, cf. (2.5).
Then h(e’o) E [0,1], = 0. It follows that h(z) has zeros of even order
greater or equal two at z = ei0i, j = 1, ... , m, and the same holds for g. Since g
is holomorphic on D and all the zeros of g on aD are even, it follows that the
function eie - which is real analytic for 1, ... , m,
can be extended continuously, indeed even real-analytically to these points as
well. (To see this, just develop g(eio) with respect to () - 0j.) Thus there is a
real analytic function T : S’ 1 such that

Since g(eiO) E eze E aD, a simple topological argument, which we omit,
implies that r : has index 0, i.e. r(eiO) = where A : aD -~ R
is real analytic. Define h(eae) = exp[ -T(À)(eiO) + Then h extends to a

nonvanishing holomorphic function on D such that

Let k(z) = g(z)/h(z), z E D. Then k(z) is a holomorphic function on D, which
is real and nonnegative on aD, and hence by reflection principle it has an entire
holomorphic extension 1~ : C - C, which must have a nonnegative real part.
Thus k is constant, contrary to the assumption that 9 has finitely many zeros.

As for part (a), it can be obtained by the same argument applied to g(z) - a,
if = a, lal = R, or more easily by the simple observation that, seeing that
g has value of order at least two at z = ei0o, it cannot map the pair domain-point

into the pair (DR, g(ei9o)) with g(e"0) E aDR.
We will complete now the proof of the lemma by establishing the

Assertion. 
_

Denote by G the closure in aDR x D x C of the set Go = U U {a} x
|a|=R gE Fa

graph(g) = { (a, z, g(z)) : ~ a ~  R, ~~ (  1, g E Ta 1. The essence of the proof is to
show that

cf. (2.3). This is obvious for Go instead of G = Go, but as long as we do not
know that 1 is compact, we cannot assume that G is so.
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Consider the set Y = U {a} x Xa, where Xa denotes the polynomially
lal=R

convex hull of X"B Clearly analytic discs graph (g), g E la are contained in
Xa, Xa. Thus

Consider the fiber e C : We claim that

Indeed, if Wo ft there is a polynomial p(w) such that I &#x3E; 1,
 1. It is easy to see that for an integer n large enough thee 

/1 n

polynomial pn(z, w) 2 (z + e10) p(w) has the properties: (i) IPn(eill, wo)1 &#x3E; 1 ;

(ii) (z, w) E Xal  1. Hence (Xa), which confirms
(2.13). 

Clearly the realtions G c Y and (Xà)eiB = Xe , imply the inclusion
G n (C x aD x C) C X. It is a standard observation that Y is closed and
bounded. (Indeed, if (ao, zo, wo) E Y, i.e. (zo, wo) g then there is a poly-
nomial p(z, w) and E &#x3E; 0, such that lpl  1 -,E on Xao and lp(zo, wo)) I &#x3E; 1 +,E.

Then there is 6 &#x3E; 0 such that for la-aol  , 03B4 lal (  8,
1 1

w - w 6 we get z w &#x3E; 1 + 1 E and max  1 - 1 E on Thus0| g p(z )| 2 |p|1- 2

D(Zo, 6) x D(zo, 6) x D(wo, 8) n Y = 0.)
Consider the sections Gz = G n (C x { z } x C) of the set G as a set-valued

function z --+ Gz = D --+ 2C3 . Since G is compact, this correspondence is upper
semi-continuous. By (2.13), C X c Int N for eiO E aD. By the upper
semi-continuity, there is r  1 such that Gz C Int N for r  Izl  1. This is

equivalent to the Assertion. D

PROOF OF LEMMA 1.5.

ASSERTION 1. For every 6 &#x3E; 0, K  +oo, the map Y~,K --&#x3E; C 2 is

Lipschitz on

This is true under quite weak assumptions on a, but for the sake of brevity we
use real analyticity of a. Developing a(eiO, wo + w) by Taylor series in w and
w, we obtain pointwise

where :5 if go ~ Y6,K, and if  1/C. In fact by real
analyticity of a, the Lipschitz constants of A.,.(eil, w) are uniformly bounded
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by , on 6  (with perhaps different C~ ). Then it is clear that

Since C 1 is a Banach algibiai We have
2 ..

which yields local Lipschitz property of A when C5.Yields P P Y 2

ASSERTION 2. F is Lipschitz on 1’-6,K.

Let gl, g2 E Y6 , K 1 and let Gj = + iA(gj), j = 1, 2. Since the

Hilbert transform T : CR is a bounded operator, we get JIG, - 
g2l1d. Using as above 

, 

that C’ 2 is a Banach algebra, and
observing therefore that F(gi) its uniformly in 11 % j when

gl E Y~,x, we get 1 , . 

" 

;- 

’~

and

We conclude that F(.) is locally Lipschitz on the open set U c E = C~ n A(D).
Since -T (h) + i h is a holomorphic function in D, whenever h E C’, F maps U
into E. By classical results, cf. Dieudonne, Foundations of Modem Analysis,
Th. 10.8.1, for every go E U the equation

has a unique solution in some interval (ao, Po) where ao  to  /30, with gt E U.
Suppose that for some eiO- (=- aD, a E aDR, go(e’e°) E The equation

(2.6) at becomes ’

(by Proposition 1.4). Thus 
dgt(e"-) is a nonvanishing tangent vector to the arc(by Proposition 1.4). Thus is a nonvanishing tangent vector to the arc

or to the slightly larger open arc containing and so 
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and

In particular, if go E la, gt E la as long as  R, i.e. when t E 1’ . Since

by (2.7) t --~ gt(eae) : 1 -~ e is a strictly monotone map, there exist pointwise
limits

where a and /3 denote the endpoints of 1. Since the set la is compact in C 2 ,
we conclude that the limits in (2.8), (2.9) hold in C 2 i.e., e C 2 and

This argument is presumably well known. By continuity of F(gt) on
to  t . /3, and by the Hahn-Banach theorem there is T  ~3 and a linear
functional on i : E -~ R such that

Then, 

Since £(gt) --+ f(gp) as t --+ /3, /3 must be finite. By continuity of F(gt) at t = /3
we have 

-

and so d9t 
= F . Consequently 03B2E 7.and so Consequently 0 E 1.

An analogous argument yields the following assertion.

ASSERTION 4. If a = - oo, then = 0 for some 
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Since E U, (because  R the equation dgt - F(gt) has local9a ( ||g||ooR ) q dt 
(9 )

solution with initial condition gp at t = ,Q, i.e. the curve of solutions 
can be continued beyond /3. Some additional solutions would still belong
to la (contradicting the maximality on I ) unless g,6(e’ *0 0) is an endpoint of 
for some e’B i.e. = R. But then by Lemma 1.3 (a) ga - a. 

e

Similarly, if g« (eZe° ) = 0, then, seeing that ga E fa, we get by Lemma 1.3
(b) that g,(z) =- 0. By Assertion 4 this is the case when a = -oo. If a &#x3E; -oo,

and ga(eiO) does not vanish, i.e. ga E U, we can once again continue the
solutions below a and obtain E 7a, contradicting the maximality
of 1. Hence g« (eZe° ) = 0 and so g,,, =- O. 0

3. - Invariant Extensions of Holomorphic Motions

In this section we show that a holomorphically moving family of domains
admitting biholomorphic automorphisms can be traced by a (usually non-unique)
holomorphic motion which commutes with these mappings. The next theorem
answers a question of Curt McMullen. A somewhat less general result has been
obtained independently by Earle, Kra and Krushkal [6].

THEOREM 3.1. Let Eo be a compact subset of the Riemann sphere ë =
C U { oo } having not less than 3 distinct points. Let (z, w) - f z (w) : D x 
be a holomorphic motion. Denote Uz - where E.,. f z (Eo), z E D,
and let G be the group of all fiber preserving biholomorphic maps g of
U = U (z) x Uz C D x C of the form

zED

Then there is a holomorphic motion (z, w) --~ Fz(w) : D x Uo -; C such that

(i) Fz(Uo) = 

(ii) Fz o go = gz o Fz, z E D.

REMARK. The theorem fails evidently when card Eo  2. Eg. when
card Eo = 2, D x (C)(0, oo)), then the group G is not "rigid" in the sense
of Proposition 3.2. Observe that whenever Fz exists, then gz = Fz o go o Fz 1 is

uniquely determined by g. This fails for card Eo  2.

The proof of Theorem 3.1 is very easy in the following special case:

LEMMA. Assume that for every g e GB {id} and for every z E D, the map
gz has no fcxed points. Then Theorem 3.1 holds.

PROOF. Indeed, consider all holomorphic motions (~,~) 2013~ 
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D x E* --+ C such that

There is a natural order relation in this class (one motion being an
extension of another). By the Zom Lemma there is a maximal motion

(z, w) --; F1(w) : D x E1 -~ C in this class. We will show that E~ = Uo.
Suppose not. Then we consider the "union" of the holomorphic motions

(z, w) --+ F1(w) and (z, w) --+ fz(w) : D x Eo --+ C, where fz(Eo) = By the
holomorphic axiom of choice (Theorem 2), if wo E cC B (Eo U El) = there
is a holomorphic function h : D --+ C such that

Observe that all the functions = gz(h(z)), hg : D --+ C, have the properties:

because = 

(because otherwise gz(h(z)) = gl(h(z)) and would have a fixed point).
We let now E2 = El U Gwo, and define (z, w) --+ D x E2 --&#x3E; C by the
formula = when w E E~ 1 and

By (3.4), (3.5) F~ is a holomorphic motion of the class (3.1 )-(3.3) extending
Fj contrary to the maximality of the latter. Thus jE~ = Uo which proves the
theorem in the special case under consideration. (Because of the A-lemma,
/z(E8) U hence = Uz.) D

The idea of using the Zom lemma, rather than the inductive argument as
done previously by the author, has been suggested by John Hubbard.

In order to conclude the proof (which we will do at the end of the

section) we need to show that the set of all fixed points of {gz : moves

by a holomorphic motion. It is for this purpose that we discuss the auxiliary
propositions that follow.

PROPOSITION 3.2. Let U and G be as in Theorem 3.1. Assume in addition
that Uz ’s are connected. Then
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(a) if gzo = id for some zo E D, then gz = id for all z E D;
(b) if gzo has a fixed point wo E Uzo, for some zo E D, (and then either

9Z.0 is periodic of finite order N, and then all the maps gz are periodic of
the same finite order N, or g’ , ,,, (wo) = ese, where 8/2~ is irrational;

(c) in the latter case all the Uz S are topological discs and every gz is

conformally equivalent to an irrational rotation;
(d) the stabilizer group Go = {g E G : g(zo, wo) = (zo, wo)} is either finite

cyclic or isomorphic to 81.

For the proof we need the following result from Kobayashi [10, Theorem
V, 3.3]. (The condition (ii) is extracted from the proof in [10]).

THEOREM 3.3 (Kobayashi). Let M be a connected hyperbolic manifold
f an analytic self-map of M and 0 a fixed point of f. Let dfo denote the
differential of f at 0. Then:

(i) all the eigenvalues of dfo have absolute value less or equal one;
(ii) if all the eigenvalues of dfo are equal one, then f is the identity

transformation of M;

(iii) if Idet(dlo)I = 1, then f is a biholomorphic mapping.
PROOF OF PROPOSMON 3.2. Observe that by choosing 3 distinct points e 1,

e2, e3 in Eo, and a biholomorphic fiber-preserving coordinate change on D x C
(fractional linear on fibers) we can assume without loss of generality that

The latter domain is completely hyperbolic, as the product of two complete
hyperbolic domains, cf. Kobayashi [10, Proposition IV, 4.1, Corollary IV, 4.12].
Furthermore U is hyperbolic as a subset of the hyperbolic domain 

ASSERTION 1. If g E G, (zo, wo) E U, and = wo, g~(wo) = 1, then g
is an identity on U.

Observe that the map g(z, w) = (z, gz(w)) maps the hyperbolic domain U
into itself, has fixed point (zo, wo), and its differential dg at (zo, wo) has the
matrix

Hence g is the identity by part (ii) of Theorem 3.3.

ASSERTION 2. Fix (zo, wo) E U and let Go = {g E G : g(zo, wo) = (zo, wo)}.
Then Go is compact in the compact-open topology of the space of maps
Hol(U, U).

To check this, consider for every two distinct points a, b E C BUo, 
the set ,
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Since is biholomorphic to D x (C~ B{o,1 }), it is complete hyperbolic. Define
now sets of holomorphic maps

and F = {h : U --+ (zo, wo)}. Since U,,b is complete hyperbolic,
the sets are compact in the compact-open topology of Hol(U, Ua,l), cf.

Kobayashi [10, Theorem V, 3.2], and so in the space Hol(U, D x C). Since
F = a, b E C BUo, a ~ b}, we conclude that F is compact in Hol(U, D x C )
and so in Hol(U, U). By Theorem 3.3 (iii)

Hence Go is compact as well.
We can now conclude the proof. Statement (a) follows immediately from

the Assertion 1. Statement (b) can be derived from Assertion 2 by an elementary
argument but it is convenient to use Sullivan [19, § 2, Proposition 0]. Applying
this result to gz, z E D, where g E Go, we have that the bijection gz is either
a periodic map, i.e. gN = id, or is an irrational rotation of a disc or an annulus
or a punctured disc. If gN = id holds for one z E D, it holds for all by part (a),
and the order N must be constant in z.

Otherwise all the qz’s are irrational rotations. Since g~ : Uzo -~ has
fixed point wo, by the Sullivan classification Uzo must be a topological disc and
so all the Uz’s are topological discs. (Note that by Theorem 1 { Uz } moves by
a holomorphic motion and all the Uz’s are homeomorphic). Thus every gz has
exactly one fixed point w(z), with w(z) analytic and analytic = eiO(z).
Thus 8 is constant. Finally the homomorphism g - g~ (wo) : Go --+ S ~ is injective
by Assertion 1. Combining this with Assertion 2 yields (d). D

PROPOSITION 3.4. Let Uz, z E D, be connected and satisfy assumptions of
Theorem 3.1. Let x : V - U, U = U { z } x Uz, be a universal covering space of

zED

U, endowed with the unique complex structure making x locally biholomorphic.
Then

(i) With Vz = ~-1({z} x Uz), the map fzl x Uz is a universal

covering and Vz a disc.

(ii) The covering group r of x : V - U is isomorphic to 

(iii) r acts transitively on fibers 7r - 1 (z, w), (z, w) E U.

(iv) For every -y E r, its action on V is biholomorphic and preserves fibers
Vz, z E D.

(v) V is a hyperbolic manifold.
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PROOF (Sketch). Let (z, w) - pz(w) : D x Uo --+ C be a holomorphic
motion such that pz(Uo) = Uz, z E D. Thus U is homeomorphic to the product
domain D x Uo, the map

being the homeomorphic in question. Let xo : Yo --i Uo be a universal covering
space. Define x* : D x Vo --+ D x Uo by ~r*(z, vo) = (z, It is clear that 7r*
is an unlimited covering space and D x Yo is connected and simply connected,
hence 7r* is the universal covering of D x Uo.

The composition x(z, vo) = (z, fz(xo(vo)), x : D x vo --+ U, of 7r* with the
homeomorphism (3.6) is a universal covering as far as topology is considered
and so we may take V = D x Yo. It is clear that conditions (i), (ii), (iii) hold.

(iv) is a consequence of the definition of complex structure. Condition (v)
follows from Kobayashi [10, Theorem IV, 4.7], that a covering manifold
of a hyperbolic manifold is hyperbolic. D

The next result, due to Sullivan, allows us to avoid considering fixed
points of irrational rotations in the proof of Theorem 3.1.

THEOREM 3.5 (Sullivan). Let Uz, z E D, be topological discs moving
holomorphically (i.e. the assumptions of Theorem 3.1 hold). Let g : (z, w) ~
(z, gz(w)) : U -&#x3E; U, U = U {z} x Uz, be a biholomorphic map such that

zED 

go (wo ) = wo, for some Wo C Uo, = ei0o, with irrational. Then there
is a choice of Riemann maps

so that the map

is biholomorphic and conjugates g with the rotation

Sullivan’s result [19, § 3, Theorem 3] is formulated for Siegel discs and rational
maps, but his proof works without any changes for the formulation given above.

PROOF OF THEOREM 3.1. We first get rid of fixed points of irrational
rotations. Let U1, U2, ... , UN, N  +oo, denote all the connected compo-
nents of U such that for some zo E D, and some g E G, gzolUk is equivalent to

N

an irrational rotation. Denote U° = U ... U UN). Clearly U° and U UJ
j=1
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are invariant sets for G and it suffices to construct the required holomorphic
N

motion (z, w) - Fz(w) separately in U uj and in U°.
j=i

N

By Sullivan’s theorem U Uj is isomorphic via a fiber-preserving biholo-
j=l

morphic map with the trivial model

Since the group of all biholomorphic, fiber preserving map of the model consists
of maps independent on z and acts transitively on every fiber, the model is
traced by a unique holomorphic motion commuting with the group, namely the

N

constant modtion (z, w) --+ w. Hence U Ul is traced by a unique holomorphic
j=1

motion commuting with G.
We will construct now a holomorphic motion tracing Uz. Let I, = { wo E

Ux : gx(wo) = wo) for some g E GBid}.
CLAIM. Iz move via an invariant holomorphic motion. More precisely,

there is a holomorphic motion (z, w) - D x Io --+ c~ such that

We observe first that the theorem follows from this claim. In case Iz’s
are not closed in Uz (which is not important for us to know here), we apply
A-lemma and obtain that the closures 1z move via a unique holomorphic motion
F° extending F0z and having the same invariance properties (3.8)-(3.10). Then
the set Ui = z E D, move holomorphically, are invariant with respect to
G and contain no fixed points. By the Lemma at the beginning of this section,
there is G-invariant holomorphic motion (~,~) 2013~F~):Dxt7~2013~C such
that = U;.

The "union" of the "disjoint" holomorphic motions F*, fi° and the unique
N 

~ 

one in U uj is the requested holomorphic motion z --~ Fz, commuting with G
j=1

and such that Fz(Uo) = Uz.
It remains to prove the claim.

ASSERTION 1. Fix g e GB{id} and denote
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Then there is a family of holomorphic functions ht : D --+ C, t E T, such that

As for the first condition, we have to show that given zo, wo such that

9 ,,,(wo) = w° there is a holomorphic function h : D -~ C such that h(z) E !7~,
gz(h(z)) = h(z) and h(zo) = wo. Applying Proposition 3.2 to the component of U°
containing (zo, wo) we obtain that gzo is periodic (it is not an irrational rotation)
and gN = id.

Let U’ denote the connected component under consideration and let
7r : V --+ U’ be the universal covering of Proposition 3.4. Choose vo E wo).
Then there is a unique biholomorphic lift G : V - V of g such that g~r = 7rG
and G(vo) = vo. Since both GN and id are lifts of gN satisfying GN (vo) = Vo, they
must be identical, i.e. GN = idz. Thus Gz : Vz --+ Vz is a periodic automorphism
of the topological disc Vz, hence equivalent to an elliptic fractional linear
transformation and has exactly one fixed point H(z) varying holomorphically
with H(zo) = vo. Let h(z) = Then h : D - C is a holomorphic function
such that h(zo) = wo and gz(h(z)) = h(z), because 03C0zG = This establishes

(3.11).
To show non-collapsing of fixed points (3.12) we use the following

observation.

ASSERTION 2. For every (zo, wo) E U, there exist two neighbourhoods
D(zo, 6) x D(wo, r) C D(zo, 6) x D(wo, R) c U, 6 &#x3E; 0, 0  r  R  +oo

of (zo, wo) such that: for every z E D(zo, 6) and for every two points wi,
w2 E D(zo, r), every shortest geodesic 7 in Uz with respect to the Poincar6
metric in Uz joining wl and W2 must be contained in D(wo, R).

This fact can be easily deduced from the result of Beardon and Pomme-
renke [ 1 ], which allows for local comparison of the Euclidean and Poincare me-
trics, and from the fact that vary continuously. We omit the tedious details.

Suppose now that graph(hi ), graph(h2) C X9 intersect, i.e. hl(zo) = h2(zo) =
wo but near zo. Let 6, r, R be as in Assertion 2. We can assume
that 6 &#x3E; 0 is small enough so that hl (z), h2(z) C D(w°, r) and hl(z)f=h2(Z) if
z E D(z°, S)B{z°}. We claim that there is a unique shortest geodesic q joining
hl (z), h2(z), z fzo. If there are two, say ïl and ï2, they both are contained
in D(z°, R) by Assertion 2, hence are homotopic. But since each homotopy
class contains only one shortest geodesic, cf. Lehto [12, IV, 3.4] the shortest
geodesic -i is unique. But gz is an isometry of Uz in the Poincare metric and so
gz(q) is a shortest geodesic joining the fixed points hl (z), h2(z). Thus 9,(-1) = -1
and gz must be an identity for Zo I  6. Hence g = id, which is a
contradiction.

ASSERTION 3. If X9 g, g’ E GB{id}, then there is

go E GB{id}, such that (zo, wo) E X9° C X9 n X9’ .
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Consider for a moment the connected component of U containing (zo, wo).
Let Go be the stabilizer group of (zo, wo), which is finite and cyclic by
Proposition 3.2 (d). Let go be the generator of Go. Then g = gk, I 
and clearly Xg° c Xg n in fact we have equality if U is connected. If U
is disconnected we just have inclusion.

Consider now X = U Xg . Then X = U x 7~.
xED

It is clear from assertions 1 and 3 that X is the union of mutually disjoint
graphs of holomorphic functions. It is also an invariant set for G. It is clear that
the disjoint holomorphic graphs define a holomorphic motion FV, commuting
with Gz’s and such that = Iz . D

4. - Applications: Holomorphic Motions in Families of Riemann Surfaces

By a holomorphic family of Riemann surfaces we mean, as usual, a

holomorphic surjection 7r : X -~ D, where X is a complex manifold of
dimension 2, 7r is locally trivial in the topological sense and Xz = 7r-’(Z),
z E D, are Riemann surfaces. (We consider here only families over the unit
disc D).

A holomorphic motion of a set E C X~, zo c D, in such a holomorphic
family is a map .

such that ,

(i) = 
(ii) f z : E - Xz is an injection; z E D,
(iii) for every w (=- E the map z --+ fz(w) : D - X is analytic.

One observe, cf. [20], that A-lemma holds in this context, at least when
X is Stein and completely hyperbolic. We show here (Corollary 4.2) that
Theorems 1 and 2 generalize to this context provided the family Xz, z E D,
is already traced by one continuous holomorphic motion. First we characterize
this condition.

PROPOSITION 4.1. Let Xz, z E D, be a holomorphic family of Riemann
surfaces, each covered by the disc. The following are equivalent:
(a) there is a continuous holomorphic motion (z, w) - fz(w) : D x Xo - X,

tracing Xz, i. e. f z (Xo) = Xz, z E D.

(b) Xz, z E D, is a simple analytic family in the sense of Earle and
Fowler [5], i.e. there is an open covering of D, such that each

7r-’(Dj) --+ Dj satisfies (a).
(c) The family Xz, z E D is isomorphic to a Bers model. (The detailed

formulation in the proof).
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PROOF. The equivalence of (b) and (c) has been proven by Earle and
Fowler [4, 5]. The implication (a) # (b) being trivial, it remains to show that

(c) # (a). Condition (c), a special case of the conclusion of Earle and Fowler
[4, Theorem 1] can be formulated as follows. There is a holomorphic (in z E D)
family of univalent maps

having quasiconformal extensions, normalized by the conditions oo,

= 1, = w, that if we let Uz = 1 

Iwi  oo}, U = U fzl x Uz, then there is a holomorphic surjection, a : U 
Izl=1

which is a universal covering of X and such that 7r o Q : U --+ D is the standard
projection (z, w) - z.

By Proposition 3.4 the covering group r of o, : U - X is a group of fiber
preserving biholomorphic self-maps of U. (Literally speaking, Proposition 3.4 is
formulated in case Xz are domains, but the change to surfaces is irrelevant here).
Since the complements = &#x3E; 11) clearly move by a holomorphic
motion, we can apply Theorem 3.1 to conclude that there is a holomorphic
motion Fz : Uo - Uz, Fz(Uo) = Uz commuting with the covering group r.

Denote by uz : Uz --+ Xz the map defined by u(z, w) = (z,(Jz(w)) and let
Basic properties of the covering group r imply

that fz is a well defined isotopy .of injective maps depending holomorphically
on z for each xo, i.e. a holomorphic motion, such that fz(Xo) = Xz. D

COROLLARY 4.2. Let Xz, x E D, be a simple holomorphic family of
Riemann surfaces having the disc as a covering space. Let (z,w) --+ hz(w) :
D x Eo --+ X be a holomorphic motion, Eo C Xo, hz(Eo) C Xz. Then there is a
holomorphic motion (z, w) --+ Hz(w) : D x Xo ~ X such that Hz(Xo) = Xz and
Hz extends hz, i.e. HzIE0 = hz.

PROOF. We use the setup and notation of the last proof. Denote E =
U fzl x Ez. The set E is the union of a family of mutually disjoint analytic
zED

discs (trajectories of hz) and the is also the union of mutually disjoint
analytic discs, each defined over D. Furthermore is an invariant set for
the covering group r. Denote U* = UB(J -1 (E) and U; the fiber of U*. Since
U* is preserved by the action of r and since the complements move

holomorphically, we obtain by Theorem 3.1 that there is a holomorphic motion
(z, w) --+ F~) : D C, commuting with r and such that = U;,
zED.

We define now the required extension Hz : Xo --+ Xz by Hz(xo) -
(Jz o where wo c if xo E XoBEo (like in the last proof), and by
Hz(xo) = hz(xo), if xo E Eo. It is elementary to check that Hz is a well defined
holomorphic motion tracing Xz and extending hz. D

We will give now examples of holomorphic families of Riemann surfaces,
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arising in the context of Kleinian groups, which can be traced by holomorphic
motions. The discussion below generalizes slightly Sullivan [18, § 6].

We first review briefly Sullivan [ 18, § 5]. Let us assume rz, z e D,
are abstractly isomorphic subgroups of the full Mobius group, with elements
varying holomorphycally in z. We emphasize that rz’s do not have to be finitely
generated. Under these assumptions Sullivan [18, § 5] has shown that if some
r ZO’ zo E D, has a nontrivial domain of discontinuity then all do and there
are canonical conjugacies pz : Ao - Az between the actions on the limit sets
depending holomorphycally on z.

Sullivan then shows in [18, § 6, Theorem 2] that in the case of finitely
generated (and non-solvable rz) the actions of rz and r zo are quasiconformally
conjugate on the whole of C . We will show now that Theorem 3.1 implies the
same conclusion also for infinitely generated groups.

(Solvable Kleinian groups are elementary and must be finite extensions of
abelian groups with at most two generators. The discussion below applies to
all groups rz whose limit sets have more than two elements; the corresponding
Riemann surfaces CBAz /rz must have hyperbolic components.)

COROLLARY 4.3. Let rz, z E D, be a holomorphic family of abstractly
isomorphic, nonsolvable Kleinian groups (i.e. with nontrivial domains of

discontinuity on C.). Then there is a holomorphic motion of C, (z, w) --~ 0

Fz(w) : D x C - t, where Fz conjugates the actions of ro and rz on e.

We note in passing that all the pz’s are quasiconformal by the A-lemma.

PROOF (Sketch). Let Uz denote the domain of discontinuity of rz, z E D,
i.e. Uz Note Az move holomorphycally by the preceding discussion.
Let U - U {z} x Uz as in Theorem 3.1. If 10 -+ ro -~ rz is a

zED

holomorphically varying isomorphism, define the maps 1 : U --+ U by the
formula (z, w) - (z, ~rz(w)). We obtain a group r consisting of fiber-preserving
biholomorphic self-maps of U. We are now in a position to apply Theorem
3.1, and obtain a holomorphic motion (z, w) --+ D x Uo --+ C, such that

= Uz and IZ 0 10, on Uo, for every 1 E r. We also have the
motion pz which conjugates the action of r on the limit set. Altogether ~ and
pz define the required conjugating map Fz.

COROLLARY-EXAMPLE 4.4. In the above setting, r acts discretely on U. Let
X = U/r with a : U --+ X being the (branched) covering map. Let Xz = 
the Riemann surfaces with marked points corresponding to elliptic fixed points
of rz and let x : X -~ D be the surjection such that Tr’~(~) = Xz. Then Xz,
z E D, is a simple holomorphic family of Riemann surfaces. In fact, it admits
a holomorphic motion such that 4Jz(Xo) = Xz, z E D.

PROOF (Sketch). Since the holomorphic motion Fzo moving Uo to Uz
commutes with the action of r, it induces the well defined holomorphic motion
~z in the quotient spaces, in the same way as we have already seen it in the
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proofs of Proposition 4.1 and Corollary 4.2. The presence of branch points does
not introduce any new difficulty here (the old ones have been dealt with in
Section 3). The remaining details are well known.

REMARK. The results of Section 3 and Corollaries 4.3, 4.4 were

communicated on special session in Complex Analysis of the AMS in Spingfield,
Missouri, March 1992, cf. [17].

Note added November 14, 1993. The referee has informed the author
about the manuscript [21], which apparently also contains a simplified proof
of the main result of [16], i.e. Theorem 1 above. We would like to mention
that the proof included in Sectional and 2 above was presented on a seminar
at CUNY already in November 1990.
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