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Fields Containing Values of Algebraic Functions

R. DVORNICICH - U. ZANNIER

Introduction

The present paper takes its starting point in the celebrated Hilbert’s

Irreducibility Theorem (from now on H.I.T.) the simplest case of which states:

Let F an irreducible polynomial. Then, for infinitely many
natural numbers n, F(n, Y) is irreducible in Q[Y].

Many proofs and generalizations of this result in many different directions
are known (Hilbert himself proved a version valid for several polynomials and
variables); see for example the books [11], [14], [17], [19] and the related
references or, for a survey of more recent work, [8].

There is for instance a quantitative version which we state in a weak form,
sufficient for a later application in the present paper.

Namely, set d = degY F and

is reducible over Q}.

Then, provided d &#x3E; 1, we have the estimate

for some ,Q = Q(F)  1. (In fact much more is known. For instance one can take

- 1, independently of F. See [10] or [19] for even more precise statements.)2
We can restate H.I.T. as the assertion that the roots of F(n, Y) = 0 have

degree d over Q for infinitely many n E N or even, letting 0 be an algebraic
function solution of F(X, 8(X)) = 0, we may say that the degree over Q of the
values of 0 at infinitely many rational integers n equals the degree of 0 over
Q(X). (1)

(1) Of course the value of an algebraic function at n is not well defined. However in this
case, as well as in what follows, it turns out that the choice of the "branch" makes no difference.

Pervenuto alla Redazione il 17 Febbraio 1993 e in forma definitiva il 26 Aprile 1994.
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In this context the following problem seems natural to us: To determine, or
estimate, the degree obtained adjoining to Q many values of type 0(n). In other
words we ask how independent are the values of an algebraic function at rational
integral arguments. The problem is clearly capable of generalizations. However
in the present paper we shall discuss only the basic case just mentioned.

We shall prove some results concerning the order of magnitude, for n --&#x3E; oo,
of the degree over Q of fields of type

for a prescribed sequence {OJ} satisfying = 0.

Actually we shall first give some simple result for an analogous "functional
problem"; namely, given a field r, assumed to be of characteristic zero, we
shall consider the degree over r(X) of the fields

+ h) being a root of F(X + h, Y) = 0.
The interest of these fields in connection with the previous problem may be

motivated as follows: if F has rational coefficients and p is a suitable primitive
element for k* (n) over Q(X) then the values p(j) (see footnote (1)) lie in the

composite field L k(n + j) for some choice of the sequence and for some
fixed algebraic number field L independent of n, so, at least in principle, using
some explicit version of H.I.T. one may get lower bounds for [k(m) : Q] from a
knowledge of the degree of p over Q(X). This idea may in fact be carried out
to prove at least the result [k(m) : Q] - oo for all sequences as above, if
D &#x3E; 1 and F is absolutely irreducible.(2) Although we shall obtain much more
about k(n), we have included some results about k* (n) as well.

One easily proves that, even assuming F to be absolutely irreducible, the
degree D* (n) _ [k* (n) : r(X)] may be sometimes substantially smaller than the
obvious upper estimate dn ; to construct such examples let be of degree
d &#x3E; 1 over r(X) and 1), where c E r is such that
~ is a primitive element for 1)) over r(X). Then, easily

where d = r(X)], whence D*(n) « dï.(3)

~2~ Such qualitative estimate may also be obtained directly from the version of Hilbert’s
theorem valid for polynomials over general number fields; in fact, under the above assumptions,
there exists, given any n, a natural number n’&#x3E;n such that F(n’,Y) is irreducible over k(n). Then
k(n’) contains k(n) properly.

~3~ The construction may be generalized to obtain algebraic functions V, of arbitrarily large
degree d and such that (consider for instance substantially a
best possible bound.
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However we shall see in Theorem 1 (b) that we always have exponential
growth.

In the numerical case the behaviour of D(n) = min[k(n) : Q], where the
minimum is taken over all sequences as above, is still further from the

upper bound dn, as we can see in a most simple class of examples, namely
setting F(X, Y) = Yd - X, where d &#x3E; 2.

Now we have

where whence

for any E &#x3E; 0.

These examples are essentially the best possible, since an estimate

will be shown to hold generally.
Moreover we shall produce a class of polynomials F such that D(n) has

exponential growth.
Our results are the following:

THEOREM 1. (a) Let F E r[X, Y] be irreducible. Then there exists a finite
set SF C r such that, if N1,..., Nk E r satisfy Ni - Nj V SF for then

(b) For distinct N1,..., Nk we have

provided d &#x3E; 1.

Here + h) is any root of F(X + h, Y) = 0.
In the more interesting numerical case we have:

THEOREM 2. (a) For all absolutely irreducible F E Q[X, Y] of degree in
Y greater than 1 we have the estimate

where c &#x3E; 1 depends only on F.
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(b) Assume the discriminant A(X) of the splitting field of F over Q(X)
(with respect to has an irreducible factor (over Q) of degree 2 or 3.

Then

for some c = c(F) &#x3E; 1.

We conjecture that in Theorem 2 (b) "degree 2 or 3" may be replaced
by "degree &#x3E; 2". Without such an assumption the result does not hold in full
generality, in view of the above examples.

Professor A.Schinzel has formulated an interesting and more precise
conjecture, which we cannot prove at present even in the most simple nontrivial
cases. Namely

D(n) should have exponential growth except when:

(i) 0(X) splits into linear factors over Q.
(ii) The splitting~ field i of F(X, Y) is an abelian extension of

Q(X).

By applying Kummer Theory it is easy to see that (i) and (ii) imply that
the splitting field I of F(X, Y) over Q(X) is contained in a finite extension
of Q(X) obtained as a composite of fields of type L(p), where L is a number
field and ph = 1(X) for some positive integer h and some linear polynomial
1(X) so we would practically reduce to the simple examples mentioned
before.

As remarked above our methods, which are based on the concept of
ramification used as a tool to distinguish different fields, are inadequate to

attack such a problem: even assuming deep conjectures from the theory of the
distribution of power free values of polynomials (whose significance in our

setting shall be clear from the proof of Theorem 2), which would enable us
to remove the restriction on degrees in Theorem 2 (b), new ideas seem to
be required to deal with the "algebraic part" of Schinzel’s conjecture. While
revising the present paper the authors have however obtained some progress in
this direction; the results will appear in a forthcoming paper.

We remark that Theorem 2 (a) remains valid for polynomials over number
fields, and that the assumption about absolute irreducibility may be weakened
to "The absolutely irreducible factors of F have degree &#x3E; 2". However the
proofs of these more general results do not require ideas different from those
already occurring here, so we have preferred not to discuss them for the sake
of simplicity.

It is perhaps worth mentioning that the results obtained here appeared in
a preliminary version several years ago, as a preprint of the University of Pisa
[9], which has been quoted by P. Debes in his survey [8]. For a number of
reasons, including the hope of getting substantial improvements, the publication
of a final version has been delayed up to now.

~4~ From now on a bar denotes algebraic closure.
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Finally, in the appendix, we shall show how the method of proof of
Theorem 2 can be applied to the effective solution of a diophamtine problem,
namely, the problem of finding the integers m for which F(m, Y ) splits into
linear factors in Q[Y]. This problem was however solved by Belotserkovski
(Bilu).

Throughout the paper the letters m, n will denote natural numbers, while
p will stand for a prime number. 

1. - Auxiliary results

We first briefly recall the definition and main properties of the discriminant.
For details and proofs see any book on Algebraic Number Theory e.g. [6] or
[18].

Let A be a Dedekind domain, K be its quotient field, L be a finite

separable extension of K of degree d and finally let B be the integral closure
of A in L.

Let W - be a d-tuple of elements of L and define the
"discriminant of W" as

the uj i being the isomorphisms of L over K in some algebraic closure.
From the formula D(W) = it follows that D(W ) E K.

Moreover it may be easily seen that the principal fractional ideal AD(W) c K
depends only on the module E Awj and is the zero ideal if and only if the wi
are linearly dependent over K.

Now specialize to the case when A is principal. (We shall use the present
concepts only when A is either Z or r[X] for r a field. For the general case
see for instance [18]). In this situation B is a free A-module of rank d. Define
then the "discriminant of L" (with respect to A) as

where

Recall that if P is a prime ideal in A, P is said to be "ramified" in B
(or in L) if in the factorization

where the Qi are distinct prime ideals in B, at least one of the ramification
indices ei is &#x3E; 1.

We recall the following classical results in a Lemma, where all the
discriminants involved are taken with respect to A.

LEMMA 1.1. (i) If P is a prime ideal in A then P ramifies in L if and
only if it divides A(L).
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(ii) If K c L c M then the prime divisors of 0(L) divide A(M).
(iii) The prime divisors of A(LM), where K c L n M divide the product

A(L)A(M).

Take in particular A = r[X] and F E r[X, Y] an absolutely irreducible
polynomial. (Here r is, as above, a field of characteristic zero.) Define L as
the extension of r(X) determined by a root of F. The discriminant 0(L) is

generated by a polynomial with coefficients in r; we may assume it to be monic
and unambiguously denote it with the same symbol A(L). From the absolute
irreducibility of F it follows that such polynomial remains unchanged if we
replace r by its algebraic closure r.

We also recall from the classical theory of function fields (see for instance
[1]) that the prime ideals of rB, which is the integral closure of r[X] in rL,
correspond to the finite places of rL, i.e. those not lying above the place o0
of r(X) .

Assume d = degyf &#x3E; 1 i.e. Then we have the following well
known result (whose short proof is recalled for the reader’s convenience). It is
the analogue of Minkowsky’s theorem stating the existence of ramified primes
in all number rings but Z.

LEMMA 1.2. 0(L) is nonconstant, i. e. there exists at least one ramified
finite place of L.

PROOF. By the above remarks we may work over r(X) and replace L by
rL, the extension of r(X) determined by a root of F.

From the Hurwitz genus formula we have, letting g be the genus of L,

Now g &#x3E; 0 while the second summation on the right is trivially bounded by
d - 1 whence

Since d &#x3E; 1 we get the Lemma and even more.
In the sequel we shall need the following classical result from the analytic

theory of algebraic numbers. It appears as Corollary 1 to Theorem 8 in Ch.8
of [6].

LEMMA 1.3. Let [X] have exactly s distinct irreducible factors over
the rationals. Then, letting for a prime p, n(p) be the number of solutions of
the congruence f (n) - 0 (mod p), n p, we have the asymptotic formula

The following simple estimate will be useful in a moment:
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LEMMA 1.4. Let g be an irreducible quadratic polynomial with rational
integral coefficients. Then, for large x,

Eg(x) = #~p &#x3E; x : g(m) - 0 has a solution 0  m  pl « log x.

PROOF. g(m) _ 0 (mod p2), 0  m  p implies g(m) = kp2 where k
is bounded independently of m. Multiplying by 4a where a is the leading
coefficient of g and changing variables we get an equation

where m* is an integer and where A is a fixed integer which is not a square
in view of the irreducibility of g.

For every fixed classical Pell’s equation theory (see for instance [15])
gives the desired estimate while for k = 0 we have no solution, and the result
follows. D

REMARK. It can be shown (see the proof of Theorem 2 (b)) that if g E Z [X]
is an irreducible polynomial of degree &#x3E; 2 then

It shall be clear in the sequel that to prove the conjecture stated

immediately after Theorem 2 we would need the estimate

When degg = 2 this follows immediately from (1) combined with Lemma
1.4. When degg = 3 we may still deduce (2) from (1) by using the following
Theorem of Hooley on square-free values of polynomials.

HOOLEY’S THEOREM. Let g(X) be a cubic irreducible polynomial with
integer coefficients, T be a fixed real number and define

Then E(T, x) - c(T )x when z - oo, where c(T) - 1 when T - oo.

In fact Hooley’s result in [12] is stated for T = 1 with an explicit formula
for c( 1 ) in terms of the number of solutions of congruences of the form g(m) =- 0
(mod p2). However his proof leads to the present Theorem with practically no
changes: it is only necessary to introduce the parameter T and otherwise follow
strictly Hooley’s arguments. We omit details for simplicity, Hooley’s proof being
quite involved.
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To see why this result combined with (1) implies (2) for cubic irreducible
polynomials observe that, for large x,

since, for m  x, there exists at most one prime p &#x3E; x whose square divides

g(m), g being a cubic polynomial.
Observe that the definition directly implies that E(T, x) is a non-decreasing

function of T (for fixed x), so, for any given T we have, for large x,
x - E(x, x)  x - E(T, x) = (1 - c(T))x + o(x). Since T is arbitrary and since
c(T) - 1 we deduce x - E(x, x) = o(x) and the resulting asymptotic inequality,
combined with (1), clearly proves (2).

The general case of arbitrary degree, which, as remarked above, would
give a corresponding improvement of Theorem 2 (b) seems quite deep, in any
case not available in the existing literature.

To prove (1) we shall use a result of Nagell [16].

LEMMA 1.5. Let g be irreducible of degree at least two. Let x be
a large real number and, for a natural number m  x set g(m) = A(m)B(m)
where A(m), B(m) are the factors of g(m) formed with the prime numbers  x
and &#x3E; x respectively. Then:

We state one more result about field extensions of finite degree. It is

certainly well known but for the sake of completeness we give a short proof.
For F/K a finite degree extension denote by F* the normal closure of F

over K.

LEMMA 1.6. Let A, B be finite extensions of K such that A* n B* = K.
Then

PROOF. One needs to prove that [AB : A] = [B : K]. Let b E B be
a primitive element of the extension B/K and P be its irreducible (monic)
polynomial over K. If P = QR with Q, R monic polynomials in A[Y] B A,
there exists at least one coefficient of Q or R in A B K. This coefficient also
lies in B*, which contradicts A n B* = K. D

2. - Proof of Theorem 1

Let L be the splitting field of F over r(X). Define A(L) to be the
discriminant taken with respect to r[X] and let ,SF be the set of differences
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of the roots of a generator G(X), say, for A(L) which, by Lemma 1.2, is a
nonconstant polynomial with coefficients in r.

Also, for a finite extension M of r(X) let M* denote its normal closure
over r(X).

From Lemma 1.6 it follows immediately that for the proof of Theorem 1

(a) it suffices to show that

Assume the contrary. Then the above intersection is a proper extension
of r(X) whence, in view of Lemma 1.2, its discriminant is generated by a
nonconstant polynomial 6(X), say. By Lemma 1.1 (ii) the linear factors of 6(X)
divide both the discriminants of reX, + Ni)),, and of fl r(X, + Nj))*.

j=i
Now, the discriminant of + Ni))* is immediately seen to be

generated by G(X + Ni). In particular, by Lemma 1.1 (iii) the factors of

In fact assume the contrary; then we may write, letting s 1 E S,

and so on. Sooner or later we shall obtain = for some nonzero 1~ whence,
summing the equations corresponding to u,..., u + k - 1, we get

a contradiction.
To apply this to the proof of Theorem 1 (b) set R = { - Nl , ... , - N~ },

S = la : G(a) = 0} where G has been defined above.

divide

- 

On the other hand, by the very definition of S’F the polynomials G(X + Ni )
and II G(X + Nj ) are coprime, a contradiction which proves part (a) of our
Theorem.

The proof of part (b) is entirely analogous, but requires a preliminary
observation. If A is a subset of r, we say that an element cx E r lies in the
convex hull of A if a = E ri ai where ai E A and ri are non-negative rational
numbers with sum 1. Then

Let R, S C r be finite sets. Assume that r E R does not lie in the convex
hull of R - {r}. Then
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Choose an index i such that -Ni does not belong to the convex hull of
R - this is certainly possible as we can for instance embed Q(R) in
C and so look at the elements of R as complex numbers, in which case the
assertion holds. Apply then the above proposition with r = 

We obtain that, for at least one root Q of G(x + Ni), we have

From this we may deduce, arguing as in the proof of part (a), that

and Theorem 1 (b) follows at once by induction on k. D

3. - Proof of Theorem 2

PROOF OF PART (a). Let L(j) be the splitting field over Q of the polynomial
F( j, Y). We shall first prove a lower bound for

where is the composite of the fields L( j ) for 1  j  n.

H.I.T. will then be applied to deduce our original statement.
To obtain such a lower bound we shall construct many values of m such

that L(m) is not contained in k(m - 1).
Using the results stated in Lemma 1.1 it will be sufficient to produce

values of m such that A(L(m)) - the discriminant of L(m) with respect to Z -
has at least one prime factor not dividing 0(k(m - 1)).

On the other hand the prime factors of 1)) are just the primes
dividing some A(L(j)), 1  j  m - 1, by Lemma 1.1 (iii).

In conclusion we must investigate the prime factors of 0(L(m)), i.e. the
rational primes which ramify in L(m).

Let I be a splitting field for F(X, Y) over Q(X) and let G(X) be a
generator for the discriminant of I (with respect to Q[X]): we may assume that
G is a polynomial with coprime rational integral coefficients. Also, in view of
Lemma 1.2, we may assume G(X) is nonconstant.

Now, it is natural to assume the existence of some relation between

A(L(m)) and G(m), the specialization of the discriminant of L.(5) At first sight

~5~ A result which, as a particular case, has implications in this direction is the "Chevalley 
’

- Weil Theorem". It appears for instance in [ 14), p. 44 or in [19], p. 50. In fact the affine version
of it, mentioned in [19], implies our Lemma 3.1 below.
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one could even attempt to parametrize A(L(m)) for instance with G(m) itself,
or try to parametrize some integral basis for the integers of L(m) with the
specialization of an integral basis for the integers of M (over Q[X]).

In fact there is such a relation, but it does not hold for all m. To see
this consider for instance the simple case when F(X, Y) = Y2 - X. We have
E = G(X) = X, but, if for instance m = s2, then L(m) = L(S2) and
A((L(m)) = 1.

We shall show that, however, for many values of m, some of the prime
factors of G(m) divide A(L(m)), and this will be sufficient for our purposes.

We begin by proving the simpler "inverse property", namely:

LEMMA 3.1. There exists an integer such that

for all large m.

PROOF. Preliminary to the main argument we make the following
agreement about specializations of algebraic functions. Choose once for all,
for each natural number m, a point Pm of the algebraic curve associated to E,
lying above m.~6~ For a function ~ E I defined at Pm we put

Let e 1 (X ), ... , ek (X ) be an integral basis for the integers of E over Q[X].
Since the span Lover Q(X) we may write, for each root of

the equation in Y, F(X, Y) = 0,

where the Oi,j 
If the integer m is large enough all the functions involved are defined at

Pm so we may specialize (1) according to the above rule. Since the numbers
I  j  d, run over the roots of F(m, Y) = 0, we conclude that the

algebraic numbers ei(m) generate L(m) over Q.
Define s = [L(m) : Q] and assume, after renumbering the indices, that

e 1 (m), ... , es (m) are linearly independent over Q.
Consider the polynomial

where uj runs through Gal(E/Q(X)).

~6~ Considering m as a point of Q(x).
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We may assume, replacing the ei if necessary by suitable constant

multiples, that G* has integral coefficients whence, since G is primitive,

for some nonzero

Let ~(X) be a primitive element for E over Q(X) and let g(X, ~) = 0 be
its minimal equation. Specializing, as we may, for large m we get

The polynomial g(m, Y) has coefficients in Q whence all the conjugates
of ~(m) lie among its roots, which are the numbers = 1,..., k.

Let be the automorphisms of L(m) over Q. We may renumber
the indices { l, ... , so that

Since

for suitable cJ.L,j we get, for large m

Let E be the matrix for 1  i  k, 1  j  s.
Then, since the ei(m) may be assumed to be algebraic integers in L(m) (if not
this may be achieved by multiplying them by a suitable integer independent of
m), every s x s minor of E is divisible by in the sense that the

quotient is an algebraic integer.
Put X = m in (2) and expand the determinant appearing there, according

to Laplace’s rule, along the upper s x s minors. Observe that the first s rows
of the corresponding matrix constitute just the matrix E, whence, by the result
just proved, we get the lemma. D

We shall now prove a crucial result, namely the above mentioned partial
converse of Lemma 3.1.

LEMMA 3.2. Let p be a prime number dividing G(m). Then, if p is large
enough, it divides the product 0(L(m))0(L(m + p)).

PROOF. Let g E Z [X] be any irreducible factor of G(X).
By Lemma 1.1 (i) g(X), which is a prime of Q[X], ramifies in E.
Since is a normal extension of Q(X) the ramification indices of the

prime ideal divisors of (g(X)) (in the integral closure B of Q[X] in E) are all
equal, as is well known. So we may write

where Q is an ideal in B and where e &#x3E; 2.
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Let w 1, ... , wt be generators for Q, normalized in such a way to take

algebraic integer values on large rational integers m.~~&#x3E; Let B(m) be the ring
of algebraic integers in L(m) and define Q(m) as the ideal in B(m) generated
by WI 1 (m), ... , Wt(m).

From (3) we have

where (i) runs over the t-tuples (i 1, ... , it) of natural numbers satisfying
i 1 + ... + it = e and where R(i) E BI.

Let A* be a nonzero rational integer such that E B(m) for all
(i) and all large m. (Such an integer clearly exists, for the satisfy monic
equations over Q[X].)

Specializing formula (4) we then obtain

To obtain an opposite inclusion observe that (3) implies for all (i) as above

where S(i)(X) E B.
Now choose as before a nonzero rational integer A* such that E

B(m) for m &#x3E; xo and specialize (6) to obtain

Now let m be an integer and p be a large rational prime such that 
Then, by (7), and, if p is large enough,

Let Q(m) = plrl ... Phh be the prime ideal factorization of SZ(m) in B(m).
From (8) we obtain that at least one of the Pj, say Pi , is a prime ideal

divisor of pB(m).
On the other hand (5) implies that divides A*g(m)B(m) so, if p is

larger that A* this relation forces 
Now, since PI divides p, it cannot divide other rational primes. Also, since

g(m) is rational and since p divides g(m) exactly, the last relation implies

so p ramifies in L(m), whence pIA(L(m)) by Lemma 1.1 (i).

~~~ We adopt the convention described at the beginning of the proof of Lemma 3.1 to define
wi (m).
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To find primes dividing exactly some value g(m) we use an argument
which appears already in [7].

Since g(X) is irreducible it has no common factor with its derivative g’
whence we have an equation

where T, U are polynomials with rational integral coefficients and where c(g) is
a nonzero rational integer (which may be taken to be the "discriminant" of g).

Let now p be a sufficiently large prime number dividing G(m). Then p
divides some g(m), g being an irreducible factor of G. If the above

arguments prove the Lemma. Otherwise whence, for p &#x3E; deg g,

But p cannot divide g’(m) as well, otherwise, by (9), plc(g), which does
not hold if p is large enough.

The last congruence then implies and the preceding argument
applies with m + p in place of m, proving completely Lemma 3.2. D

REMARK 1. It appears from the proof that "sufficiently large" can be made
explicit in terms of the magnitude of the coefficients of the polynomial F.

REMARK 2. From the proof of Lemma 3.2 one can get in fact the following
more precise statement:

Let g(X) be any irreducible factor of G(X) in Z [X]. Then there exists an
integer e &#x3E; 2 (the ramification index of g in 1) with the following property: if
p is a sufficiently large rational prime such that

then p ramifies in L(m).

This result could be derived also invoking the Weil’s famous decomposition
Theorem (see [20] or [14] Ch. 10) which roughly speaking states that the divisor
of a rational function on an algebraic curve defined over a number field K
determines a corresponding factorization of its values at K-rational points on
the curve. We give a brief argument, and refer to the statement appearing in
[14], p. 263. We take V to be the nonsingular curve (over the algebraic closure
of Q in E) with function field E. We take as rational function our polynomial
g and put P = Pm (as in the beginning of the proof of Lemma 3.1 ). The divisor
of zeros of g is of the form
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for some positive divisor D, whence all the integers ml,y in Lang’s statement
which are positive are multiples of e. Let p be a prime number and v be an
extension to Q of the p-adic valuation on Q. The statement referred to above
implies that, for p larger than some number depending only on V,

for some am E L(m) : in fact the terms vanish by definition for large
enough p. Also, all the Aw(P, v) lie in the image of v on L(m)* for large p,
by the construction of the Weil functions. Finally, for large p and W lying
above the infinite point of Q(X), Aw(P, v) vanishes, as may be proved by
looking again at the construction of Weil functions (observe for instance that
both functions 1 /X, 1 /(X + 1 ) vanish at each such W, and one at least of them
is a v-unit at Pm). This clearly proves what we want.

Using Lemmas 3.1 and 3.2 we may estimate D(n) in the desired way.
Let x be a large real number and set

and

From Lemma 3.2 it follows that, if p E P(x) then we x. 
x

In fact if p e P(x) there exists a natural number m such that m  p  x
x. 2

and pIG(m). So we have m + p  x and Lemma 3.2 applies since p &#x3E; - is very
large. 

4

Moreover, from the definition it is clear that p does not ramify
in any field L(a) for 1  a  j (p) - 1, whence it is still unramified in their

compositum k( j (p) - 1), so, in particular,

We then have

whence

and, setting

we obtain

To bound J(x) from below observe that, if p E P(x), then 
and, p being large, Lemma 3.1 implies pIG(j(p)).

Set v = deg G. Then v &#x3E; 1 by Lemma 1.2.
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We contend that, for m  x,

Indeed every prime counted divides by the above G(m) and is larger than
x

4 , whence 
the total number N of such primes satisfies

for large x.
From this inequality we clearly derive

Finally, applying Lemma 1.3 with f = G we obtain

for a certain positive integer s, whence, since n(p)  v,

for large x, whence

thus concluding the proof of Theorem 2 (a) with b in place of D.
To complete the proof of Theorem 2 (a) choose a sequence satisfying

F(j, 0j) = 0 and the corresponding field

We observe at once that

where d = degy F as usual and

Indeed any factor in the middle term of (10) is clearly bounded by d!.

CONTENTION. If k(j + k(j) and F(j + 1, Y) is irreducible over Q then
also + 1 ) ~ k(j).
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In fact assume k( j + 1) = k(j). Then E k(j) and, F( j + 1, Y) being
irreducible, all of its roots must be contained in the normal closure of 

over Q. But clearly such a field is contained in k(j ), whence L( j + 1) c k(j)
and this means just k(j + 1) = k(j).

Setting then

we get

By the quantitative version of H.I.T. recalled in inequality (2) of the
Introduction the cardinality on the right is «mf3 for some (3  1.

On the other hand by (10) and what has been proved above we have

h(m) ~&#x3E; ,201320132013, , whence h(m) » m too, the bound holding uniformly in
log m log m

the sequence 
Also 

-

and Theorem 2 (a) follows since the bound for h(m) is uniform.

PPROOF OF PART (b). We first prove formula (1) of Section 1 using Lemma
1.5.

With the notation of that Lemma, let v = deg g. Then v &#x3E; 2 by assumption.
Elementary estimates show that

whence

Now, since log B(m) « log g(m) « log m  log x, we get

Since every prime factor of B(m) is by definition &#x3E; x and since a given
prime p &#x3E; x may divide at most v among the B(m), m  x (since otherwise g
would have more than deg g distinct roots mod p which is impossible for large
p) we obtain 

- - -

i.e. (1) of Section 1.
Recall now that in Section 1 we have shown, by means of Lemma 1.4

and of Hooley’s Theorem, that, for irreducible polynomials g of degree 2 or 3,
(1) implies (2) namely
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Recall also that, by Remark 2 to Lemma 3.2 it follows that, if g is an
irreducible factor of G, then, for large x,

and pllg(m) then p ramifies in L(m).

Combining (11) and (12), Theorem 2 (b) follows by an argument
completely similar to the one used for part (a).

REMARK. In analogy with Theorem 2 one may investigate the behaviour
of 

r I

where S is a sequence of natural numbers.
In this situation, even when S has positive asymptotic density, the estimates

of Theorem 2 are no longer generally true.
Define for instance F(X, Y) = y2 - X and take

One can prove (see [5]) that

Also, observe that

whence

for some c &#x3E; 1.

Anyway the method of proof of Theorem 2 give, for a sequence S of
positive upper asymptotic density, the estimate

for some c &#x3E; 1, a &#x3E; 0 and some infinite sequence of n.
We omit details since no new idea is involved.

Appendix

In this Appendix we show how the above methods (in particular the
method of proof of Lemma 3.2) can be applied to solve effectively the following
diophantine problem:
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Let F(X, Y) E K[X, Y], where K is a number field with ring of integers
D. Determine S = SF = {m E D : F(m, Y) splits into linear factors in K[Y] 1.

It is easily shown that this problem is equivalent to determining the integral
points on irreducible curves G(X, Y) = 0 which define a Galois extension of
K(X).

We remark that the problem has already been solved by Yu. Belotserkovski
in the fundamental case when the splitting field E of F over K(X) has positive
genus (for the simple genus zero case see [21]). See [3], [4] for general results
implying Theorem 3 below; the author gives also explicit estimates for the

height of integral points. Even if the result of this Appendix is not new, we
nevertheless have decided to include it just to show another application of the
idea of considering the specialization of the functional discriminant.

We may assume F to be absolutely irreducible, of degree d* in Y. We
define r to be the extension of K(X) determined by a root of F(X, Y) = 0.
Also, let K be the algebraic closure of K in E and let G be the Galois group
of E over .K(X), having order d. Define A to be the ring of integers of E over
K [X] . A will denote the field of algebraic numbers.

We shall prove the following:

THEOREM 3. Let F(X, Y) E K[X, Y] be absolutely irreducible and assume
that I has positive genus. Then the finitely many integers m E S may be
effectively found. (8)

As remarked before the case of genus zero is dealt with in [21].

PROOF. We give a direct argument, similar to the proof of Lemma 3.2. In
this case too Weil’s Decomposition Theorem could be applied.

Let a 1, ... , ah E A be the distinct finite points of A(X) which ramify in
AE. Enlarging eventually K we may assume K = K~9~ ai E K for all i. Since
E is a normal extension of K(X) the ramification indices of points lying above
ai are all equal, say to eZ .

Dropping for the moment the subscript i we may write

where Q is an ideal in A, generated by wl, ... , ws, say.
The wj satisfy monic equations over K[X], so, multiplying if necessary

by a constant, we may assume they satisfy actually monic equations over D[X].
From (13) we derive an expression

~g~ That s is finite in this case follows at once from Siegel’s celebrated Theorem too.
~9~ In fact we could assume at once K=K. See [21] for the standard argument.
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where the summation runs over all s-tuples of natural numbers (i ) = (i 1, ... , 
satisfying i 1 + ... + is = e and where R~i~ E A.

Again from (13) we may write, for all j = 1,..., s,

where R~ E A.
Let B be the finite set of elements of K which, as points of K(X), lie

below a pole of some of the functions above. 
(10)Also, for m E S - B, choose a point Pm of E above 

Observe that, in view of the above normalizations, wi(P,,,) is an algebraic
integer while, for a suitable rational integer independent of m, all the
numbers and are algebraic integers.

Observe also that, if T is any element of L, then

where Q E K(X)[Y1,..., Yd], the yi being the roots of F(X, Y) = 0.
So, if B is large enough to imply that T is defined at Pm we see that

m E S - B implies T(Pm) E K.
Combining this fact with the above we see that, for large enough B and

m E S - B,

Let m E S - B and take any prime ideal E of D dividing (m - a) but not
dividing the above rational integer a.

Multiplying (15) by a and evaluating at we get

So, if a), where 0  r  e we have, by (16), that either r = 0 or

This possibility cannot however happen. In fact assume the contrary,
multiply (14) by a and evaluate at Pm. We get

whence, by (16), (17) and the fact that E does not divide a,

a contradiction.

( 10) As a point of K(X).
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So r = 0. In other words every prime ideal outside a finite computable set
divides (m - a) to a power which is a multiple of e.

Coming back to our argument write the ideal factorization in D

where O is a fractional ideal which belongs to a finite computable set while

We use a well known argument to derive a corresponding numerical
equation.

Take ideals 1&#x3E;*, O* in the inverse classes of 1&#x3E;, O respectively and having
bounded norm. Then the ideals 0*0~, 00* are clearly principal and of bounded
norm, so may be generated by elements respectively 01, 82 E D of bounded
height, whence lying in a prescribed finite set. (It is of course understood that
all the involved bounds are effective.) Also, the ideal is clearly principal,
generated by 4J, say.

Multiplying (18) by 0*(D*l we get

whence

for some unit Clearly u = uv*ve where u* lies in a finite computable set and
v is a unit. Combining with (18) we thus get ,

where ~y E D and q E K lies in a finite computable set.
Similar equations hold for any ai, i = 1, ..., h in place of a, so we have

proved the following:

ASSERTION. There exist finitely many h-tuples ... , qh) E K*h such that,
for m E S’ - B at least one of the systems

has a solution with Ii E D for all i.

We now analize the possibilities for the solutions in m, 11,..., lh of each
such system.
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If h &#x3E; 2 and some ei &#x3E; 3 then the system has only finitely many solutions
which may be effectively found: in fact assume 3. Then the first two

equations give

and Baker’s celebrated theorems [2] apply, since e2 &#x3E; 2.
If h &#x3E; 3 and all ei are equal to 2, multiplication of the first three equations

gives an equation 
-

where p E K* is fixed and 0 E D. This is an elliptic equation so again its

finitely many solutions E D2 may be found.
In conclusion the solutions of each system may be found except when

either h = 1 or h = el = e2 = 2.
We show that each case corresponds to a field I of genus zero. In fact

apply Hurwitz genus formula to the extension AE over A(X). The extension is
still of degree d and the ramification indices remain the same. Hurwitz formula
gives

the last sum running over the places above oo. This term is bounded by d - 1,
whence

The right hand side is  1 in both the above cases, so g = 0 or the
solutions may be found. This completes the proof. D

We remark that all the entities appearing in the above proof may be
effectively calculated in every concrete case.

We wish to thank Professor A. Schinzel for several helpful discussions
and comments.
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