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A Liouville-type Theorem for
Elliptic Systems

D.G. DE FIGUEIREDO* - P.L. FELMER*

0. - Introduction

A priori estimates for solutions of superlinear elliptic problems can

be established by a blow up technique. Such a method has been used by
Gidas-Spruck [GS1] for the case of a single equation. Similar arguments can
also be used in the case of systems. We refer to the work of Jie Qing [J]
and M.A. Souto [S]. As in the scalar case, the treatment of systems poses the
question of the validity of a result which is referred as a Liouville-type theorem
for solutions of systems of elliptic equations in R~. Let us make precise this
question.

We consider the elliptic system

in the whole of R~, N &#x3E; 3. The question is to determine for which values of the
exponents a and {3 the only non-negative solution (u, v) of (0.1) is (u, v) = (0, 0).
The notion of solution here is taken in the classical sense, i.e., u, v C 
In the case of a single equation

it has been proved in [GS2] that the only solution of (0.2) is u = 0 when

* The first author was partially supported by CNPq and the second by Fondecyt and D.T.I.

University of Chile.
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In dimension N = 2, a similar conclusion holds for 0  p  oo. This is a special
case of the result that asserts that any superharmonic function bounded below
in the whole plane is necessarily constant, see [PW, Theorem 29, p. 130]. It
is also well known that in the critical case, p = (N + 2)/(N - 2), problem (0.2)
has a two-parameter family of solutions given by:

We see then that the critical exponent, in the scalar case, plays an important
role in the validity of the Liouville-type theorem for equation (0.2). It is natural
to conjecture that in the case of system (0.1) the condition (0.3) is replaced by

The basis of this conjecture lies on the fact that the existence of positive
solutions for the Dirichlet problem for system (0.1) in a bounded domain holds
true if condition (0.5) is satisfied, see [CFM, FF, HV]. If this conjecture were
true we would have a complete analogy with the scalar case. A further argument
in favor of this conjecture is a theorem of Mitidieri [M, Theorem 3.2] which
states that (0.1) has no nontrivial radial positive solutions of class 
N &#x3E; 3, provided 1  a  Q and (0.5) holds. The result proved here is the

following:

THEOREM. A) If a &#x3E; 0 and ~3 &#x3E; 0 are such that

but not both are equal to

then the only non-negative C2 solution of (o.1 ) in the whole of R:l is the trivial
one: u=0, v=0.

N+2
B) If a = /3 = N - 2 , then u and v are radially symmetric with respectN - 2

to some point of 

REMARK. In [S] it was proved that (0.1) has no nontrivial non-negative
C2 solutions in the whole of provided

and

We see then that this establishes the conjecture in a hyperbolic region of the
plane (a,,3) which is smaller than the region determined by (0.5). However
(and this is important to stress) such a region contains points which are not
included in the region defined in (0.6). Souto’s argument in [S] is based on the
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non-existence of positive solutions in the whole of R~’ of the inequality

when u  N/(N - 2). This fact was proved by Gidas [G]. The conjecture
would be proved if we had this non-existence result (for inequality (0.8)) up
to (N + 2)/(N - 2). We do not know if such a result is true. In [J] there
are some Liouville-type theorems; though Jie’s results apply to more general
nonlinearities, they do not cover our result.

An important feature of the present paper is to show how the Method of
Moving Planes, as developed by Gidas-Ni-Nirenberg [GNN], and more recently
by Berestycki-Nirenberg [BN], can be used to produce rather simple and elegant
proofs of Liouville-type theorems for systems. The main difficulty stems from
the fact that the domain where the solutions are considered is In such a
case it is not clear where we can start the procedure, see details in Section 2. The
present work has been motivated by recent papers by Caffarelli-Gidas-Spruck
[CGS] and Chen-Li [CL], where Liouville-type theorems for a single equation
(results formerly proved by Gidas-Spruck [GS2]) have received a treatment by
the Method of Moving Planes.

The authors would like to thank Manuel del Pino for useful conversations.

1. - Some general facts about superharmonic (subharmonic) functions

Let us recall the so called Hadamard Three Spheres Theorem, see [PW,
p. 131]:

"Let Q be an open set containing the set

and U E C2(Q) with 0. For r  r2, let

Then

for any r in [ri , r2 ] ."
The proof of this result is very simple. Let = a + br2-N. . Choose a

and b such that = M(rl) and y~(r2) = M(r2). Let u(x) - and
use the maximum principle for subharmonic functions.
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LEMMA 1.1. Let u E C2 (II~N B { o } ) be such that u  0 and 0. Then,
for each c &#x3E; 0, one has

PROOF. Letting ri --i 0 in ( 1.1 ) we obtain M(r)  M(r2) for all 0  r  r2,

which implies (1.2) by taking r2 = c. Letting r2 -~ +00 in ( 1.1 ) we get
M(r)r N-2  M(rl)rN-2 for all r &#x3E; rl, which gives (1.3) by taking r1 = ~.

m

COROLLARY 1.1. Let u E C2 (RN) be such that u &#x3E; 0 and 0 in the
whole of e. Let 

-

be its Kelvin transform. Then, for each - &#x3E; 0, there are positive constants b,
and c~ such that

PROOF. The function -w satisfies the hypothesis of Lemma 1.1. Choosing
c~ = we obtain (1.4) and the lower bound in (1.5). Choosing
bE =  c- 1 1 we obtain the upper bound in (1.5). D

2. - Some auxiliary facts

Let u &#x3E; 0 and v &#x3E; 0 be C2 solutions of system (o.1 ) with both a and
{3  (N + 2)/(N - 2). Let us introduce their Kelvin transforms

which are defined for One verifies that w and z satisfy the system
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We shall use the method of moving planes. Let us start by considering planes
parallel to x = 0, coming from -00. For each real A let us define

and xA as the reflection of x about the plane TÀ. Let ex = (2A, 0,..., 0). In what
follows we consider A  0 and set ix = In fx we define the following
functions 

1 1, 1 1 1 11

The first step in the use of the method of moving planes is to show that
we can start the process. That is, there exists a A  0 such that 0
and 0 for all x E Unfortunately, this cannot be shown as we shall
see shortly. However this can be achieved with a slight modification of the
functions. Let us explain how.

For x e fx we have

Using the invariance of the Laplacian under a reflection and the fact that

I xÀ  ixi, it follows from (2.4)

Hence we get from (2.3) and (2.5)

which, using the mean value theorem, can be written as

where

and A) is a real number between zx(z) and z(x). Similarly, we obtain

where
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and A) is a real number between wx(z) and w(x). We would like to infer
that 0 and 0, for some A  0 and all x E Ea but we observe
that system (2.6)-(2.7) is not amenable for application of maximum principles.
In order to obtain a system satisfying the hypothesis of maximum principles
(see, for instance, [PW] or [FM]) we introduce the function g and show that
the functions 

~T, , , " ~ , , "

where g(x) = for all x such that x 1  0, satisfy the following system
of inequalities

The latter system is cooperative, since both c(x; A) and 6(x; A) are positive. Thus
we can apply the maximum principle (Thm. 1.1 in [FM]), provided

Our next purpose is to establish.

PROPOSITION 2.1. There exists A*  0 such that for all A  A*, 0
and for all XEIA-

We shall use in the proof of the above proposition some properties of
fl7x (and a similar set of properties of Zx), which are collected in the lemmas
below. We consider A  0.

LEMMA 2.1. (i) If &#x3E; 0 for all x in some punctured ball c Ea,
and if

then Wa attains its infimum in fx.
(ii) There exists a  0, such that if A  ~ and c(A)  0, then Wa attains

its infimum in ~a .

PROOF. (i) Since 0 as Ix I - oo, we can find ri 1 &#x3E; 0 such that

WA (x) - c(A) for x I &#x3E; ri . Thus W attains its infimum on the compact seta( e)&#x3E; 
2 

( ) |x &#x3E;r 1 a p

Br, (o) n Since Wa vanishes on TA, the result follows.

(ii) Using Corollary 1.1 we find positive numbers c 1 and r such that

w(x) &#x3E; ci, for 0  1, and w(x)  c1 for Ixl &#x3E; r. Choose A = min{-r, -1}.
Then for A  A .
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LEMMA 2.2. (i) There is a positive constant dx, depending only on w and
A, such that

for all x E fx - B1(eÀ), where  0.

(ii) There is an Ra &#x3E; 0, depending only on A and w, such that

for all x E where  0.

PROOF. (i) If ~3 &#x3E; 1, it follows from  0 that wa (x)  ~(x; A)  w(x).
We then estimate w(x) using inequality (1.5) of Corollary 1.1. We see that

d can be taken as  Then 1j;(x; À)  dA . Usinga { (y) |y| |y|_1] g

the definition of 6(x;A) we obtain (2.11 ) readily. Actually, inequality (2.11 )
holds for all x E 

If 0  ~3  1 then we estimate using the other part of
inequality (1.5) to obtain

where dA), = = 1}. From here we obtain (2.11) since Q - 1  0.

(ii) Observe that

So (2.12) follows immediately from the above inequality together with (2.11).
D

LEMMA 2.3. There exists A*  A such that, for all A  A*, inequality
(2.12) holds for all x E iA, where WA(x)  0.

PROOF. We first observe that da if So for all 
estimate

for all x E ix, where  0. Hence the right side of (2.13) is negative if
lxl &#x3E; R~ (as in Lemma 2.2(ii)). Now take A* such that E RN : Ixj &#x3E;

0
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LEMMA 2.4. Assume that there is XO C Ea such that

Then  0. If moreover |x0 | &#x3E; Rx (as in the version of Lemma 2.2(ii)
for Za ), then  

PROOF. Since = 0 and 0, it follows from (2.8) that

which implies that  0. Next we can write (2.14) as

As we said before an analogue to Lemma 2.2 holds for Zx. So the first bracket
is negative, and the conclusion follows. D

PROOF OF PROPOSITION 2.1. Let us assume, by contradiction, that for
some A  A* (A* = least of the two A*’s, the one defined in Lemma 2.3 and
the one from the version of Lemma 2.3 for Za ), we have

Without loss of generality, we may assume that  0 for some x E fx.
The argument below shows that the conjunction or in (2.16) can be replaced
by and. Indeed, since A*  A, the assumption  0, for some x E Ea,
implies via Lemma 2.1(ii) that the infimum of W a is attained at a point xo in
P7x; and Lemma 2.4 states that  0.

We next use Lemma 2.3 to see that the first bracket in (2.15) is negative,
and then

Now we do a similar argument with Za and conclude that

where xl E Ea is the point where Zx attains its infimum. Finally we use (2.17),
(2.18) and the fact that 2A(xi) :5 and to come to a

contradiction. D

We next define

and
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PROPOSITION 2.2. If Ao  0, then 0 and 0 for all

REMARK. It follows readily from Proposition 2.2 that both w and z are
symmetric with respect to the hyperplane Tao .

PROOF OF PROPOSITION 2.2. By continuity we see that 0 and
0 for x E Now observe that 0, it follows from (2.9) that
0, which will imply 0. So if we assume, by contradiction,

that the conclusion of Proposition 2.2 is not true, we conclude that both 
and are not identically zero. It follows from (2.8) that

for all x E I:.xo. So by the maximum principle (recall 0) we see
that &#x3E; 0 for x E Similarly &#x3E; 0 for x E 

Next using the Hopf maximum principle we obtain that

on the boundary Tao. (Here a/av is a/axl). We shall see now that this is

impossible. From the definition of Ao, we conclude that there exist a sequence
of real numbers Ak -; Ao, with Ak &#x3E; Ao, and a sequence of points in Eak,
where or Z Àk is negative. Since satisfies (2.6) and &#x3E; 0 for
x E Eao, we conclude that is superharmonic in Ï:Ào. In particular WÀo is

superharmonic in where 2R = The argument in the proof
of Lemma 1.1 shows that there exists co &#x3E; 0 such that

A similar argument shows that

(We may choose the same c, or decrease it). So

By continuity we have

for l~ sufficiently large.
It follows from Lemma 2.1(i) (using (2.20)) and Lemma 2.4 that for k

sufficiently large both W Àk and Z Àk attain their negative infima in Ï:Àk. [Recall
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that we are using the contradiction hypothesis that W ak or is negative some-
where in Let us denote by Xk and Yk, respectively, the points of minima
of Wak and If follows from Lemma 2.4 that at least one of the sequences,

or lykl is bounded. Assume that fxkl is bounded and passing to a

subsequence assume that Xk - x. By continuity we have that 0

and W a° (x)  0. Since xf=eAo and W a° (x) &#x3E; 0 in we conclude that

x E T which contradicts the fact observed before that av  0 on T, 

av
A similar argument applies if we assume that lykl is bounded. D

3. - Proof of the theorem

We first prove Part A. Performing the moving plane procedure we have
two possibilities:

(i) If Ao  0, it follows from Proposition 2.2 that w and z are symmetric
will respect to the plane But looking at equations (2.1) and (2.2) we realize
that this is impossible.

(ii) If Ao = 0, we conclude that w(x) and zo(x) ~! z(x) for all
x E 10. We can perform the procedure from the right and we will reach a
ao = 0, (’B0 cannot be positive, in virtue of an argument as in (i) above), from
which we get w(x) ~~- wo(x) and z(x) &#x3E; zo(x) for all x E Eo. So w and z are

symmetric with respect to the plane x 1 = 0.

(iii) This reasoning can be made from any direction. And so the only
possibility would be that both w and z are radially symmetric with respect
to the origin 0. But 0 was chosen arbitrarily when we perform the Kelvin
transform. Thus u and v are radially symmetric with respect to any point. Then
they would be constant and from the equations we finally obtain u = v = 0.

Part B. We show that w and z are symmetric with respect to some plane
parallel to x = 0. Indeed, if Ao  0, this follows from Proposition 2.2, and in
this case the plane is TAO. If Ao = 0, we perform the moving plane procedure
from the right and find a corresponding ’B0 &#x3E; 0. If ao &#x3E; 0, an analogue to
Proposition 2.2 shows that w and z are symmetric with respect to TAO. If Ar0 = 0
we proceed as in (ii) above to conclude that both w and z are symmetric
with respect to x 1 = 0. We perform this moving plane procedure taking planes
perpendicular to any direction, and for each direction 1 E we find
a plane T,~ with the property that both w and z are symmetric with respect to
T1. A simple argument shows that all these planes intersect at a single point,
or w = z = 0. D
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