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Viro’s Theorem for Complete Intersections

BERND STURMFELS

An important direction in real algebraic geometry during the past decade
is the construction of real algebraic hypersurfaces with prescribed topology [4],
[7], [8], [9]. Central to these developments is a combinatorial construction due
to O.Ya. Viro, which is based on regular triangulations of Newton polytopes.
Using this technique, significant progress has been made in the study of low
degree curves in the real projective plane (Hilbert’s 16th problem). The objective
of this note is to extend Viro’s Theorem to the case of complete intersections.
Our construction uses mixed decompositions of the Newton polytopes (see e.g.
[6]). It generalizes both Viro’s theorem for hypersurfaces and the observations
on zero-dimensional complete intersections in [5].
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1. - Asymptotic analysis of hypersurfaces

We recall Viro’s theorem for hypersurfaces, following the exposition given
by Gel’fand, Kapranov and Zelevinsky in [ 1 ] . Let ~I c Z I be a finite set of
lattice points, and let Q = conv(A). Let w : A - Z be any function such that
the coherent polyhedral subdivision of (A, Q) is a triangulation (cf. [1], [2],
[3], [5]). Fix nonzero real numbers ca, a c A. For each positive real number t
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we consider the Laurent polynomial

We wish to describe the zero set of ft for t very close to the origin. Here the
zeros are not to be taken in R~. Instead, we will first study the zero sets of ft
in each orthant, and afterwards in their natural toric compactification.

Let Z+( ft) denote the zero set of ft in the positive orthant (II~+)n. Let
denote the first barycentric subdivision of the regular triangulation Äü.

Each facet u of is incident to a unique point a (Facet means
maximal cell). We define the sign of a facet a to be the sign of the real number
ca. The sign of any lower dimensional cell T E Bar(E) is defined as follows:

Let Z+(E, f) denote the subcomplex of Bar() consisting of all cells T with
sign(T) = 0.

THEOREM 1. (Viro [7], see also [1, Thm. XI.5.6]) For sufficiently small
t &#x3E; 0, the real algebraic set Z+( ft) C is homeomorphic to the simplicial
complex ,Z+ (d,~,,, , f ) C .

REMARK. Theorem 1 and all subsequent assertions are understood in the
embedded sense, that is, there exists a homeomorphism between the orthant

and the interior of Q which maps Z+(ft) f ) n int(Q).

Naturally, a signed version of Theorem 1 holds in each of the 2n orthants

where E E f -, +11. Let Zf(ft) denote the zero set of ft in (R+)f. It corresponds
to the zero set of f I(xl,..., := in (R+16’~ . Theorem 1 implies
that the real algebraic set Zf(ft) is homeomorphic to the simplicial complex
Z ~(I , f) := Z+(I , ff).

Let XA denote the projective toric variety in P(C~) associated with the
configuration A. We will consider the real toric variety XA(R) := XA n 
and its positive part XA(R+) := XA n There is a well-known surjection,
called the moment map, which takes the toric variety XA onto the polytope
Q = conv(A). The restriction of the moment map defines a homeomorphism
between XA(R+) and the interior of Q. Our use of the moment map will be
entirely analogous to that of Section 5.D in [1, Chapter XI].

By restricting the moment map to each orthant, we obtain the following
recipe for gluing the real toric variety X. (). Let F be a face of Q. Two sign
vectors 6, c e (+, - 16’~ are said to agree on F if either Ea = 6a for all a E F n A,
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or for all a e F n A. (Here we abbreviate, as usual, e~ := E i 1 ~ ~ ~ For
each e e {+, -}n we take a copy Qf of the polytope. Q. If F c Q is a face,
then FE denotes the corresponding face of Q f.

PROPOSITION 2. [ 1, Thm. XI.5.4] The real toric variety 
homeomorphic to the space obtained by gluing the polytopes Qo f E {+~ _ }n~
according to the following identifications: For any face F C Q we identify J~
and Fô whenever f and 8 agree on F.

The regular triangulation f1w for each polytope Qf gives rise to a

triangulation A£ of Each facet of its first barycentric subdivision 
lies in a unique Q f and is incident to a unique a EA. The sign of this
facet is defined to be the sign of the real number CaEa. The sign of each
lower-dimensional cell is defined by the rule (2), applied separately in each
orthant. Let Z(f1w, f ) denote the subcomplex of consisting of all cells T
with sign(T) = 0. This subcomplex is glued from the 2n complexes 2~(A~, f ) via
the rule in Proposition 2. Our input polynomial ( 1 ) is identified with a linear
form

where the za are the coordinate functions on P(C~). Let Z( f t ) denote the set
of zeros of ft in the real toric variety XA (R). The real algebraic variety Z( ft)
is the natural toric compactification of the zero set of (1) in (RB{0})". Note
that the positive part Z( ft) n p(JR.1) is identified with Z+( ft) c (R+16’~ via the
parametrization x = (x 1, ... , a E .~ ) of the toric variety. The same
holds for all other orthants.

THEOREM 3. (Viro [7], s~ also [1, Thm. XI.5.6]) For sufficiently small
t &#x3E; 0, the real algebraic set Z( ft) c XA(R) is homeomorphic to the simplicial
complex Z (~,,,, f ) c 0~,.

The most important instance of this construction concerns the set ,~ of
all non-negative integer vectors (jl, ... , jn) with j1 + ... + jn  d. In this case
ft is a dense polynomial of degree d in n variables. The toric variety 
equals real projective n-space Proposition 2 gives a recipe for gluing

from 2 n copies for the simplex Q = conv(A). Theorem 3 gives a purely
combinatorial construction for the real projective hypersurface { ft - 0}. Viro
and collaborators have applied this construction with great success in the case
of curves (n = 2). An extensive list of examples can be found in [8].
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2. - Asymptotic analysis of complete intersections

We replace the single input equation (1) by a system of k equations

Here the c;,a are non-zero real numbers, and are (generally
distinct) finite sets of lattice points. So, we have k distinct Newton polytopes
Qi = We assume that the pointwise sum ,~ :_ .~1 + ... + ,~~ affinely
generates the lattice Zn. In what follows we consider as a multiset of

cardinality equal to the product of the cardinalities of the Ai. Let Q := conv(A) =
Q1 +. ~ . + Qk C denote the Minkowski sum of the given Newton polytopes.

The functions Wi : Ai - Z are assumed to be sufficiently generic in the
following precisely defined sense. We extend the wi to a unique function

This is well-defined because is a multiset. Let denote the coherent

polyhedral subdivision of (Q, .~) defined by w. In precise technical terms

i is a collection of subsets of the multiset A, see e.g. [1], [2], [3]. The
subdivisions i were introduced in [6], where we called them tight coherent
mixed decompositions, or TCMD’s for short. Each facet F of ðw has a unique
representation

where Fi is a subset of By sufficiently generic we mean that each of the
sums (6) is direct, i.e., for each facet F of 4,,, we have

Let denote the first barycentric subdivision of the mixed decomposition
k. Each facet a of Bar(A ) is incident to a unique point a = + ... + a~k~ in
A. We define the sign of a to be the sign vector

The set {-,0,+} is partially ordered by 0  - and 0  +. Let { -, o, +~ ~ denote
the product poset. We define the sign of a cell T of Bar(A~) to be the infimum in
{-,0,+}~ of the signs of all facets Q containing T. Note that this is consistent
with (2) for k = 1. Let Z+ (tl~, , f l , ... , f,~ ) denote the subcomplex of Bar(A~)
consisting of all cells T with sign(T) = (o, 0, ... , 0). Let Z+(f1,t,..., fk,t) denote
the common zero set of (4) in (R+)~. The following result generalizes Theorem 1.
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THEOREM 4. For sufficiently small t &#x3E; 0, the real algebraic
set Z+(f1,t,..., fk,t) C is homeomorphic to the simplicial complex

fl, ... , fk) c 

PROOF. For each i = 1, ... , k there is a surjective morphism of toric
varieties

The morphism Ii maps the real part onto the real part and it maps
onto The polynomial fi,t is identified with a linear form on

Xj1.i as in (3). We define Z+( fi,t) to be the zero set in of the composition
fi,t 0 Their intersection coincides with Z+(f1,t,..., fk,t).

Let fi) denote the subcomplex of Bar(A) consisting of those cells
T for which sign(T) is zero in coordinate i. We apply Theorem 1 to any
regular triangulation which refines the mixed decomposition A~. The moment
map induces a homeomorphism between and Q. This homeomorphism
identifies Z,(fi,t) and Z,(A,,, fi). Theorem 4 follows by taking the intersection
over all i = l, ... , l~. D

We next state the generalization of Theorem 3 to complete intersections.
We define Z( f l,t, ... , fk,t) to be the set of common zeros of fi,t o ~yl , ... , fk,t 0 -yk
in the real toric variety We glue from 2’~ disjoint copies Qe of
the polytope Q, using Proposition 2. Each polytope Qe comes with its own
mixed decomposition A~. By gluing these together we get a cell decomposition
Ow, which we call the mixed decomposition of the toric variety induced

by w.
Let Bar(A£) denote the first barycentric subdivision of the mixed

decomposition. Each facet a of the simplicial complex Bar(Ow) lies in a unique
Qe f and is incident to a unique point a = a(1) + ... + a (k) in A. We define

For each lower-dimensional cell T E we define sign(T) to be the infimum
in {-, 0, +}~ of the signs of all facets a containing T. Let Z(I , f l, ... , fk) denote
the subcomplex of consisting of all cells T with sign( 7) = (0,..., 0). The
next theorem is the main result in this paper. Its proof follows from Theorems
3 and 4.

THEOREM 5. For sufficiently small t &#x3E; 0, the real algebraic
set Z(f1,t,..., fk,t) C is homeomorphic to the simplicial complex

f1,..., c A,,-
Theorem 5 applies in particular to complete intersections of hypersurfaces

in real projective n-space. Let Aj of all non-negative integer vectors (jl, ... , jn)
with jl +... + jn  d2, where di is some positive integer. Hence is a dense

polynomial of degree The toric variety and each of the toric varieties
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is isomorphic to via the Veronese embedding. The surjection Ii
in (9) is an isomorphism. Theorem 5 gives a purely combinatorial construction
for the real projective (n - k)-fold = ... = fk,t = 0}.

AN EXAMPLE IN THE PLANE. We illustrate Theorem 5 for the intersection
of two curves in the real projective plane. Consider the equations

for some very small parameter value t &#x3E; 0. The cubic curve Z( ft) consists of
two ovals. Its intersection Z+( ft) with the positive quadrant has four connected
components, three of which are unbounded. In each of the other three quadrants
Zt:(ft) has two unbounded connected components. This information can be read
off from the Viro diagram in Figure 1.

Figure 1. - A cubic curve in the projective plane

Similarly, we have a Viro diagram for the quadratic curve Z(gt):
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Figure 2. - A quadratic curve in the projective plane

Here is the construction of their intersection in the mixed decomposition I:

Figure 3. - Intersection of two curves in the projective plane
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This shows that all six points in Z( ft, gt) are real. Three of the points lie
in the positive quadrant, while the three others lie in the quadrant indexed by
. ,

REMARK. An asymptotic analysis of complete intersections in complex
projective toric varieties was carried out already by Danilov and Khovanskii
in [10, § 6]. Our constructions in Section 2 make this analysis more effective
by using mixed decompositions of the Minkowski sum of Newton polytopes.
While the emphasis in the present note lies on real varieties, the underlying
techniques can be extended to complex varieties as well.

3. - Curves in projective 3-space

We now specialize to the case k = 2, n = 3 of complete intersection curves
in real projective 3-space P~(R). Consider two equations of degree r and s

respectively:

where the are non-zero real numbers, and are sufficiently
generic integers. For t fixed, let Ct denote the common zero set of ft and gt in
p3(R). For all t » 0, Ct is a curve of the same topological type in p3(R).

denote the set of lattice points (i, j, k) with 0  i + j + I~  r,
and consider the tetrahedron Q(r) = The integers aijk define a

regular triangulation of (Q(r), A(r)), and the integers Bijk define a regular
triangulation LB(s) of (Q~B ,~~5&#x3E;). Together they define a mixed decomposition A
of (Q(r+s), A(r) + A(’)). By our genericity assumption, each 3-cell of A has the
form F1 + F2, where either:

(i) Fl is a vertex (0-cell) in and F2 is a tetrahedron (3-cell) in A(S), or
vice versa;

(ii) or F1 is an edge (I -cell) in LB(r) and F2 is a triangle (2-cell) in A~8), or
vice versa.

A cell of type (ii) is a prism; it has five 2-faces, two triangles and three
parallelograms, the latter being 2-cells E1 + E2 where E1 is an edge in and

E2 is an edge in A~8).
For each u E ~-, +}3 we place a copy of the subdivided tetrahedron

A into the orthant indexed u. The union of the eight tetrahedra is a regular
octahedron. By identifying antipodal boundary points of the octahedron, we
obtain a polyhedral complex A’ homeomorphic to p3(R). We call an orthant
in A’.
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Let r denote the graph on the set of all prisms in 0’, where two prisms are
connected by an edge if an only if they share a parallelogram face. The graph
r is embedded as a 1-dimensional subcomplex in Bar(0’), the first barycentric
subdivision of 0’. Let r~ denote the restriction of r to the orthant .ðu. Note
that r depends only on the integer exponents aijk and but not on the
coefficients of the equations (10). The main task in computing the graph r is
to find the mixed decomposition A. This can be done using any convex hull
algorithm for points in four dimensions.

We next define a subgraph G of r which depends on the signs of the
coefficients in (10). Each vertex in A is the sum of a unique pair of points
(i, j, k) in and (i’,j’,k’) in A~8). The label of that vertex is the vector

in {_,+}2. The corresponding vertex in Au = 
inherits the label

A parallelogram in A or A’ is said to be good if the labels of its four vertices
are distinct, i.e., if the set of labels equals {(-, -), (-, +), (+, -), (+, +)}. We
define G to be the subgraph of r consisting of all edges whose parallelograms
are good. Hence G is a one-dimensional subcomplex of the first barycentric
subdivision of A’. We abbreviate G, := G n r, for each orthant. Theorem 5

implies the following result.

COROLLARY 6. For t » 0, the embedded curve Ct C is

homeomorphic to the embedded graph G C A’. This homeomorphism respects
orthants in P3 (R ) and in A’.
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