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The Rational Points Close to a Curve

M.N. HUXLEY

1. - Introduction

Let F(x) be a real function twice continuously differentiable for 1  x  2,
with

where C &#x3E; 4. In two previous papers [3, 4] we considered the number of integer
points close to the curve

for M  m  2M, in the sense that the integer point (m, n) satisfies

in - f (m)l :5 6( 1/2). When 6 is large, then exponential sum methods give
an asymptotic formula. When 6 is small, then we cannot expect a nonzero
lower bound for the number of solutions of the inequality. In [4] we gave two
methods of finding upper bounds: Swinnerton-Dyer’s ingenious determinantal
method [5], useful when T and M are close in order of magnitude, and a
differencing iteration like that of van der Corput for exponential sums (see
Graham and Kolesnik [2]). In this note we consider the corresponding question
for rational points (a/q, b/q) satisfying

with denominators in a range Q  q  2Q. We do not require that the highest
factor of a, b and q be one, but that each rational point that can be written
as (a/q, b/q) with Q  q  2Q is counted once only, however many triples of
integers a, b, q give the required ratios. We can consider the triple a, b, q as a

point of the projective plane, although the curve y = f (x) need not be algebraic.

Pervenuto alla Redazione il 23 Ottobre 1992.
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Bombieri and Pila [1] have shown that if there are infinitely many q for
which a large number of pairs of integers a and b give points on an infinitely
differentiable curve, then the curve must be an arc of an algebraic curve.

When 6 is large, then the asymptotic formula for the number of rational
points may be derived by exponential sum methods. When 6 is small, then
we cannot expect a nonzero lower bound for the number of solutions of the
inequality. When both 6 and Q are small, then it is better to treat each value
of q individually by the methods of [4].

In this paper we obtain bounds which are useful when 6 is small and Q
is large. The differencing method of [4] does not work, because the difference
of two rational numbers may have a much larger denominator than either. The
determinant method of [4] and [5] can be used, but the rational points close to
the curve do not form a convex polygon.

We use the Vinogradov order of magnitude notation: the inequality G « H
as M, Q or T tends to infinity, or 6 tends to zero, means that lim sup 
is bounded by a constant that does not involve 6, M, Q or T, which we call
the order of magnitude constant. The symbol O(H) stands for any unimportant
term G satisfying G « H. The relation G » H is defined similarly, and G ~ H
means that G » Hand G « H hold simultaneously. We can now state our
result.

THEOREM 1. Let F(x) be a real function twice continuously differentiable
for 1  x  2, with

Let 6, M, Q and T be real with M and Q positive integers, 6  1 /4 and
T &#x3E; M. We write

Let f (x) = T F(x/M), and let R be the number of points (x, y) which can be
written as (a/q, b/q) with a, b, q integers, M  x  2M, Q  q  2Q, and with

Then as either M, Q or T tends to infinity, we have the bounds

and, for any c &#x3E; 0,

The constants implied in (1.6) depend on ê.
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The order of magnitude of the average number of rational points satisfying
the inequality is O(bMQ2), corresponding to the first term in (1.6). In the special
case F(x) = x2, T = M2, all the points (a/q, a2/q2) with q2  Q in the range
M  x  2M lie on the curve. The number of these points has order of
magnitude

corresponding to the second term in (1.6). Hence the bound (1.6) is not far
from best possible. However bounds like ( 1.1 ) for the third derivative of F(x)
would rule out the special case y = x2. It is likely that such bounds would
permit some reduction of the second term in (1.6), along the lines of [5] and
[4].

For completeness we give the corresponding result for 8 ~ 1 /4.
THEOREM 2. Let F(x) be a real function. Let 6, M, Q and T be real with

M and Q positive integers, 8 ~ 1 /4. Let f (x) and R be defined as in Theorem
1. Then

We deduce Theorem 2 from the following well-known elementary lemma.

LEMMA 1. Let ;(Q) denote the Farey sequence of rational numbers a/q
with q &#x3E; 1, (a, q) = 1. For any interval J of length a we have

PROOF OF THEOREM 2. If a/q is the abscissa of a rational point counted
in R, with a/q = e/r in lowest terms, then b/q is a rational number lying in an
interval of length 2S/Q with rlq. Hence br/q is a rational number lying in an
interval of length a = 2br/Q, with denominator at most 2Q/r. By Lemma 1,
the number of possibilities for br/q is at most

The distance from e/r to the next rational number with denominator at most
2Q is at least 1 /2Qr. Hence by Lemma 1 again we have

where the sum is over rationals e/r in their lowest terms in the interval
M  e/r  2M, the result required. A bound of this form can also be obtained
by considering each value of q separately. D
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2. - Determinant methods

As in [4], we base the argument on Swinnerton-Dyer’s mean value lemma
[5].

LEMMA 2. For 0 = to  ti  ...  tr real and f (x) a real function r times
differentiable we have

for some ~ depending on x in the open interval

We number the solutions Pi = (ailqi, bilqi) in lexicographic order, that is,
in order of b/q increasing, and for b/q fixed, in order of a/q increasing. We
put

with - 2  9i  2. We define the determinants

We write A = T /M2 as in Theorem 1 for the order of magnitude of 
Despite the notation, we do not assume that A is less than unity.

LEMMA 3. For i  j  k

and for some C between ailqi and ak/qk we have

PROOF. We apply Lemma 2 with
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Then on clearing fractions, we have

which can be thrown into the determinant form (2.2). To prove (2.1 ), we note
that  2 for each r, and that

Hence

which is (2.1 ).

LEMMA 4. There are at most 646MQ’ values of r with

and at most

values of r with

for some ~ between M and 2M.

COROLLARY. The number of rational points on the curve which can be
written as (a/q, b/q) with Q  q  2Q is at most

PROOF. The inequality (2.3) and Lemma 3 imply
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and the first bound follows from

Similarly the inequality (2.5) implies

and since

we have

and the second bound (2.4) follows from (2.7).
In the Corollary we have 6 = 0. By Lemma 3, the determinant Dr,r+l,r+2

must be a nonzero integer, so (2.5) holds: - in fact, with the lower bound 1/2
replaced by one, so we can omit the factor 21~3 in (2.4) to give a valid upper
bound for R - 2. D

We join the points Pl , ... , PR to form an open polygon. Unlike the case
[4] of integer points close to a curve, this polygon need not be convex unless
6 is very small. We call PrPr+1 a minor side of the polygon if neither Pr-1
nor Pr+2 lies on the straight line Pr Pr+1. A major side of the polygon consists
of a maximal sequence PrPr+1 ... Pr+t of collinear consecutive vertices. The
determinant in Lemma 3 is nonzero unless Pi, Pj and Pk are collinear.
When is not zero, then one of the two terms on the right of (2.2) is

numerically at least one half. Putting i = r, j = r + 1 and 
j = r and k = r + 1), we see from Lemma 4 that the number of minor sides is
at most

The difficulty lies in estimating the number of rational points which lie on

major sides. The three bounds of Theorem 1 come from (2.8) in conjunction
with the results of Lemmas 10, 12 and 13.

LEMMA 5. A major side of the polygon P, ... PR lies along a rational line

where t, m and n are integers with highest common factor (t, m, n) = 1. If Pr
and Pr+1 lie on the line (2.9), then
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PROOF. We have

for i = r, r + 1, so t, m and n are in rational ratios, and we may take them to
be integers with no common factor. Since (l, m, n) = 1, we have

for some integer Eliminating n, we have

and

LEMMA 6. If the vertices Pi, Pj, Pk (in order) are collinear points satisfying
(1.3), then

and

PROOF. Since PZ, Pj and P~ are collinear, the determinant is zero.
In (2.2) of Lemma 3 we have

We take moduli on the left hand side, substitute the bound (2.1 ) of Lemma
3 on the right hand side, cancel the factor (ak/qk - and estimate the

denominators qr and the second derivative F" at their minimum values, to obtain
the first inequality (2.10) of the Lemma. The second inequality (2.11) follows
immediately. D

LEMMA 7. Suppose that the consecutive points Pi,..., PZ+a lie on a major
side, whilst Pi+d+1 does not. Then either
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or

so that

PROOF. We write j = i + d, k = i + d + 1. The area of the triangle PiPjPk
is the sum of the areas of the triangles for r = i, ... , i + d - 1. Each
of these triangles has area

Hence the determinant has size

In Lemma 3, we have either

so that (2.12) holds, or for some ~

giving

which implies the remaining inequalities.

LEMMA 8. Let PiPj be a major side, with

and equation ix + my + n = 0. Then

and also
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PROOF. Since the line contains d + 1 rational points with x values at least
m/4Q2 apart, we have the inequalities

If the second possibility (2.13) of Lemma 7 holds, then

which gives (2.14). For the bound (2.15) we modify the proof of Lemma 7.
Let e = [d/2] &#x3E; d/3. By (2.11) of Lemma 6 we have

either with r = i, s = i + e or with r = i + e, s = i + d. We argue as in Lemma 7
with i, j, k replaced by r, s, i + d + 1. Again we have

Corresponding to (2.13) we have

giving the second case of (2.15). D

LEMMA 9. The major sides with m = 0 contribute at most 368MQ2 rational
points.

PROOF. In the case m = 0 we have (t, n) = 1, so x = -nil, y = b/q with
tlq. Let q = kt. Then ly lies in an interval of length 28l/Q, with denominator
k  2Q/l. By Lemma 1, there are between 3 and

choices for b/q for each fixed n/t. Also, lies in an interval of length M,
and t  2Q, so by Lemma 1 again, vertical major sides contribute at most

LEMMA 10. Each individual major side contributes at most
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rational points. For A &#x3E; 1, the major sides with and

contribute in total at most

rational points, and for B  116 the major sides with

contribute in total at most

rational points.

COROLLARY. The number of rational points on major sides is at most

PROOF. We use the notation of Lemma 8. Since d &#x3E; 2, the number of
rational points on a major side satisfies d + 1  3d/2, and by (2.16) in the proof
of Lemma 8 we have

which gives the first assertion (2.17). For the other bounds we adapt the argument
of Lemma 4. We number the major sides satisfying (2.18) from 1 to K, and
call their endpoints with dk = j(k) - i(k). We put 
Since i(k + 1) &#x3E; j (k) and i(k + 2) &#x3E; j (k) + 1, the bound (2.14) of Lemma 8 gives

Thus

The bound (2.19) follows when we use (2.22) for the final values k = K - 1
and K, and the inequality dk + 1  3dk/2.
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Similarly, we number the major sides satisfying (2.20), and define xk
likewise. By (2.15) of Lemma 8

and by (2.22)

for each k, since OM2 &#x3E; 1. This gives the bound (2.21). The Corollary follows
when we give B its maximum value 1/6 in (2.21), and add the bound of
Lemma 9 for the number of rational points on vertical major sides. D

3. - Duality

For the deeper bounds (1.5) and (1.6) of Theorem 1 we need the notion of
the function g(y) complementary to f (x). It is convenient to have f (x) defined
for all x, with f " (x) &#x3E; 0, although we only use values of x in the range M
to 2M. The function F(x) is defined for 1  x  2, where it satisfies ( 1.1 ).
Suppose that ( 1.1 ) holds on a range a  x  ,~ with a  1, ~3 &#x3E; 2. For x  a,

either F(x) is not defined, or the inequality (1.1) fails. Define (or redefine) F(x)
for x  a as the sum of the first three terms in the Taylor series about x = a,
and similarly for x &#x3E; ~3. This gives a function F(x) defined for all x, twice

continuously differentiable, satisfying the inequality ( 1.1 ), and agreeing with the
original definition for 1  x  2. We continue to put f (x) = TF(x/M).

The inverse function h(y) of f’(x) is defined for all y. We put

so that

and

We can easily check that f (x) is the function complementary to g(y).

LEMMA 11. On a straight line lx + my + n = 0, there are at most two

disjoint intervals with the property that every point on them has



368

If I is such an interval, containing two rational points Pi, Pj satisfying (1.3),
with

then

and

PROOF. Since f 11 (x) &#x3E; 0, the points x with

form an interval, which may be empty. The points with

form a subinterval, which again may be empty. The difference of these sets is
one or two intervals on the real line.

Let U, (xo, yo), be the point on the curve y = f (x) where the gradient is
-t/m. Then xo = h(-.~/m), so that

In the one-interval case, the value xo must lie within the interval, so

In the two-interval case, the value zo does not lie in either interval.
We use the rational points Pi and Pj. By subtraction

so, for some ~ between ai/qi and we have by the mean value theorem

This completes the proof in the one-interval case.
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In the two-interval case, the point xo does not lie in either interval. A
second application of the mean value theorem gives

Since ~ lies between and whilst xo does not, then either or

lies between ~ and xo. Thus for P, (a/q, b/q), equal to either Pi or Pj,
we have .. _ _

and Taylor’s theorem about xo gives

for some q. Since f’(xo) _ -£/m, and la + mb + nq = 0, we see that

which completes the proof of the Lemma. D

We deduce the second bound (1.5) of Theorem 1 from (2.8) and the
following lemma.

LEMMA 12. The number of rational points on major sides is

PROOF. For technical reasons we want an upper bound for the length A
of a major side (measured in the x-direction). If A exceeds the bound u of
Lemma 6, then we argue as in Lemma 8. Let the points on the major side
be Pa, ... , Pa+d. Then for e = [d/2] either or span a

distance at most it in the x-direction. Instead of considering the whole major
side, we take the shorter of the two halves, which contains at least (d + 1)/2
rational points, including the endpoints. Hence we can suppose that A  /~,

provided that we double the final estimate for the number of rational points.
We use Lemma 9 for major sides with m = 0, and Lemma 10 with A = C for
major sides

We use Lemma 10, with a value of B to be chosen, for major sides with
m &#x3E; IlBb.
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Let N be the length of the interval taken by f’ (x) for M  x  2M, so
that N  CAM. By (3.2) of Lemma 11, major sides for which (3.4) is false
have t/m within a distance

of a value of f’(x). Thus t/m lies in an interval of length M’ « CAM. We
divide the major sides into blocks for which A  A  2A, Q’  m  2Q’, where
A and Q’ are powers of two; A  1 is allowed. By (3.3) of Lemma 11, and the
bound A  1L, the point (2013~/m, n/m) is close to the dual curve y = g(x), with

By Theorem 2 with M, Q replaced by M’, Q’, and with 6 replaced by
max(6’, 1/4), there are

choices of t, m and n in such a block. The number of rational points on the
major side is O(AQ2/Q’), so that we have

The block contributes

rational points, which sums over Q’ to

and then over powers of two, A, in the range

sums to
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We balance this with the terms

from Lemmas 9 and 10 by choosing

to get

and the third term is smaller than the second term, so it may be omitted. D

The third bound (1.6) of Theorem 1 is deduced from (2.8) and the last
lemma.

LEMMA 13. For any - &#x3E; 0, the major sides contribute

rational points. The implied constants depend on E.

PROOF. We can assume that

since the result follows from Lemma 12 if (3.8) is false. As in Lemma 12, we
use Lemmas 9 and 10 with A = C for major sides with m = 0, m &#x3E; 1/JM or
with (3.4) false. These cases give the terms of (3.7). Let N be the length of
the interval taken by f’(x) for M  x  2M, as in Lemma 12. By (3.2) of
Lemma 11, major sides for which (3.4) is false have t/m within a distance

of a value of f’(x), since N &#x3E; AM/C &#x3E; 11C, and (3.9) holds. Thus t/m lies
in an interval of length

We divide the major sides into blocks for which A  A  2A, Q’  m 
2Q’, as in Lemma 12. They correspond to rational lines lx+my+nz = 0 which
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are close to being tangents, and these lines correspond to rational points close
to the dual curve y = g(x) according to (3.5). To set up the iteration, we note
that -

with A’ = 1/ A. We suppose that we have an upper bound which is a sum of
terms of the form 

, ~ , _

2a. The number of rational points close to the dual curve has an
upper bound which is the sum of the corresponding terms

Multiplying by the estimate for the number of rational points on a
major side, we have

rational points on major sides with A and m in these ranges. Using (3.6) as a
lower bound for A and an upper bound for Q’, we see that 2a &#x3E; 1,
then the expression (3.10) is at most

The number of values of Q’ is O(log 1/6). Since

when A = C, then the number of values of A is

Hence for 1 &#x3E; 2a &#x3E; 1, the sum over Q’ and A running through powers of two
gives

times the maximum summand.
The upper bound for the number of rational points close to the dual curve

will contain several terms with different exponents a, 0, -y and ~. Which term

gives the largest contribution depends on the sizes of 6, A, M and Q. If all the
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contributions of these terms are O(C8MQ2), then we choose B = 1. Otherwise
we take the largest term of the form (3.11) and equate it to O(B 1/2C6mQ2),
by choosing

so that the expressions (2.16) and (3.11 ) are both

The bound for the number of rational points close to the dual curve will
always include the contribution (2.8) of the minor sides. The term O(bMQ2)
has a = 1, (3 = 0, ~ = 3, ~ = 0, so the term (3.11) becomes O(C8MQ2 / B), which
can be absorbed by the first term in (3.8). The term has a = 0,
~3 = 1 /3, ~ = 1, ~ = 1/3, so (3.10) becomes

which sums over powers of two, A  ~ and Q’, to

which is bounded by the second term in the first estimate of (3.8). Since AM &#x3E; 1,
the term (3.12) can absorb the term in (2.19) of Lemma 10.

When we use the Corollary to Lemma 10 to count the rational points on
major sides of the polygon of rational points close to the dual curve, then the
term O(C81/2MQ2) with a = 1 /2, {3 = 0,1 = 5/2 and ~ = 1 gives

rational points when we sum (3.10) over A and Q’, and
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when we choose B &#x3E; 1. This gives a three term upper bound

for the number of rational points on major sides; the second estimate follows
from the first by the geometric mean inequality.

This bound (3.13) is the first step of an iteration, in which we always
get the same first and third terms, but the second term changes under iteration
according to

We put

Then

so that
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If for some n we have 120n -1/nt  1, then by (3.16) 20n - qn - 0. In particular,
we have [20n - qn[  1/2 for all large n, so by (3.17) qn - 30n -~ 0. We now
deduce that Bn, (from (3.14)) and r-n (from (3.15)) all tend to zero. The
initial values 00 = 1/2, ,Qo = 0, qo = 1/2, ~o = 1/2 already have 1200 -1/01  1, but
the step from n = 0 to n = 1 is exceptional because ao = 1/2 introduces an extra
logarithm power. In (3.13) we have al - 5/8, ~31 - 1/8, 11 = 19/8, 1/4,
01 - 3/8, 1/1 1 = 5/8, so 1201 - 1/d I = 1/8. Each further iteration step reduces
the exponents, interchanges M and N with an expansion factor 1 + 0(£), and
introduces a numerical factor. After O(log 1/£) steps we have  -/2,
and  6, 0, with a numerical factor depending on 6’. The term is

where the order of magnitude constant depends on -, and we have used

We can absorb the first term in (3.13) if we replace In by 10/3) and
Kn by min(Kn, -11 /6) in (3.15). With this iteration rule we have ~n - 19/9.

D
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