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Surfaces with Assigned Apparent Contour

DOMENICO LUMINATI(*)

Introduction

In all the paper we will denote by S 
1 the unit circle in Euclidean plane

JR.2, and by Si the disjoint union of k identical copies of the circle; all
surfaces and maps will be supposed smooth (i.e. of class C°°). Furthermore we
will often use "cut and paste" techniques which work fine in C° or PL category.
Since in low dimension these categories are the same as the C°° one, we shall
not care to give technical details.

Let Sand N be smooth, compact surfaces, p E 6’.

DEFINITION. A map F : 5’ -~ N is said excellent at p if its germ at p is

equivalent (left-right) to one of the following three normal forms:

Clearly, if F is excellent at every p then the set IF of its critical points
is a smooth curve in ,S (i.e. YF is a finite union of disjoint circles).

DEFINITION. F is said excellent if the following two properties hold:

( 1 ) F is excellent at every p e 5’;
(2) the apparent contour of F, i.e. the set rF = F(IF) c N, is a smooth curve

except for a finite number of singularities of the following two local kinds:

A classical theorem of Whitney [22], asserts that excellent maps are

stable and constitute an open, dense subset of the set of C°° maps between two
surfaces. This theorem shows the reason why excellent maps are sometimes
called generic.

~*~ This work was partially supported by M.U.R.S.T.
Pervenuto alla Redazione 1’ 8 Giugno 1992.
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Given a curve r C N satisfying condition (2) of the previous definition,
we ask whether there exist a surface S and a map F : S ~ N such that

r F = r. Moreover we should like to know how many such maps exist up to
right equivalence. This problem can obviously be restated as follows: given a
curve, f : S’ - N, with only cusps and normal crossings (Definition 1.1)
find out all surfaces ,S D S 1 and maps F : S - N such that IF S 1

II
The basic idea we will use to solve this problem, is not dissimilar from

the one used by Francis and Troyer [8], [9] to solve the problem for plane
curves, and arise from a very simple remark by Haefliger [11]: let F be an
excellent extension of f and U a tubular neighborhood of X: then F restricted
to S - U is an immersion. Furthermore, one can suppose thet F restricted to
aU is a curve with only normal crossings. Hence the problem reduces to the
following two sub-problems: i) find out local, excellent extensions of f to a
union of cylinders and Moebious bands, ii) find out immersive extensions of the
curves resulting as "boundary of the local extensions". The last problem can be
solved using Blank’s methods [1], [19].

In § 1 we define an extension of Blank’s word for curves with cusps
and normal crossings, from which, by a purely combinatorical algorithm,
we construct a set (the set of minimal assemblages) which is in one-to-one

correspondence with the set of excellent extensions of the curve, up to right
equivalence (Theorem 1.34).

In §0 we will sketch, without any proof, the methods, firstly introduced
by Blank [1], [19] and subsequently developed by other authors ([14], [4], [5],
[10], [3], [2]), to find all (up to right equivalence) the immersive extensions
of a curve with normal crossings only. We include this section because our
notations and statements differ a little from those of the original papers. For a
complete survey on this matter see also the first chapter of [13].

Finally, given a line bundle 1r : E - N, and a curve with cusps and
normal crossings r C N, we ask whether there exists a generic surface (i.e.

is excellent) S C E haveing r as apparent contour. Since we can construct
all excellent extensions of the given curve, the problem reduces to find a
factorization F = 7r o Fl , with F1 : S - E an embedding, of a given excellent
map F. In §2 we will use the methods developed in § 1 to find combinatorical,
necessary and sufficient conditions in order that F possesses such a factorization

(Theorem 2.32).

0. - Immersions with assigned boundary

DEFINITION 0.1. Let k be a positive integer; we call generic k-curve an
immersion f : S’ -; N whose image r = Fh is smooth up to a finite
number of normal crossings.
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DEFINITION 0.2. Let ,S be a surface (not necessarily connected) with

boundary and f a generic k-curve, we say that F : S’ -~ N extends f if and

only if F is an immersion, as = S 1 and I. We denote by E ( f )
the set of all extensions of f. Given a point oo E N - r, we denote by E~ ( f )
the set of all extensions F of f such that #F-1 (oo) _ ~3.

If f is a generic k-curve, then the bundle f *TN --+ Sl 1 has a

canonical trivial sub-bundle, T f , spanned by the never zero cross section f’.
Let v f = These two sub-bundles are called the tangent and normal
bundles to f.

DEFINITION 0.3. We say f is sided if v f is the trivial bundle. A side for f
is a never zero cross section of up to multiplication by a positive function.

REMARK 0.4. Since v f can be realized as a sub-bundle of f *TN, in such
a way that 1* TN = T f 0153 v f, f is sided if and only if there exists a vector field
along f which is transversal to f.

A notion of rotation number can be given for a sided curve in a surface,
with respect to a fixed vector field X on N, not vanishing on r. We denote
by Rx(/) the rotation number of the sided curve f with respect to the vector
field X. We do not give its definition here (for a definition see [20], [4], [13]),
we only remark that this number essentially counts how many times a vector
specifyng the side turns with respect to X and that it coincides with the usual
rotation number for plane curves, endowing such a curve with the side induced
by the orientations of JR.2, and taking X to be a constant (never zero) vector
field.

Let S’ be a compact surface with boundary, and F : S - N be a generic
immersion (i.e. Flas is a generic curve), then Flas has a canonical side defined
by the image of an inward-pointing vector field on 85. The following fact holds
(see [4], [13]):

PROPOSITION 0.5. Let F : S’ --i N be a generic immersion, and let X be
a vector field which has at most one isolated zero, at the point 00 f/:. r. Then:

Here X denotes the Euler characteristic and (3 = 

Let f : S 1 ~ N be a sided curve and 00 f/:. r a fixed point.

DEFINITION 0.6. A set of segments for the curve f is a set R = frif = AUQ,
A = and Q = fwjl, such that:

(1) each cxi is an oriented, smooth arc, diffeomorphic to a segment of the real
line, starting at a point in some component of N - r and ending at oo;

(2) the wj’s are smooth (diffeomorphic to representatives of a minimal
system of generators of 
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(3) each ri is in general position with respect to r (i.e. misses all crossings
and is transversal to r);

(4) for all r; n rj = oo.

We say that R is a system of segments if the following holds as well:

(5) if C a component of N - r and 00 f/:. C, then some ai starts from C.

Given a set of segments for the k-curve f, fix a neighborhood U 00 of the
point oo such that n r = 0. For each r E R fix an orientable neighborhood
Uri of r - U 00 and an orientation on it. Label each point in R n r by a letter
x? where i, j are integers and e, IL = ~ 1, according to the following rules
(see Fig. 1 ):

(1) E ri;

(2) e = 1 if the segment ri crosses r from left to right (positive point), with
respect to the side of f ; e = -1 otherwise (negative point);

(3) IL = 1 if r crosses ri from left to right, with respect to the orientation of
= -1 otherwise;

(4) for any two points we have j  j’ if and only if
 with respect to the ordering induced by the orientation on

ri. 
~ 

Finally, define a set of words W = by the following construction:
fix points ph E rh, which are neither crossings of r nor points in 1-~ n r; for
each h, walk along rh, starting from ph and following its orientation, and write
down all the labels you meet, until you come back to ph. Call wh the word
obtained in this way.

DEFINITION 0.7. The set w = is called the k-word of the

generic k-curve f, with respect to the set of segments R.
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REMARK 0.8. Clearly, w depends on the choice of the base points ph . In
fact, if we change the base point ph, the word Wh changes by the action of a
cyclic permutation. We will always consider words up to cyclic permutations.

DEFINITION 0.9. We call 0-assemblage for the k-word w a set A, whose
elements are unordered pairs of letters in w, such that:

then

(2) each letter corresponding to a point in Q n r appears in some pair of ~;

(3) each negative letter (i.e. with e = -1 ) appears in some pair of~;

(4) each letter appears in at most one pair of A.
Given f and R as above, fix a neighborhood of oo and a

diffeomorphism V 00 - B2 (B2 denotes the unit ball in JR.2), such that:

(2) n v 00) is a set of rays starting at the origin;
and for each integer 1 &#x3E; 1 define gi : S 

1 
-~ N as gl (t) - ( ( 3 + 3l ~ ezt ~ ,

endowed with the side pointing outside Voo.

DEFINITION 0.10. We call #-expansion of the k-curve f, the (1~ + 0)-curve
1f3, obtained by adding gl,..., gB to f. If w is a word for f, we call B-expansion
of the k-word w the (k +,3)-word wf3 for 1f3 defined by the same set of segments
as w. Finally, we call 3-assemblages for the word w a 0-assemblage for wf3.

REMARK 0.11. wf3 = being the word for gl. Observe that
the words u 1, ... , up are equal up to the shift of the index j of all letters. We
define an action of the symmetric group 4S, on the set Af3(w) of ~3-assemblages
of being the set obtained from A by replacing each letter in ul with the
corresponding one in u,,. Clearly aA fulfills conditions (1)-(4) in Definition
0.9, hence it is actually a 3-assemblages for w.

A 0-assemblage A defines a graph G(~) as follows: take k + ~3 disjoint,
oriented circles Cl, ... , Ck and on each circle Ch, h = 1, ... , l~
[resp. choose points corresponding to the letters of the word Wh [resp. ul],
ordered as in Wh [resp. ul], and join by an extra edge (we call such an edge a
proper edge) all pairs of points corresponding to pairs of letters in A. Finally
weight each proper edge by -1 or 1 according as the It signs of its vertices
agree or not.

A graph as just described (i.e. with all vertices standing on k disjoint,
oriented circles and all proper edges weighted buy ±1) will be called a weighted
k-circular graph. We denoted by l(G) the number of connected components of
G. 

°

DEFINITION 0.12. Let G be a connected weighted k-circular graph, and S
a surface with k boundary component. We say that G is embeddable in ,S if
there exists a map p : G -+ S such that the following three properties hold:
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( 1 ) p is a homeomorphisms onto its image;

for each proper edge t of G, let Ue be a neighborhood of ~o(t) homeomorphic
to £ x [ -1,1 ] . Two semiorientations are naturally defined on as the one
induced as boundary of Ul and the one induced from the orientation of the
circles Ch.

(3) the just described semiorientations on as n Ul agree if and only if the

weight of the edge t is equal to 1.

Obviously, every weighted k-circular graph is embeddable in some surface.

DEFINITION 0.13. If G is a connected, weighted k-circular graph we call
genus of G the number g(G) = is embeddable in S }.

The following is easily proved (see [13]):

PROPOSITION 0.14. Let G’ be obtained from G by reversing the orientation
of a circle and changing the weight of all proper edges having just one vertex
on that circle. Then g(G’) = g(G). If G is embeddable in S and g(G) = g(S) then
S is orientable if and only if there exists a finite sequence G = Go, ..., Gn of
graphs such that for all i, Gi+l is obtained from Gi as above, and all proper
edges of Gn are positively weighted (in this case we say G is positive).

The second part of the previous statement allows us to define another

noteworthy number associated to the graph:

DEFINITION 0.15. We call weighted genus of the connected k-circular graph
G the number h(G) = 2g(G) or g(G) according as G is positive or not. If G is
not connected and Gi are its connected components, we call weighted genus of
G the number h(G) = ri h(Gi).

We call weighted genus of a 3-assemblages the weighted genus of its
associated graph, and we denote it by 

The following proposition holds:

PROPOSITION 0.16. Let f : Sl --~ N be a generic curve, and w a
word for f defined by a system of segments. Then for all A E 

DEFINITION 0.17. Let w be defined by a system of segments. A

,3-assemblage A E is said minimal if (0.2) is an equality. We denote
by the set of minimal #-assemblages of w.
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It is not hard to see that if a E E E A,8 (w), hence
(lif3 acts on Denote right equivalence by ~, the following theorem holds:

THEOREM 0.18. Let f : Sl -~ N be a generic k-curve and w a k-word
for f defined by a system of segments. Then there exists a bijection between
E~( f )/N and 

SKETCH OF PROOF. We only show how to define such a bijection. First
suppose ~3 = 0. Let F E E~(w), then R = F-1 (R) is a set of smooth arcs in S,
oriented by the immersion. Label each point of ji n 8S by the same label as the
corresponding point in r, and observe that each positive labeled point (i.e. e = 1 )
is the ending point of some arc, while each negative labeled point (i.e. e = -1 )
is the starting point of some arc. Furthermore, since 0, every arc
must end on as. Pairing the letters corresponding to the vertices of those arcs
in R which have both vertices on as, we actually get a minimal 0-assemblage,
~(F), and the mapping F ~ ~(F) is a bijection 

Let F E E~ ( f ) and let Dl,..., D~ C N be the disks bounded by the curves
gl defining the #-expansion of f (see Definition 0.10), call { pl , ... , p,~ ~ = 
and Ui the interior of the connected component of F-1 (Di ) containing pj. For
each or E 4S,, let S, = S - U Uti. Clearly Fu = Flsu E EO.(f,8), hence, by the

i

case (3 = 0, we get an assemblage E AO (w,3) = Such a construction

actually defines a bijection between E,3 (f )/, and El

The statement of the previous theorem can be slightly improved.

DEFINITION 0.19. A connected component C of N - r is said to be positive
[resp. negative] if the side of the curve points inward [resp. outward] C at every
point in aC. We say that a set of segments is a reduced system of segments if:

(5’) at least one ai starts from each negative component.

REMARK 0.20. Proposition 0.16, Definition 0.17 and finally Theorem 0.18
can be restated, and proved (see [13]), replacing the words "system of segments"
by "reduced system of segments", and in this improved form they will be used
in § 1.

Now we prove a lemma, we will use in § 1. Let us give one more definition:

DEFINITION 0.21. We say that a generic k-curve has a curl if there exist
to, tl E S’ such that f (to) = and bounds a disk D C N such that
D n r = aD. We say that the curl is positive according as D - aD is a positive
component.
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LEMMA 0.22. Suppose the k-curve f has a positive curl, then for every
word w defined by a reduced system of segments .~m(w) _ 0.

PROOF. It is enough to prove that A§k(w) = 0 for the word defined by some
reduced system of segments. Let D be the disk bounded by the curl and observe
that we can construct a reduced system of segment R such that R n D = 0. In
fact, fix 00 f/:. D. Since the curl is positive, there is no need to draw segments
starting from D, and all other segments can be drawn far from D. Let f * be
the curve obtained by removing the curl as suggested in Fig. 2 and let w and
w* be the words defined by R for f and f *. Clearly, R is a reduced system of
segments for f * too, and since R n D = 0 we have w = w*. Applying (0.2) to
f * and using + 1, we get: Rx(f ) &#x3E; 2l(~.) - 1~ - h(jk) - 
for all ~ E A’(w). D

1. - Extending curves with cusps and normal crossings

Let I be an interval of the real line R, and f : I - N be a curve.

DEFINITION 1.1. A point to c I is called a cusp point if there exist germs
of diffeomorphism -1 : (I, to) ~ (R, 0) and y~ : (N, f (to)) ~ (JR.2, 0) such that
~p o f o ~y-1(s) _ (s2, SI). We say that f : S’ - N is a k-curve with cusp and
normal crossing (briefly a CN k-curve) if f’(t) ~ 0, except for a finite number of
cusp points, and f is injective except for a finite number of normal crossings.

Let C be the set of cusp points of the CN k-curve S 1 ~ N.

DEFINITION 1.2. A side for f : S 1 -&#x3E; N is a side for h Llh=l -c

which is directed, in the neighborhood of each cusp, either to the inside or to
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the outside of the cusp on both branches of the cusp itself. We say that a cusp
is positive or negative according as the side is outward or inward pointing (see
Fig. 3). Finally, we say that a side for f is coherent if all cusps are negative.

Let F : S’ -~ N be an excellent mapping, by definition is a CN curve.

PROPOSITION 1.3. The curve has a coherent side.

PROOF. Take the folding side of the map (see Fig. 4 and [18]). D

Local extensions. Let f : S 1 -~ N be a sided CN curve and let D C C.

DEFINITION 1.4. We call D-deformation of the first kind of f the generic
2-curve /D = fn II fD,2 obtained by doubling f and deforming its cusps as

suggested in Fig. 5. Fix a point per which is neither a crossing nor a cusp,
and call D-deformation of the second kind the generic 1-curve f ** obtained by
modifying In in a neighborhood of p as suggested in Fig. 6.

REMARK 1.5. It is obvious that fL = lê-D and f D - By local
arguments, it is easily seen that if F : SIX [- l,1] - N is an excellent

mapping such that IF = S 1 = S 1 x { 0 } and I then there exists a

tubular neighborhood U of S 
1 such that ¡Iau for some D C C. Similarly,

if M = R x [-1,1]/(~,t~=(x+l,-t&#x3E; and F : M -; N is an excellent map with

EF = Sl = R x {~}/(~,0&#x3E;=(2+l,0~ and I, then there exists a tubular

neighborhood U of S 
1 such that Flau = In*. Furthermore this set D is unique up

to complementation. We call such a D, up to complementation, the deformation
set induced by F.

Let S 1 -~ N be a sided CN k-curve, let D be as above and let

H C (i, ... , we call such a pair (D, H) a deformation pair. Denote by H
the complement of H.

DEFINITION 1.6. We call (D, H)-deformation of f, the generic k-curves
f(D,H) _ H} II H, }, where kH = 2#H 
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REMARK 1.7. Let Ch be the set of cusp points. in the hth circle and

Dh = D n Ch ; if D’ is such that either D’ = Dh or D’ = Ch - Dh for all h, then
f(D,H) = .f(D’,H) ~ If F : Mh - N is a local excellent extension of f (i.e.
Mh is either a cylinder or a Mobius band and Flmh is as in Remark 1.5) then
there exists a tubular neighborhood U of the k circles such that = f(D,H)
form some choice of D and H. Furthermore if (D, H) and (D’, H’) are two
different such choices, then H = H’ and D, D’ are as above. We call such a
pair (D, H), up to this relation, the deformation pair induced by F.

REMARK 1.8. Let M be either a cylinder or a Mobius band. Suppose
F : M -; N is a local generic extension of f : S’ - N, and let to be a

cusp point; if v E TtoM - ker(dF(to)) then dF(to)[v] is a vector tangent to the
cusp. Identify M with the quotient space of R x [-1,1] by either the relation
(x, t) = (x + 1, t) (if ,S is a cylinder) or the relation (x, t) = (x + 1, -t) (if S
is a Moebious band) in such a way that 7r~(p) = Z, where p is the fixed

point in r and x denotes the quotient map. Let F = F o 1r. It can be easily
seen that the deformation set induced by F is given, up to complementation,
by D = It E (0, 1)](t, 0) is a cusp point vand dF(t, 0)[(0, 1)] points inward the
cusp}.

Using this characterization, it is not hard to prove the following:

PROPOSITION 1.9. Let f : Sl -~ N be a CN k-curve endowed with
a coherent side; then for all (D, H) as above, there exists a local excellent
extension of f inducing (D, H) as deformation pair.

Let F, G : (11~2, 0) -~ (R~,0) be two generic, singular germs having the same
apparent contour (i.e. F(IF) = G(LC) = r); then they have the same normal form
with respect to left-right equivalence, say ii) or iii) in Introduction. Standard
arguments in singularity theory prove the following:

LEMMA 1.10. Let F, G be as above and suppose they induce the same
side; then there exists a germ of diffeomorphism (D such that F = G o (D.
Moreover if their normal form is iii) such a germ (D is unique, while if the
normal form is ii) there are exactly two such germs, exactly one of which
preserves the orientation.

PROPOSITION 1.11. Let f : Ijk=l S 1 -~ N be a CN k-curve, and F, G two
local, excellent extensions of f. Then F and G are locally 
right equivalent if and only if they induce the same deformation pair.

PROOF. If F rll G they obviously induce the same deformation pair. Suppose
F and G induce the same pair. Clearly it is enough to prove the thesis for a
CN 1-curve. Let S be the domain of F and G. By the previous lemma we
can take finite open covers, {UZ}i=1,...,n~ of S’ and diffeomorphisms
Ct : Ui such that = Lifting all maps to the universal covering
of S, we see that the condition that F and G induce the same deformation set,
implies that all uniquely determined diffeomorphisms are orientation-preserving
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[resp. reversing]. To conclude the proof it is enough to choose all the other
ones to be orientation-preserving [resp. reversing] and paste them together. Q

Rotation number. Let f : S 1 - N be a sided CN k-curve, and let X
be a vector field on N with no zeros on r. Denote by f * the generic k-curve
obtained by deforming all cusps in the way suggested in Fig. 7. With the just
introduced notations, f * = (fh)ê,l. Since a deformation of f has a side,
canonically induced by the side of f (Fig. 8), we can give the following:

DEFINITION 1.12. We call rotation number of f with respect to X, the
number RX( f ) = where f * is endowed with the side induced by f.

LEMMA 1.13. Let f : S 
1 
- N be a sided, CN and let D C C;

then Rx( fD ) = = 2Rx( f ) - c- + c+; where c+, c- denote respectively the
number of positive and negative cusps.

PROOF. Since rotation number does not change when modifying a curve as
suggested in Fig. 9, the left-hand side equality holds. Denote by c~ the number
of positive [resp. negative] cusps in D. Then fÎJ 1 [resp. fÎJ 2] is obtained by
adding [resp. cD] positive curls and [resp. cD] negative curls to f *,
hence Rx(fD,l) = Rx(f *) + cC-D - and Rx(fD,2) = Rx(f*) + c i . Sum
up the two equalities to get the thesis. 

’ 

D

LEMMA 1.14. Let f : S~ - N be a CN k-curve and (D, H) a
deformation pair; then = 2Rx(f ) - c- + c+.

PROOF. This follows immediately from the previous Lemma. D

From now on, we will suppose to have fixed a vector field X vanishing
at most at a point 00 f/:. r.

PROPOSITION 1.15. Let F : 5’ 2013~ N be an excellent map; then:

here c denotes the number of cusps, and ,8 = 
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PROOF. Let f = By Proposition 1.3 all cusps are negative and hence,
by the previous Lemma, Rx(f(D,H)) = 2R( f ) - c for all deformation pairs (D, H).
Let U be a tubular neighborhood of IF such that Flau = f(D,H) · The sides on
f(D,H) induced respectively by the immersion Fls-u and the side of f clearly
coincide, and hence, by (0.1), Rx(f(D,H)) = X(S - U) - ,Bx(N). To conclude the
proof, observe that x(,S) = X(S - U), since S is obtained pasting a finite number
of cylinders and Mobius bands to S - U. D

REMARK 1.16. The previous Proposition gives one more condition in order
that a curve may be the apparent contour of an excellent map. Nevertheless
it is not hard to construct examples of curves fulfilling (1.1), but being the
apparent contour of no excellent map S - N. We remark also that (1.1)
implies a generalization of a classical theorem of Thom [21], claiming that
x(,S) - c (mod 2) for all excellent maps f : S -~ More precisely, denoting
by deg2 the modulo two degree:

THEOREM 1.17. Let F : S - N be an excellent map; then X(S) - c (mod 2)
if and only if either X(N) is even or deg2(F) = 0.

Words. Let f : S 1 - N be a CN k-curve and oo E N - r a fixed point.

DEFINITION 1.18. A set of segments for f is a set R = A U B U S2 of

smooth, oriented arcs in N, such that:

(1) each r e A U B is diffeomorphic to a closed interval of the real line. The
ending point of these arcs is oo and the starting point is either a point in
a connected component of N - r, if r E A, or a cusp, if r E B;

(2) Q is a set of smooth (diffeomorphic to S 1 ) representatives of a minimal
set of generators of 7r,(N, oo);

(3) for all r, r’ E R, 

(4) each r E R is in general position with respect to r, i.e. r contains neither
crossings nor cusps (except at most the starting point), is transversal to r
and if it starts from a cusp, it points to the outside of the cusp.

We say that R is a system of segments for f if the following holds as well:

(5) at least one segment starts from each component of N - r not containing
0o and from each cusp.

DEFINITION 1.19. Suppose f is sided, and let r E R. We say p E R n r is
positive if and only if either p is not a cusp and r crosses r from the left to
the right or p is a positive cusp; otherwise we say p is negative.
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As in §0, we fix a neighborhood U 00 of oo not intersecting r and oriented
neighborhoods Vr of r - U 00 for all r E R. Next we label each point in
R n r by the same rules used in §0, except for cusp points in which the index
it is +1 or -1 according as the curve crosses the segment from left to right or
from right to left (see Fig. 10). Associate a set of k words to the CN k-curve
f by the same construction described in §0.

DEFINITION 1.20. We call the set w = obtained in this way
the k-word of f with respect to the set of segments R.

REMARK 1.21. As for generic curves (Remark 0.8), the word of a CN
curve will be considered up to cyclic permutations.

Let f : S - N be a CN curve, and w be a word for f. Let D C C.
DEFINITION 1.22. We call D-deformations of w respectively of the first

and second kind the words wD = and wD = wn lwn 2’ where wn 1
is obtained by erasing all letters in w corresponding to cusps in D and wD,1
by erasing all letters corresponding to cusps in C - D. 

’

Let f be a CN k-curve, w a k-word for f and (D, H) a deformation pair.

DEFINITION 1.23. The (D, H)-deformation of the k-word w is the kH-word
given by where fI and kH are as in

Definition 1.6.

DEFINITION 1.24. A 3-assemblages for w is a pair A = ((D, H), A), where
(D, H) is a deformation pair and A is a 0-assemblages for the word 
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as defined in Definition 0.10. We denote by the set of B-assemblages
of w. Given a 3-assemblages A = ((D, H), ,~), we call respectively number of
components and weighted genus of A the numbers = and h(A) = h(jk).

REMARK 1.25. All letters, except those corresponding to cusps, appear
twice in the deformed word W(D,H). In the previous definition the two copies
of the same letter must be considered as different letters.

PROPOSITION 1.26. Let R be a system of segments for f ; then R is a

reduced system of segments for f ~D~H).

PROOF. Clearly, R is a set of segment for f(D,H) (the deformation can be
done in such a way that R is a set of segments for f(D,H)). Each connected
components of N - either is essentially a component of N - r or is

generated by the deformation. At least one segment starts from each component
of the first kind. The new ones are bounded by either the curl around some
cusp or by parallel branches of r(D,H). In the first case the segment which starts
from the corresponding cusp, starts from the new component, in the second

case, it is easily seen that the new component is not negative (see Fig. 11),
hence condition (5’ ) holds. 0

REMARK 1.27. Let the word for f(D’,H) defined by R; clearly 
is obtained by renumbering the second index of all letters in W(D,H) in such a
way to preserve the previous ordering of letters belonging to the same segment;
hence, a 3-assemblages A = ((D, for the word w obviously defines a
(3-assemblage #A for Furthermore, since letters having the same indexes
in W(D,H) also have the same exponent, then the corresponding letters in 
cannot be paired by any 3-assemblages. This argument proves the following:

PROPOSITION 1.28. The mapping bijection between the set
of 3-assemblages of w having (D, H) as deformation pair and Af3(W(D H)). Fur-
thermore A and ~A have the same number of components and weighted genus.
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PROPOSITION 1.29. Let f be a CN k-curve and w be a word defined by
a system of segments. Then, for all A E 

PROOF. Use Proposition 1.28, (0.2) and Lemma 1.14. D

DEFINITION 1.30. Let w be a word for the CN k-curve f, defined by a
system of segments. A B-assemblage A of w will be called minimal if in (1.2)
equality holds. We denote by ~!m(w) the set of minimal #-assemblages of w.

REMARK 1.31. The mapping is a bijection between the set of
minimal B-assemblages of w, having (D, H) as deformation pair, and 

Let f be a CN k-curve, and suppose that the hth component of f has
no cusps. Let (D, H) be a deformation pair; then (wh)D,1 - (wh)h 2 = Who We
define an involution ih on the set of letters of which maps each letter
of (wh)h 1 to the corresponding one of and fixes all other letters. Let
A = ((D,H)A) be a B-assemblage of w; we denote by thA the B-assemblage
«D, ~f), ~~), where {{~(~), ~}.

DEFINITION 1.32. We say A is i-equivalent to A’ (briefly A ~ A’) if
there exist involutions th1,..., thn such that A’ = thn... th1 A. We say that

A = ((D, H), ,A) and A’ = ((D,H),A) are d-equivalent (briefly A ~ A’) if
the two deformation pairs are as in Remark 1.7, 

As in §0, we have an action of the symmetric group (if3, on the set Af3(w),
given by u A = ((D~),j~). We denote by - the equivalence relation on Af3(w)
generated by and the action of (lif3; we simply call it equivalence.

REMARK 1.33. If A 2013 A’ then A and A’ have the same number of

components and the same weighted genus. Hence - can be restricted to the set

Let E~ ( f ) denote the set of all excellent mappings F defined on some
surface S’ D S~ such that £F = S1, f and #F-1(oo) = (3.
We will prove the following theorem: 

~~’

THEOREM 1.34. Let w a word for f, defined by a system of segments. The
set E~( f )/N is in one-to-one correspondence with the set 

Before proving the Theorem, we give some elementary remarks.

LEMMA 1. 3 5 . Let A, A’ e e (lif3. then 
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REMARK 1.36. Denote by C6 the equivalence relation generated by ~ and
~. We can consider the quotient relation over .~4~(w)/~a; we denote it by
again. Denote by [A] the class of A in .~~(w)/~a; by Lemma 1.35 we have that
[AI’6 [A’] c 3 u A’; furthermore .~m(w)/,~ _ (.~~(w)/~a )/ a .

REMARK 1.37. Let (D, H) be a deformation pair and - be the word
for defined by the same segments as w. Let A = ((D, H), ,~) E Af3(w) and
let #A e be the corresponding assemblage (see Proposition 1.28). By
the very definitions, we have = ¡uA for all u and A. It follows that the

mapping # defines a map [,~.) : [A) t--~ [,~.)~A~ _ [ÃA] which is a bijection between
the set of 3-assemblages of w having (D, H) as deformation pair, modulo the
action of and the set 

Proof of Theorem 1.34. We start trying to define a map E~ ( f ) ---~
Let F E E~ ( f ), choose a tubular neighborhood U of the set of

critical points of F, in such a way that f(D,H) for some choice of
(D, H). Clearly Ffs-u is an immersion which estends f(D,H) and attains exactly
(3 times the value oo. Let E be the class of minimal

assemblages associated to Fls-u by Theorem 0.18. Define E 

as the unique class such that (Remark 1.37). Observe that
such a construction is not univocal, lin fact it depends on:
(a) the choice of the tubular neighborhood;
(b) the choice of the deformation set;

and, if fh is a component with no cusps and Uh is the correspondent component
of U, on:

(c) the choice of the branch of aU, used as domain of fD,l.

As we will see soon, different choices lead to ~-equivalent classes, so
that a map A’3 : E~(/) 2013~ is defined. Let us describe more explicitly
the above construction.

Let {pi,...,p/?} = and let Dl,..., Df3 C S’ be disks such that

pi E Di and where g 1, ... , g,~ are the curves giving the
f3

B-expansion (see Definition 0.10). Denote by Ea the set EF U U aDi. Since
i=l

the segments of R are in general position with respect to r (see condition (4)
of Definition 1.18), we see that a set of smooth arcs with

( U Di "
at least one ending point on Lf3. Give to all this points the same label as the
corresponding point on r.

Let U be the tubular neighborhood of E, and let 1 be an arc of

Clearly, -1 intersects aU in as many points as -1 n 1. Label
these points as the corresponding ending point of 1. If we read the letters on
aU we get the word W(D,H), while if we read the letters on aDi we get the
words ui (for all i = 1,...,k) of the B-expansion (see §0). Pairing together
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letters corresponding to ending points of the same arc, we get a B-assemblage
for W(D,H), hence a (3-assemblage for w, , whose class in A,3(w)l,$, is equal to
Al (F) (compare with the sketch of proof of Theorem 0.18).

From the last construction, it is clear that leaving U and the deformation
set D fixed, but exchanging the role of the two branches of 9Uh, the assemblage
changes by the action of the involution th, It is also clear that choosing a different
deformation set the assemblage changes by a 6-equivalence. Finally if U, U’
are two different tubular neighborhoods, we may define a map from the set of
letters in W(D,H) into itself, simply by mapping each letter represented by an
intersection of the arc 1 with 8U to the letter represented by the corresponding
intersection of 1 with 9U’. It is easily seen that the assemblages defined by
the two choices differ up to the action of this map and that this map is a

composition of t-involutions, hence the two assemblages are t-equivalent.
By the very definition, the following is easily proved:

PROPOSITION 1.38. If F, F’ E right equivalent extensions of f,
then A~ (F) = A~ (F’ ).

By this Proposition AO defines a map: A~ : E~( f )/N --~ To
conclude the proof of Theorem 1.34, it is enough to prove the following:

PROPOSITION 1.39. The just defined map Af3 is a bijection.

PROOF. A~ is injective. Let F : S - N and F’ : S’ ~ N be such that
A’(F) = Af3(F’), then they induce the same deformation pair. By Proposition
1.11 there exist neighborhoods U and U’ of S’ respectively in S and
,S’ and a diffeomorphism : U’ ~ U such that o On the
other hand, Fl(s-u) and F/I(s’-u’) are two extension of f(D,H) inducing the same
class of assemblages in hence, by Theorem 0.18, there exists a
diffeomorphism ~p2 : 1 ~ - ~ -~ S’ - U such that = U) o ~2. A
local analysis shows that the two diffeomorphisms pi 1 and ~p2 paste together,
defining a diffeomorphism p : S’ -i S’ such that F’ = F o p.

To prove that A~ is surjective we need the following:

LEMMA 1.40. If w has minimal assemblages then all cusps of f are
negative.

PROOF. By contradiction, suppose that f has a positive cusp; then every
deformation of f has a positive curl, and then, by Lemma 0.22, 
for all deformation pairs (D, H); by Remark 1.31, 0. D

Back to the proof of Theorem 1.34, let A = ((D, H), ,~) be a minimal
B-assemblage for w. By the previous Lemma f has a coherent side; hence, by
Proposition 1.11, there exists a local, excellent extension F1 of f, defined on
a disjoint union of cylinders and Mobius bands M, such that F11aM = f(D,H)-
By Proposition 1.28,~A is a minimal 0-assemblages hence, by The-

orem 0.18, there exist a surface S and an immersion F2 : S 2013~ N such that
8§ = and = f(D,H). Once again a local analysis shows that
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M and S’ can be pasted along the boundary, so that the map F obtained past-
ing F1 and F2 is an excellent map extending f and, by construction, A~(F) = A.

D

2. - Factorization of excellent mappings

Classically, the problem to find out a factorization F = 7r o F1 for an
excellent map F : 6’ -~ N into a given line bundle E -~ N, was posed with the
requirement that F1 should be an immersion; this problem was firstly solved
by Haefliger [11], in the case N = JR.2 and E = II~3 ; successively Millet [15]
remarked that Hafliger’s proof also worked in the case of an arbitrary surface
N and the trivial bundle (E = N x R). Finally in [12] the author generalized
Hafliger’s methods to the general case: let C denote a component of IF, and
put cC - #{cusp points in C}, according as C has a trivial normal
bundle or not and finally ec = ::i: 1 according as the trivial bundle
or not. With these notations the following holds:

THEOREM. F is factorizable into E by means of an immersion if and only
if, for all components C of EF, = 1.

As announced in the introduction, in this section we deal with the problem
of finding a factorization F = 7r o Fl , with Fl an embedding. Let us begin with
some lemmas and propositions wich we will use later.

From now on the set of critical points and the apparent contour of an
excellent map will be denoted by E and r.

LEMMA 2.1. Let F : 6’ -~ N be an excellent map. Let D c N be an
embedded disk such that: aD is in general position with respect to r; D
contains no cusp; D fl r is a union of simple arcs. Then F restricted to any
component of F-1 (D) - E is 1-1.

PROOF. Fix a point 00 f/:. D and a vector field X on N, vanishing at most
at oo. Let C be a connected component of F~ 1 (D) - ~ and let C, be obtained
by removing a small neighborhood of E. The following facts hold: is an

immersion; 9C, consists of branches of F-1(aD) and arcs parallel to E; if k is
the number of boundary components of 9C,, then F(8Cc) consists of k loops
obtained by arcs of aD and branches of r. Endowing these loops with the side
induced by the immersion, it is easy to see that each of these loops has rotation
number greater than or equal to 1, hence k. On the other hand,
by (0.1) of §0, we have Rx(Flace) = 1; hence k = 1, C, is a disk and
Flace cannot have any crossing; hence Flce is 1-1. The Thesis follows by an
exhaustion argument. D

Let R be a system of segments for FI1:, the set consists of oriented
arcs having at least the ending point on E U F-1(00). Denote by H(F) the set
of all such arcs starting from E U F-1(00).
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REMARK 2.2. Since w E Q is a closed loop based at oo, then F-1 (S2) C
H(F).

LEMMA 2.3. F restricted to each component of S - H(F) is injective.

PROOF. Let p, q G S - H(F) be such that F(p) = F(q) and let 1 : [0,1] -~
S - H(F) be a path joining p and q. It is not hard to see that we can suppose
that p, q E S - F-1 (R), ~y( [o,1 ] ) c S - F- I (R) and F o 1 is a simple curve in
general position with respect to r (see [10]). Let D C N be the disk bounded by
F o i. Since 9Dn.R = 0, then D n R = 0, and since R is a system of segments
for Fly,, D contains neither cusps nor curls of r. A contradiction follows from
Lemma 2.1. D

We now state two topological lemmas, whose proof is an easy exercise.

LEMMA 2.4. Let X be an arcwise connected topological space, and let
U, V be two open subsets such that X = U U V and U f1 v is not arcwise

connected; then H1(X)f=0, where HI is the first homology group.

LEMMA 2.5. Let Ul , ... , Un, n &#x3E; 3, be open subsets of a topological space
n

X. If Ui n ii - il == 0,1 (mod n), then either and in this
2=1

case n = 3, n U Uj is disconnected. 

i=1

j ji /
From the above two lemmas, we have the following:

PROPOSITION 2.6. Let Ul, ... , Un (n &#x3E; 3) arcwise connected, open subsets
of the topological space X, satisfying the hypothesis of Lemma 2.5; then either

n = 3 andn HI U Ui )= 0.i i

From now on, we will denote by C the set of connected components of
S - H(F).

PROPOSITION 2.7. Every C E C is diffeomorphic to an open disk.

PROOF. Let C E C. As already remarked, F-1 (S2) C H(F), hence

F(C) c N - Q. Since Q is a minimal system of generators of 7r1(N, oo), N - Q
is diffeomorphic to an open disk; hence, by Lemma 2.3, we can say that C
is a planar surface, that is to say it is an open disk with some holes. By
contradiction, assume F(C) is not an open disk, hence F(C) has at least two
boundary components, furthermore the boundary of F(C) consists of branches
of r and branches of segments of R. Let 1 be an interior component of aF(C).
If 1 contains a branch of the , segment r, since the segment ends at oo, the

segment itself cuts F(C) from boundary to boundary. Since C does not contain
arcs in starting and ending at the boundary, this is a contradiction. If
consists of branches of r only, then it bounds a connected component of N - r.
The segment starting from this connected component leads to a contradiction
as in the previous case. D
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PROPOSITION 2.8. Let Ci, C2 E C, then F(Cl ) n F(C2) is connected.

PROOF. By contradiction, suppose F(Cl ) n F(C2) is disconnected. By
Lemma 2.4, F(Cl) U F(C2) has at least two boundary components. Contradiction
follows as in the previous proposition. D

Factorization. Let Sand N be surfaces and E ~ N a line bundle.

DEFINITION 2.9. We say that a map F : S - N is factorizable into E if
there exists an embedding F1 : S - E such that F = 7r o Fi.

REMARK 2.10. Finding a map F1 such that F = 7r o F1 is the same as

finding a section u, of the line bundle F*E induced by F (see the diagram
below), hence F is factorizable into E if and only if there exists a section
u : S --+ F*E of the induced bundle, such that 7r*F o a is an embedding. If

E = N x R is the trivial bundle, this condition reduce to the existence of a
function h : S -~ R such that (F, h) : ,S -~ N x R is an embedding. We will call
such a function a height for F.

REMARK 2.11. Suppose F : 5’ -~ N and F’ : S’ - N are right equivalent
maps; it is easily seen that F is factorizable into E if and only if F’ is. For
excellent maps this means that, in some sense, factorizability conditions "must"
be contained in the assemblage associated to the map.

We now fix our attention on finding factorizability conditions for excellent
mappings. Let = (pi , ... , p, ) and let Dl,...,D,3 be disks in S such

- /?
that pi c Di and FlaD. = gi (gi as in Definition 0.10), and let S = S - U hi,
_ 

;=i

F=FBS
PROPOSITION 2.12. F is factorizable into E if and only is.

PROOF. Let Fi : ~ -~ E be an embedding such that x 0 F1 = F, and an

open ball around oo such that U 00 n T = 0, and U,,o contains all curves Let Ui
be the connected component of F-1(Uoo) containing pi. Clearly, = 0 for
all and F is a diffeomorphism between and Take a trivialization
(D : Eluoo - Uoo x R, then = (F(p), h(p)). Since Pl is injective,
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we may suppose that h assumes constant value ci on Ui - Di, such that for

all Extend F1 to the required embedding Fl, defining ~-1 (F(p), ci)
for all p E Di. D

The trivial bundle. Let us first consider the case E = N x R. In Remark 2.10
we saw that F is factorizable into E = N x R if and only if there exists a height
function h for F.

PROPOSITION 2.13. Let h be an height function for F; then for all C1,
C2 E C such that F(Cl ) n F(C2) ~ ~, one (and only one) of the following two
holds:

( 1 ) dx E Cl , y C C2 F(x) = F(y) ~ h(x)  

(2) ~Z E Cl, y C C2 F(x) = h(x) &#x3E; 

PROOF. Clearly at most one of the two holds. By contradiction, suppose
both are false, then there exist XI, X2 C Cl , yl , y2 E C2 such that F(x 1 ) = F(Y1) =
zi, F(X2) = F(y2) = Z2 and  h(yi), h(X2) &#x3E; h(y2). By Proposition 2.8
F(C1) n F(C2) is connected, let 1 : [0,1] -~ F(Ci) n F(C2) be a path joining zi
and z2, and let 11 and 12 be its liftings to 01 and C2 respectively (these liftings
exist by Lemma 2.3). Let hi = h o Ii, then hl(O) = h(xl)  h2(0),
and = h(X2) &#x3E; h(y2) - h2( 1 ), therefore there exists to E (0, 1) such
that = h2(to). Call pl - E Ci, P2 = -/2(tO) E C2, then pi fp2 and
F(pi) = F(p2), = h(p2), that is a contradiction. p

Suppose h is a height for F. We define a structure of oriented graph on
the set C, as follows: say that Cl, C2 E C are joined by an edge pointing to C2
(C1 -~ C2) if and only if C1 and C2 verify (1) in Proposition 2.13. We denote
by L(h) this oriented graph.

PROPOSITION 2.14. The graph L(h) has no loops.

PROOF. By contradiction, let Ci - C2 - ... ~ C1 be a loop of
minimal length. Observe that (mod n), on the
contrary we could use Proposition 2.13 to find a shorter loop. By Proposition 2.6,
either n = 3 or Hl U If the first holds, take points

i 2

xi E Ci such that = F(x2) = F(X3), by definition of -~,  h(X2),
h(X2)  h(X3) and h(X3)  h(xl), which is a contradiction; in the other case

contradiction follows as in the proof of Proposition 2.7. D

As in the definition of the word of a curve, for all r E R, fix an orientation
of a small tubular neighborhood of r - oo.

PROPOSITION 2.15. Let Cl, C2, C3, C4 E C ~2. be edges of the
graph H(F). The following two hold:

(A) suppose that Ci, C2 paste along (i.e. 01 .~) and 
then either C3 and C2 - C3 or C3 - C1 and C3 - C2;
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(B) suppose that Ci, C2 paste along that C3, C4 paste along t2 and
Let r E R be the segment containing F(ti), and suppose

F(Ci), F(C3) be on the left of r and F(C2), F(C4) on its right, then:
either Ci - C3 and C2 - C4 or C3 - C1 and C4 - C2.

PROOF. Let Cl , C2, C3 be as in (A); then F(Ci)nF(C3) and F(C2)nF(C3)
are both not empty, hence some edge of L(h) joins Ci, C3 and C2, C3.
By contradiction, suppose (A) is false, say Ci - C3 and C3 - C2. Let
z E F(C3 ) n F(t) and let p EE t such that F(p) = z. Take a small neighborhood U
of p, such that U n C3 = 0 and F(U) c F(C3), and a path 1 in U joining two
points pi e Cl , p2 E C2. Let ~y3 be the lifting of Foi to C3. Clearly Fo13 = 
but Cl  C3 # hl’l(0))  h(~3 (o)) and C3 ~ C2 # ~(~/(1)) &#x3E; h(-Y3(l)). As in the
previous proposition this fact leads to a contradiction. A completely analogous
argument proves (B). D

Proposition 2.14 and Proposition 2.15 give necessary conditions in order
that an excellent map F may be factorizable. We will prove that these conditions
are also sufficient, that is to say the following theorem holds:

THEOREM 2.16. Let F : S --~ N be an excellent map; then F is factorizable
into N x R if and only if the set C can be given a structure of oriented graph
with no loops, satisfying conditions (A) and (B) of Proposition 2.15.

PROOF. Let S be as in Proposition 2.12. We proceed in two steps: Step
1: definition of a height on S minus a tubular neighborhood of E; Step 2:
extension of such a height to the tubular neighborhood. The thesis will follow
by Proposition 2.12.

Let L be the graph in the assumption; since it has no loops, than --;
extends to an ordering on C, say ~, and clearly such an ordering fulfills (A)
and (B). Let C = {C1, ... , with CS -~ CS+1 I for all s.

Step 1. Let U be a tubular neighborhood of E such that is a generic curve
and denote S’ = S - U, r’ = F(a S’) and if C E C denote C’ = C n S’. Let be
a ball around oo, contained in the interior side of all curves gi (see Definition
0.10), that is to say F(S) c (N - Y~ ). For all r E R fix an oriented neighborhood
Yr and a diffeomorphism Vr ---+ [0, tr] x [-1, 1], such
that:

(1) Blr f=r’;
(2) Vr E R, Yr contains no crossings of F’;

(3) Vr Ei R, (p,(r) 9 10, trl X f 01;
(4) Vr E R, (r U r’) n Yr is connected (this fact and (2) say that Vr contains

only branches of T’ intersecting r);

(5) if rr,j is the component of r’ n v, which intersects r at the jth point,
counting according to the orientation of r, then Ij I x [-1,1];

(6) br E R, pr and pr r : r - R are orientation-preserving.
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Let V = U any proper edge t of H(F), denote by Ut the connected
rER

component of containing t n S’, and by r(t) the segment containing
F(t); denote by s(l) and the two indexes such that E C are

the two components pasting along t, the former on the left of t, the latter on
the right (left and right with respect to the orientations induced by F). For all
C E C denote C* = (C n S’) - U Uf. Finally x [-1, 1] - R be a C°°

~ 
~

function such that: V)(x, y) = 0, Vy E [-1, -2/3]; y) = 1, Vy E [2/3, 1] and
~ (x, y ) E [o, 1 ], dx, y . We define the function ~1:6"-~ R,

Clearly such a function is of class C°° . We now prove that h 1 ) : ,S’ ---; NxR
is injective. Let z fy E S’, three cases appear:
(I) z e CJ and 

(II) 

(III) x E Ut and y E Ut,.

Case (I). If s = s’, by Lemma 2.3, if clearly h1(x)f=h1(y).
Case (II). If there is nothing to prove; if F(x) = F(y) then

F(C;) n therefore, thanks to the choice of the Vr’s, F(C,) n r(.~) ~ ~;
by (A), this means either C, - and Ct(t) or ~ Cs and Ct(t) - Cs,
that is to say either s  s(l) and s  or s(£)  s and t(£)  s. By definition
of hl, minfs(t),  h1(y)  maxfs(t), t(t)l, hence s = h1(x)f=h1(y).
Case (III). Suppose F(x) - F(y) = p; the Vr’s are pairwise disjoint, hence
r(.~) - T-(~), and since F(.~) n F(.~’) ~ ~. By (B), either

C~,(t) and Ct(t) - or C s(l’) -. and - Ct(~~, that is to

say either s(£)  s(~’) and  t(£’) or S(l’)  s(£) and t(t’)  Using
the definition of hl, an easy computation shows that either  h2(y) or
h2(y)  h, (x). This ends the first step.

Step 2. For the sake of simplicity, we suppose E is connected, it will be clear
that the same proof also works in the general case. Let U as above and put

Let ~p : M - U be a diffeomorphism such that ~({~/ = 0 } ) = E and the
inverse image of U n H(F) consists of vertical segments. More precisely, if

denotes the quotient map, we suppose that 
[0, l]x[-l, 1] has the form: 

i j l

Denote by D j both the generic component of M - ~p-1 (H(F)) and the

corresponding component of U - H(F); and by C the component
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of ,S - H(F) containing Dj. The following two lemmas are an immediate

consequence of (A) and (B) respectively.
LEMMA 2.17. Let t E [0, 1) be a cusp point (with the just said notations,

either t = ti or t = BJ) and let Dj¡(t), Dj3(t) be the three components
having (t, 0) in their closure. Let Dj¡(t) be the one opposed to the edge
starting at (t, 0) (see Fig. 12); then: either Ci(j2(f)) - or

- 

LEMMA 2.18. Let Dj2(Zl)’ DJ3(Zl)’ the four connected components
having (zl, 0) in their closure, numbered as in Fig. 13; then either -

and Ci(j2(Zl)) - or &#x3E;- Ci(j3(Zl)) and CiÚ2(Zl)) &#x3E;- 

Denote = h 0 pet, -1), h l, l (t) = h By the previous two
lemmas, and the way we constructed h, in Step 1, we can suppose hl,l and

1 have the following properties:
(1) h1,1(t + 1) = h1,1(t) and h1,-1(t + 1) = h1,-1(t) if U is orientable, otherwise

hI, 1 (t + 1) = h1,-1 (t) and h1,-1 (t + 1) = 

(2) there exists 6 &#x3E; 0 such that:

a) i is strictly monotonic on [ti - ê, ti + ~] and [zl - + c];
b) h1,-1 is strictly monotonic on [sj - + 61 and [zl - 6, z, + 61;
c) 1 e 1 assume constant values on the other intervals;

(3) b’t E [0, 1), h 1,1 (t) = ~ either t = ti or t = sj for some i or j.
These conditions imply that we can extend h, in a neighborhood [t - S, t + S] x
[-1,1 ] of each cusp point (t, 0), as suggested in Fig. 14, in such a way that
(F, h 1 ) : [t - 6, f + 6] x [ -1,1 ] - N x R is an embedding. Moreover, let 
as in Lemma 2.17, be the three components having (I, 0) in their closure and

we can suppose that

and, up to taking U and 6 small enough, that:

for all pairs of cusp points (tl, 0), (t2, 0).
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LEMMA 2.19. The mapping (F, hl ) : ,S’ U U ([t - 8, t + 6] x [-1, 1]) -&#x3E; N x R
t

is an embedding.

PROOF. By the way we extended hl, the map is clearly an immersion. By
contradiction, let x2 E S’ U U [t - b, t + b ] x [-1,1] be such that = F(X2)

t
and = Using the fact that restricted to both S’’ and

[t - b, t+b] x [- l,1] is injective and (2.3), we have that xl E [t - b, t+b] x [-1,1] ]
and x2 E S’. Furthermore h, 1 assumes constant value in a neighborhood of let

Ci be the component of S’ - H(F) containing it, this means that contains
the cusp corresponding to (t, 0), hence for all 1 = 1, 2, 3.
Use twice (A) and get either i  m(t) = min, or i &#x3E; M(t) = max, 
Using (2.2) and the fact that = i, we get a contradiction. D
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We are only left to extend h 1 over U - U ( [t - 6, I+ 6] x [-1,1]). Where
f 

both hi,i and h1,-1 assume constant values, an extension is easily found as
suggested in Fig. 15. Furthermore, conditions (2) and (3) ensure that we can
define local extensions of h I over the sets [zl - ê, Zl + e] x [-1,1 ], in such a
way that the value of such an extension at the point (t, y) is between hl,i(t)
and (see Fig. 16). Clearly all such extensions can be pasted to give a
function h : S 2013~ R. An argument very much like the one used to prove the
previous lemma, proves the following too:

LEMMA 2.20. The map (F, h) : S ---+ N x R is injective.

Since (F, h) is an immersion, this concludes the proof of Theorem 2.16.
0

Now, we give a description of line bundles over surfaces, fitting in with
our purpose to find factorability conditions for excellent mappings.
Line bundles. Let N1 1 be a connected, compact surface with one boundary
component and Ei - N1 a line bundle. Suppose E11aN1 is the trivial bundle
and let (D : S E11aN1 be a trivialization. Denote by Q the restriction of Q
to the null section. We can consider the line bundle over N = N1 D2 whose
total space is E = E1 Uqy (D2 x R) and whose projection is the obvious one.
Here we have denoted by X U f Y the union of X and Y along the mapping

DEFINITION 2.21. We call closure of E1 the bundle constructed this way,
and we denote it by E 1.

Let N be a compact, connected surface without boundary and D C N an
embedded disk. Since is the trivial bundle, we have the following:

PROPOSITION 2.22. Every line bundle over N is the closure of some bundle
over a compact, connected surface with one boundary component.

Since the only line bundle over the sphere is the trivial one, from now on
we will suppose that g(N) &#x3E; 0. Call weighted genus of a compact, connected
surface N, the number h(N) = 2g(N) if N is orientable, h(N) = g(N) otherwise.
It is a classical fact in topology that a surface N is the quotient of a 2h(N)-gon,
by pairwise identification of its edges, and such a polygon can be found by
cutting N along a minimal system of generators of its fundamental group. Fix
the following data: a point oo E N; a set Q = 1wil of smooth curves, as in (2)
of Definition 1.18; a small open ball around the point oo. Let N1 = N - U~;
clearly, cutting N1 along all the curves wi n N1, we get a 4h-gon PN1. Call

the two edges resulting by the cut along w;. For all i, let Oi : ti 2013~ ~ be
the diffeomorphism giving the identification. Suppose to have a distribution of
weights, pi = ~1, on the set Q, and define Ep = PN, x R / - where (X2, t2)
if and only if either the two pairs are equal or xl Eli, ~2 and t2 = pitl
for some i. Clearly Ep, endowed with the obvious projection, is a line bundle
over N 1.
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PROPOSITION 2.23. The line bundle Ep|aN1 is trivial.

PROOF. Such a bundle is obtained by successively pasting 2h copies of
[0,1 x R, by means of mappings of the following two kinds: (1, t) ~ (0, t),
(1, t) H (0, -t), and both kinds of such identifications are even in number. D

By the previous proposition and Proposition 2.22 we see that every
distribution of weights p over Q generates a line bundle over N, simply by taking
the closure Êp of the just-constructed bundle Ep. Simple technical arguments
prove the following:

PROPOSITION 2.24. If E is a line bundle over N then there exists a

distribution of weights p over SZ such that E is isomorphic to Ep.
The general case. Turn back to our problem. Let F : S - N be an excellent

-

map and E -&#x3E; N a line bundle. Let R be a system of segments, S and
N1 = N - be as before. By Proposition 2.24 we can suppose that E = i%bp for
some distribution of weights p; hence, by Proposition 2.12 and Remark 2.10,
our problem is the same as finding a section u of S, such that 1r;F o o,
is an embedding. First of all, let us try to understand the meaning of finding
a section of the line bundle F*Ep. Let S’ be the surface obtained from ,S by
cutting along P- I (K2), and let ~ : S’ -~ ,S be the quotient map given by the cut.
Let ~p : PN1 --&#x3E; N1 be the mapping generated by the cut of N1 along Q; then
there exists a unique map F’ : S’ - PN1 such that p o F’ = F o ~. By this fact,
the way Ep was defined and thanks to the following commutative diagram

we see that finding a section of P*Ep is the same as finding a function
h : S’ --+ R, such that:

(2.4) = if = F(~(X2)) E Wi VXI, X2 s.t. = ~(~2)

and satisfying the anologous conditions on the differentials. We will denote by
Uh the section of F*Ep defined by h. Clearly the following holds:

PROPOSITION 2.25. The mapping 7r*.P o Ep is an embedding if
and only if (F’, h) : S’ - PN1 x R is.

We will call such a function h a strange height for the mapping F.
Let us introduce some more notation. Let H(F) = (H(F) n S) U a§, and

H’(F) C S’ be the set H’ (F) = ~(~(F)). Denote by C the set of connected
components of S - H(F), by C the set of components of S - H(F) and finally
by C’ the set of components of 8’ - H’ (F). It is immediate that inclusion 6’ ~ S
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gives a bijection between E and C; while g : S’ ~ § gives a bijection between
C’ and C. For all C c C denote by C e C and by C’ e C’ the corresponding
components (i.e. C is the interior of C n S and C’ is the component such that
~(C,) = C).

PROPOSITION 2.26. Let Cl, C2 c C; then F(CI) n F(C2) 0 if and only if
n F(C2) ~0. ~ and only if n F(C2) ~ 0.
PROOF. The second equivalence is immediate, the first follows from the

fact that if F(Cl) n F(C2) ~ 0 and F(Ci) n F(Õ2) = 0 then F(C1) n F(C2) c ~oo
and the fact that 9(F(Ci) n F(C2)) contains branches of r, while n r = 0.

D

PROPOSITION 2.27. Let Cl, C2 Ei C; then and 
are connected.

PROOF. Exactly the same as Proposition 2.8. D

Let h be a strange height for the excellent map F; by the same arguments
used in the proof of Proposition 2.13, the following can be shown:

PROPOSITION 2.28. Let C2 e C’ be such that F’(C’I) n F’(C2) 0. One
of the following two holds: 

’

(1) y Ei C2 if F(x) = F(y) then 

(2) F(x) = F(y) then 

As in the case of the trivial bundle we give a structure of oriented graph
to the set C, saying C2 if and only if the corresponding components C’I,
C’2 E C’ satisfy condition (1). We call such a graph the graph of h and denote
it by L(h).

REMARK 2.29. By Proposition 2.26 we see that two components Cl, C2 c C
are joined by an edge if and only if hence the situation is
in all similar to the one we had dealing with the trivial bundle.

As in the case of the trivial bundle, the following is proved:

PROPOSITION 2.30. The graph L(h) has no loop.

Denote 0- c Olp(w) = 20131}, an analogue of Proposition 2.15 holds
in this case too.

PROPOSITION 2.31. Let h be a strange height for F, and let Cl, C2,
C3,C4 e C, t, fl, t2 be proper edges of H(F); the followings hold:

(A 1) suppose that Cl, C2 paste (i.e. 0, and 
then either Ci - C3 and C2 ~ C3 or C3 --+ C1 and C3 ~ C2;

(Bl) suppose that Cl, C2 paste along fl, C3, ~4 paste along t2 and
Let r Ei R be the segment containing and suppose

that F(CI), F(C3) are on the left of rand F(C2), F(C4) on its right; then:
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if r c R - Q’ either C3 and C2 -~ C4 or C3 - C1 and C4 - C2; if
r E S~- either C3 and C4 --+ C2 or C3 - C1 and C2 - C4.

PROOF. Observe that a situation as in (Al) occurs only if F(t) is contained
either in r or in R-SZ; hence the same argument used to prove (A) of Proposition
2.15 proves (Al) too. We now prove (B 1 ). If and F(t2) are contained in
some segment r E R - SZ, as in the previous case, the proof is the same as for
Proposition 2.15; hence suppose F(ii), F(/!,2) C w E Q, and let Xl E /!,1, X2 E t2
be such that F(xl) = F(X2)- It is easily seen that we can suppose xl, x2 E ,S.
Let ~i, t" be the edges of H’ (F) such = ç(/!’~) = /!,1 1 and let .~2, ~2 be
those such that ~(.~2) _ ~(.~2) _ t2. The assumption in (Bl) on the components
Ci, C2, C3 and C4 ensures that C2, C3 and C4 verify the following:

t’i I a C2 D /!,~, I 2 a C4 ~; i
n F’(C3) ~ ~, F’(C2) n F’(C() f 0.

Let xl E t’, xl E E be such that g(z§) = g(z§’) = x2. It is not
hard to find four path (see Fig. 17) -f’ : [0, 1] - S’’, [ 1, 2] - S’, such that:

and
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Define:

By definition of a strange height and ( 1 ), we see that gl and g2 are continuous
functions. Consider the two cases w E SZ+ = S2 - SZ- and w E S~- . In the first

case, suppose by contradiction that C{ 2013~ C3 and C4 --&#x3E; C3. By definition of
- and (2), (3),  g2(t) for all t  1 and &#x3E; g2(t) for all t &#x3E; 1. This

implies that gl(1) = g2(1), hence F’(xl) = F’(x’) and = h(x’), contradicting
the fact that (F’, h) is injective. A similar argument concludes the proof in the
second case too. D

As in the case of the trivial bundle, Proposition 2.30 and Proposition 2.31
give necessary and sufficient conditions for the existence of a strange height
for an excellent map F.

THEOREM 2.32. Let F : S - N be an excellent map, R a system of
segments for and E = Ep a line bundle over N. Then F is factorizable into
E if and only if C can be given a structure of oriented graph with no loops
verifying (A 1 ) and (B l) of Proposition 2.31.

PROOF. The proof is completely similar to that of Theorem 2.16. D

REMARK 2.33. Repeating almost word by word the statements and proofs
in this section, a factorizability theorem for generic immersions can be proved.
More precisely, let ,S be a compact surfece with boundary, F : S - N a generic
immersion and R a system of segments for denote G(F) c S the graph
which consists of as and of those arcs in F-I(R) which have both vertices in
as U F-1(00). G(F) is the I-skeleton of a cell decomposition of ,S such that
F restricted to the interior of each cell is one to one. Denote by C the set of
2-cells of such a decomposition.

THEOREM 2.34. A generic immersion F is factorizable into E = Êp if and
only if C can be given a structure of oriented graph with no loops verifying
(A 1 ) and (B 1 ) of Proposition 2.31, seen in the present context.
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