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Critical Points of Solutions to the
Obstacle Problem in the Plane

SHIGERU SAKAGUCHI

1. - Introduction

In [1] ] Alessandrini considered solutions of the Dirichlet problem for an
elliptic equation without zero-order terms over a bounded simply connected
domain in JR..2, and showed that if the set of local maximum points of the
boundary datum consists of N connected components, then the interior critical
points of the solution are finite in number and the following inequality holds

where MI, m2,..., mk denote the respective multiplicities orthe interior critical
points of the solution. It was shown by Hartman and Wintner in [3] that the
zeros of the gradient of a non-constant solution (critical points) are isolated and
each zero has finite integral multiplicity, if the coefficients of the equation are
sufficiently smooth (see [1, p. 231]). Similar arguments and results were used
in the theory of minimal surfaces by Schneider in [6].

In this paper we consider solutions of the obstacle problem over a bounded
simply connected domain in V. Our main purpose is to show that if the number
of critical points of the obtacle is finite and the obstacle has only N local
maximum points, then the same inequality (1.1) holds for the critical points
of the solution in the noncoincidence set. We note that the multiplicity of a
critical point in the noncoincidence set is well-defined if the solution is not
constant near the critical point, since the solution satisfies an elliptic equation
without zero-order terms in the noncoincidence set. Precisely, let S2 be a bounded
simply connected domain in V with smooth boundary an. Consider a function
1/; E C2(S2) which is negative on aQ and has positive maximum in SZ. Let

Pervenuto alla Redazione il 26 Luglio 1991 e in forma definitiva il 20 Giugno 1993.
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a = (a¡, a2) be a Coo vector field on ]R2 satisfying

for some positive constants A, A. Consider the following variational inequality:

Find u E K satisfying

It is known that there exists a unique solution u to (1.3) and u belongs to 
(see the book of Kinderlehrer and Stampacchia [5]). Let I be the coincidence
set

Since 1b is negative on aS2, I is a compact set contained in Q. Note that u
satisfies the following:

and

where G is the set of Lipschitz continuous functions g over Q satisfying

(see [5]).
Now our results are the following:

THEOREM 1. Suppose that the number of critical points of V) in {x E Q :
,O(x) &#x3E; 0) is finite. If 1/J has only N local maximum points, then the number of
critical points of u is finite. Furthermore, denote by M I, - - - mk the multiplicities
of the critical points of u in Then the following inequality holds
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THEOREM 2. If 0 has only N global maximum points and has no other
critical point in {x E Q : &#x3E; 0} then equality holds in (1.9).

Letting N be equal to 1, we have:

COROLLARY 3. If 1/; has only one critical point then u has only one critical
point.

REMARK 4. Kawohl showed in [4] that in the case SZ c R~ (n ~ 2) and
a(p) = p, if S2 is starshaped with respect to the origin and x -  0 for
x E S2B{o}, then x -  0 in ~B{o} and u has only one critical point.
However, for general a(p), or for non-starshaped domains Q, similar results are

not known. The typical case is a(p) = p (minimal surface case) with
1 + Ipl2

convex domain Q. We note that in this case we can obtain a bound for the

gradient of the solution and so we can modify a(p) to have the condition (1.2)
(see [5]).

Since a critical point in the noncoincidence set is a saddle point if
the solution is not constant on some neighborhood of the point, we get a

generalization of Theorem 1 as follows:

THEOREM 5. Suppose that the number of connected components of local
maximum points of 7p is equal to N. Then the number of saddle points of u in
QB7 is finite and the same inequality (1.9) holds for these saddle points.

In Section 2 we prove Theorem 1 and in Section 3 we prove Theorem 2.
The proof of Theorem 5 is similar to that of Theorem 1. Section 4 provides
some examples of Theorem 2. In Section 5 we generalize the results of the
obstacle problem for the general non-constant boundary data.

2. - Proof of Theorem 1

We begin with the following five basic lemmas.

LEMMA 2.1. u is not constant over any open subset of K2BI.

PROOF. Since u = 0 on aS2, (1.6) and the strong maximum principle
imply that u is positive in S2. Suppose that there exists a connected open
set w contained in where u is a positive constant. Since the theorem of
Hartman and Wintner implies the unique continuation of solutions, it follows
from (1.5) that u equals the same constant over the connected component w of

containing w. Since u = 0 on aU, then aw c I. Hence Vu = 0 on

9(D, since u - 1b attains a minimum on I. This contradicts the assumption that
the number of critical points of 0 in {x Ei 12 : &#x3E; 0} is finite. D
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LEMMA 2.2. For any t E (O,max1/;) we have the following:
0

(1) The set {2; E Q; u(x)  t} is connected.
(2) Any connected component of f x E Q : u(x) &#x3E; t} is simply connected.

PROOF. Since u = 0 on 8Q and 8Q is connected, only one component of
~x E S~ : u(x)  tl reaches Suppose that there exists another component,
say w. Then acv C Q. Since u = t on aw, it follows from (1.6) and the maximum
principle that u &#x3E; t in w. This is a contradiction and we get (1). Let A be
a connected component of Q : u(x) &#x3E; t} and let, be a simple closed
curve in A. By the Jordan curve theorem there exists a bounded domain B with
aB = u. Since Q is simply connected, B is contained in Q. Then, since u &#x3E; t
on u, the maximum principle and (1.6) yield u &#x3E; t in B. This shows that B is
contained in A, namely A is simply connected and we get (2). D

LEMMA 2.3. We have the following:
(1) The interior critical points of u in are isolated.

(2) u has no local maximum point in 

(3) u has no local minimum point in Q.

PROOF. In view of Lemma 2.1, we obtain (1) and (2) from (1.5) and the
results of Hartman and Wintner [3] (see [1, p. 231]). (3) is a direct consequence
of (1.6) and the maximum principle. D

LEMMA 2.4. Any local maximum point of u in 0. is also a local maximum
point of 1/;, and the number of the local maximum points of u in K2 is at most

N.

PROOF. Since u = 0 on aS2, by Lemma 2.3(2) any local maximum point
of u belongs to I. Then, in 0. and u = 1b on I, any local maximum
point of u is also a local maximum point of 0. Since 0 has only N local
maximum points, we get this lemma. D

LEMMA 2.5. Let xo E K2BI be an interior critical point of u in 92BI, and
let m be its multiplicity. Then m + 1 distinct connected components of the level ’
set ~x u(x) &#x3E; cluster round the point xo.

PROOF. By the results of Hartman and Wintner [3], in a neighborhood of xo
the level line ~x e Q : u(x) = consists of m + I simple arcs intersecting at
xo (see [1, p. 231]). Since any component of the level set u(x) &#x3E; 

cannot surround a component of ~x u(x)  by Lemma 2.2( 1 ), all
the components of {x u(x) &#x3E; u(xo)l clustering round xo have to be
distinct. This completes the proof. 0

Since any connected component of a level set ~x u(x) &#x3E; t} with
t E R contains at least one local maximum point of u, Lemma 2.4 and Lemma
2.5 suggest to count the number of disjoint components of {2: E Q : u(x) &#x3E; t}
by using multiplicities. The first step is the following:



161

LEMMA 2.6. Let x 1, ... , Xn E S2BI be the interior critical points of u
in 0.B1 and let ml, ... mn be their respective multiplicities. Suppose that

u(xi) = ... = u(xn) = t for some t E R, and suppose that all the points
xl, ... , xn together with the components of {x E SZ : u(x) &#x3E; t} clustering round
these points form a connected set. Then this connected set contains exactly
n

L m j + 1 connected components of the level set { x E=- il : u(x) &#x3E; t }.
j=l

PROOF. We prove this by induction on the number n of critical points.
When n = 1, the result holds by Lemma 2.5. Assume that k &#x3E; 1 and that if n  k

then the connected set, which consists of n critical points and the components
n

clustering round these points, contains exactly L mj + 1 components of the
j=l

level set { x E S2 : u(x) &#x3E; t } . Let n = k + 1. Let A be the set which consists of
the points together with the respective components clustering round
these points. Since A is connected, up to a renumbering we may assume that
the points X 1, - - - , Xk together with the respective components clustering round
these points form a connected set, say B. By Lemma 2.2(l) A cannot surround
a component of {x E S2 : u(x)  t}. Therefore there is only one component
of {x E Q : u(x) &#x3E; t} whose boundary contains both Xk+l and x j for some
1  j  k, since both A and B are connected. Hence, using Lemma 2.5 and
applying the inductive assumption to B, we see that A contains exactly

connected components of the level set {x E 0 : u(x) &#x3E; t}. This completes the
proof. D

Using this we obtain:

LEMMA 2.7. Let x 1, ... , Xk E S2BI be the interior critical points of u in
S2BI and let ml, ... , mk be their respective multiplicities. Then u has at least
k

L m j + 1 local maximum points in SZ.
j=l

PROOF. In case = U(Xk) = t, if the points xl, ... , Xk together
with the components of {x E S2 : u(x) &#x3E; t} clustering round these points form q
connected sets, by applying Lemma 2.6 to each set we see that these sets contain

k

exactly L mj + q connected components of the level set { x u(x) &#x3E; t } .
j=l k

Therefore, in this case the level set always has at least L mj + 1 connected
k j=l

components, and u has at least L mj + 1 local maximum points in o.
j=l
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Hence, without loss of generality, we may assume that

where js+ 1 = k and s &#x3E; 1. For 1  n  s + 1 let hn be the set of all

components of the open sets {:r u(x) &#x3E; ( j = 1,...,jn), and let

J~n be the subset of those members w of such that either w is a component
of { x u(x) &#x3E; or W is a component of { x u(x) &#x3E; for
some 1  i  n - 1 satisfying

Note that Jj, = Ij, . By the definition, Jjn consists of disjoint components. De-
il

note by I the number of elements of Jjn’ Let us show that + 1
~-=1

by induction on the number t. When £ = 1, we have already shown this by
ip

Lemma 2.6. Suppose that + 1 for p &#x3E; 1. Let £ = p + 1. Then, by
j=1

(2.1) {x jp+1, ... , C and each x j (j = jp+ 1, ... , jp+1 ) belongs to some
w e Jjp which is a component of ~x e Q : u(x) &#x3E; Let {~+1,...,~,}
be contained in exactly q components w 1, ... , wq . Then, counting the number of
components of ~x E Q : u(x) &#x3E; in each = 1, ... , q) with the help
of Lemma 2.6, in view of the definition of we obtain

Therefore, by the inductive assumption we get

This completes the proof.

By Lemma 2.7 and Lemma 2.4 we get
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This shows that the number of interior critical points of u in ilBI is finite and
the proof of Theorem 1 is completed, since u has no critical point on 9Q by
virtue of Hopf’s boundary point lemma (see the book of Gilbarg and Trudinger
[2, Lemma 3.4, p. 34]) and Vu = Vo on I.

3. - Proof of Theorem 2

By Theorem 1 equality in (1.9) is trivial in case N = 1. Therefore we
consider the case N &#x3E; 2. Let PI,..., P N be the global maximum points of 1/;.
By considering g(x) - max w in (1.7) we get (0 )u  max 0 in Q. Then, all

K2 92

the points pi, ... , pN belong to I and are all local maximum points of u by
Lemma 2.4. Since by Theorem 1 the critical points of u are finite in number
and 1/; has no critical point in {x E SZ : &#x3E; 0} other than pl, ... , pN, the
set of all critical points of u consists of a finite number of saddle points in
92BI and pi , ... , pN. Therefore, by using the implicit function theorem and the
theorem of Hartman and Wintner we obtain the following about properties of
the level curves of u.

LEMMA 3.1. Let 0  t  max 9 and let 1 be a connected component of
Q

the level curve {x E Q : u(x) = t}. Then we get the following:
(1) If, does not contain any critical point of u, then, is a simple C 1 regular

closed curve which surrounds at least one point of { pl , ... , PN }.
(2) If, contains at least one critical point of u, then, is a finite collection

of simple piecewise Cl regular closed curves, each of which meets the
others exclusively at critical points of u and surrounds at least one point
of {PI, ... , pN }.

(3) Each, does not surround any other component.
(4) The number of connected components of the level curve {x E il : u(x) = t}

is finite.

PROOF. Proof of ( 1 ): Since the level curve in question is compact, the
implicit function theorem guarantees that -1 is a simple C 1 regular closed curve.
In view of the simply-connectedness of S2, (1.6) and the maximum principle
imply that u is the boundary of a component of {x E Q : u(x) &#x3E; t}. Hence, by
Lemma 2.4, , has to surround at least one point of { pl , ... , pN } . Proof of (2):
With the help of the theorem of Hartman and Wintner, we can prove this along
the line of the proof of (1). Proof of (3): This is a consequence of the maxi-
mum principle as in the proof of (1). Proof of (4): This is a direct consequence
of (1), (2) and (3), since the number of elements of the set { pl , ... , pN } is finite.

D

Since the critical points of u are finite in number and 0 has no critical
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point in {x E Q : &#x3E; 0 1 other than pl, ... , pN, it follows from Lemma 2.3(2)
that there exists a small number r &#x3E; 0 which satisfies the following:

where each denotes an open ball with radius r centered at pj.
Hence there exists a sufficiently small number 6 &#x3E; 0 such that Vuf0 in
x E Sz : max y - 6  u(x)  max lb). Therefore, it follows from Lemma 3.1

Q 0

that the set {x u(x) = max 1b - consists of N simple C1 I regular closed
Q

curves for any 0  7y  d .

Let us show that there exists at least one critical point of u in Suppose
that Vu f 0 in Q(I. Then Vu f 0 in since Vu f 0

u 2
on by virtue of Hopf’s boundary point lemma. Therefore, with the help
of the implicit function theorem, we see that {x e Q : u(x) - max y - 61

_ 

Q 
_

is C1-diffeomorphic to {x E S2 : u(x) - 0}). Indeed, let rs - {x 
u(x) = s 1. By Lemma 3.1, for 0  s  F, consists of a finite} Y 

n 
y- 

2
number of simple C 1 regular closed curves, each of which does not surround
any other one. Furthermore the interior domain surrounded by rs is the level
set {x e Q : u(x) &#x3E; s}. Since the interior normal derivative of u with respect to
this domain is positive on F,, with the help of the implicit function theorem we

see that for any 0  s  max 0 - 1 6 there exists a small numbers &#x3E; 0 such" 
n 

~’ 
2

that rt is C 1-diffeomorphic to rs for all s - ~  t  s + e. Also, for ro there
exists a small number eo &#x3E; 0 such that rt is C1-diffeomorphic to ro(= aSZ)
for all 0  t  Since the interval [0, max y Q 6] is compact, we conclude

0

that rmax v,-6 is diffeomorphic to aK2. This is a contradiction, since N &#x3E; 2.
Q

Then, there exists at least one critical point of u in S2BI.
Let x 1, ... , Xk E s2BI be the critical points of u and let mi,..., be the

respective multiplicities. We may assume that there is no critical point of u in
Q except the points x 1, ... , pN.

As in the proof of Lemma 2.7, we first consider the case = ... =

U(Xk) = t for some t E R. Since in {x E S2 : u(x)  t}, then by the
same arguments as above {x E S2 : u(x) = s} is Cl-diffeomorphic to aS2 for any
0  s  t. Therefore, by the continuity, the level curve {x u(x) = t} is
connected. Indeed, in view of Lemma 3.1(4), suppose that this level curve has
exactly h components (h &#x3E; 2), say 11,..., ~h. Then the set t}
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has exactly h components with boundaries 11,..., Ih respectively.
Put Bj = { x E 0.; dist(x, Aj)  ~ } for a small number 1/ &#x3E; 0 and for each
1  j  h. Since each A j is compact, by choosing q &#x3E; 0 sufficiently small we

_ h
may assume that Bi if Since u(x)  t for any x c QB ~J Aj,

j=l
_ h

there exists a number 6 &#x3E; 0 such that u(x) ::; t - ê for all x E S2B ~J Bj.
j=l

Consider the level curve rs(= x u(x - s})  s  t. Then,) }) 2
in view of Lemma 3.1 we see that this level curve rs consists of h simple C’
regular closed curves, each of which is contained in = 1,..., h). This
contradicts the fact that F, is Cl-diffeomorphic to aS2.

Hence, by Lemma 2.6 and Lemma 3.1 the number of connected
k

components of { x Ei K2 : u(x) &#x3E; t } is exactly r mj + 1 and each component
j=l

contains at least one point of Of course all the points PI, pN
are contained in these components. Furthermore, each component contains

exactly one point of { p 1, ... , Indeed, suppose that there exists a component
containing at least two points of {pl, ... pN}, say w. By Lemma 2.2(2), we note
that w is simply connected. Furthermore, using the theorem of Hartman and
Wintner, we see that there exists a small number - &#x3E; 0 which satisfies

(3.4) {x E w : u(x) = t + 6*} is a simple C1 regular closed curve.

Of course we already know that

(3.5) 
{x E w : u(x) = max 1b - 61 consists of at least two simple-

(3.5) 
C 1 regular closed curves.

On the other hand, since Vu f0 in {x E w : t  u(x)  max V)I, by using
12

the implicit function theorem as above, we see that { x E w : = t + 61 is

Cl-diffeomorphic to {x E w : u(x) = m~ax ~ - 8}. This contradicts (3.4) and
Qk

(3.5). Consequently, we get L mj + 1 = N.
j=l

Consider the general case as in the proof of Lemma 2.7. We use the
same notation as in the proof of Lemma 2.7 (see (2.1 )). We want to prove

k it
that Let us prove that ljjl for 1  .~  s + 1

j=l j=l

by induction on the number t. We remark that since any local maximum

point of u is a global maximum point of u, by definition Jjn consists of

components of { x E Q : u(x) &#x3E; only. When t = 1, we have already
shown this as in the case ~(a:i) = ... = U(Xk) = t for some t E R. Suppose
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ip
that + 1 for p &#x3E; 1. Let £ = p + 1. Then {x jP+1, ... , C 

j=1 
and each xj (1 = jp + 1,... ,Jp+1) belongs to some w E Jjp which is a

component of { x E S2 : u(x) &#x3E; Let (zj~+i, ... , zj~~ ) be contained in
exactly q components ~i,...,o~. In each Wi (1  i  q) the level curve

{x e Wi : u(x) = is connected. Indeed, since each Wi is simply connected
by Lemma 2.2(2), using the theorem of Hartman and Wintner we see that

{x E w2 : u(x) &#x3E; is a simple C1 regular closed curve for small E &#x3E; 0.

Furthermore, since for {x E w2 :  u(x)  by the same
argument as in the case ~(a:i) = " ’ = = t for some t E R we get the above
conclusion.

Therefore, in view of this and Lemma 2.6 counting the number of

components of {x E s2 : u(x) &#x3E; in each Wi (i = 1,... q), we get

k

This shows that mj + 1. Finally, since in fX U(Xk) 
j=l

u(x)  max 01, as in the case = ... = u(zk) = t for some t e R, we obtain
0

a one-to-one correspondence between Jk and Therefore we get
= N, which completes the proof. D

4. - Some examples

We give a few examples in the situation of Theorem 2. The first example
shows that there exists a critical point with an arbitrarily large multiplicity.
Precisely, let S2 be a unit open ball in R 2 centered at the origin. Consider
a(p) defined by a(p) = b(lpl)p for some real valued positive function b(.). We
introduce polar coordinates (r, 0). Fix an integer m &#x3E; 1. Put a = 27r/(m + 1).
Consider m + 1 balls Bk (k = 0, 1,..., m) centered at Pk = (1 /2, ka) with radius
r &#x3E; 0. We choose r sufficiently small to make these balls pairwise disjoint. Let
Sp be a radially symmetric smooth function on B = { x E I  r} which
satisfies the following conditions:

and

and
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EXAMPLE 1. Consider an obstacle 1b E which satisfies the following
conditions:

Then, by symmetry, the origin is a critical point of the solution u. Furthermore,
by Theorem 2 and the symmetry the origin is the only critical point of u in
S2BI and the multiplicity of the origin is exactly m. Here N = m + 1 in Theorem
2.

EXAMPLE 2. Consider an obstacle 1b E C2(S2) satisfying (4.3) and the
following conditions:

Then, by symmetry, there exist m + 1 critical points (rl, ka) (k = 0,..., m) for
some 0  rl  1/2, and the multiplicity of each point equals 1. Here N = m + 2
in Theorem 2.

EXAMPLE 3. Let Qj,k = (,~’/3, ka) in polar coordinates for j = 1, 2 and
k = 0, l, ... , m. Let Bj,k be a ball in centered at Qj,k with radius r for

each j and k. Of course we choose r sufficiently small. Consider an obstacle
1b E which satisfies the following conditions:

Then, by symmetry, the set of all critical points of the solution in K2BI consists
of the origin with multiplicity m and m + 1 points (r2, ka) with multiplicity 1

(k = 0,1,..., m) for some 1/3  r2  2/3. Here N = 2m + 2 in Theorem 2.

5. - Obstacle problems for general non-constant boundary data

Let f E C2 (S2) be a non-constant function on Fix a function y e 
satisfying o  f on aSZ. Consider the variational inequality:

Find u E k satisfying
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for all

It is known that there exists a unique solution u to (5 .1 ) and u belongs to
n Let I be the coincidence set as in (1.4). Since ’0  f on 80.,

I is a compact set contained in S2 or empty. Then, only replacing "g &#x3E; 0 on
by "g &#x3E; f on at2" in (1.8), we get (1.5), (1.6) and (1.7). By (1.6), (1.7)

and the maximum principle we see that min f  u  max{max 0, max f } in
aQ Q aQ

S2. Our results for general non-constant boundary data are the following:

THEOREM 6. Suppose that the number of critical points of 0 in {x E Q :
1b(z) &#x3E; finite, where w E C2 (12) n the unique solution of the
Dirichlet problem

If 0 has only N local maximum points and has only M local maximum
points, then the number of critical points of u in SZ is finite and the following
inequality holds

where M 1, - - - , mk are the multiplicities of the critical points of u in SZBI.
THEOREM 7. Assume the hypotheses of Theorem 6 and the following:

(1) ~ has only N global maximum points and has no other critical point in
~x E Q : O(x) &#x3E; w(x)}.

(2) flaQ has only M global maximum points and M global minimum points,
and the tangential derivative of f on ai2 is not zero out of these points.

Then equality holds in (5.2).

REMARK 8. The assumption (2) of Theorem 7 is the same as that for
the boundary data in Theorem 3.1 of Alessandrini (see [1, p. 243]). Although
we can prove these theorems almost along the same lines as in the proofs of
Theorem 1 and Theorem 2, what we additionally have to consider is that the
solution .may have a local maximum point on the boundary a~2 and that the
level curves of the solution may meet the boundary an.

PROOF OF THEOREM 6. If {x E Q : &#x3E; is empty, then u = w in
Q. Therefore the theorem follows from the result of Alessandrini [1]. Assume

in Q and
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that {x E S2 : &#x3E; w(x)} is not empty. Then it follows from (1.6) and the
comparison principle that u(x) &#x3E; w(x) in Q. Of course I is not empty and I is
contained in {x EO.: 1/;(x) &#x3E; w(x)}.

We first prove Lemma 2.1. Suppose that there exists a connected

component w of 92BI such that u is constant in w. Then aw is not empty,
since f is a non-constant function on an. Hence aw n I contains an infinite
number of points. This contradicts the assumption that the number of critical
points of 0 in {x E S2; &#x3E; is finite, since I C {x E Q; &#x3E; 

This shows Lemma 2.1.

Instead of Lemma 2.2 we have the following:
LEMMA 2.2*. For any t E (min f, max{max 1/;, max f 1) we have the

aQ Q a~

following:
(1) The set {x E K2; u(x)  t} u connected.

(2) Any connected component of { x c K2: u(x) &#x3E; t } is simply connected.

PROOF. It follows from the maximum principle and (1.6) that any
component of {x E S2 : u(x)  t} has to meet the boundary Therefore
we get (1). The proof of (2) is the same as that of Lemma 2.2. D

We get Lemma 2.3 by the same proof. Instead of Lemma 2.4 we have
the following:

LEMMA 2.4*. Any local maximum point of u in Q is also a local maximum
point of either IlaQ or 1/;, and the number of local maximum points of u in S2
is at most N + M.

PROOF. By Lemma 2.3(2) any local maximum point of u in SZ belongs
to aQ U I. Let p be a local maximum point of u. If p belongs to I, then p is
a local maximum point of 0. If p belongs to aQ, then p is a local maximum
point of f lao. By the assumptions of 0 and f we get this lemma. D

Using Lemma 2.2*(1) instead of Lemma 2.2(1) we get Lemma 2.5 and
Lemma 2.6 by the same proofs. Instead of Lemma 2.7 we have the following:

LEMMA 2.7*. Let xl, ... , xk E SZBI be the interior critical points of u in
QB7 and let ml, ... , mk be their respective multiplicities. Then u has at least
k 

_

~ mj + 1 local maximum points in S2.
j=i

PROOF. Since in the situation of Theorem 6 any connected component
of a level set Ix u(x) &#x3E; tl has at least one local maximum point of u
in Q (not in S2), the difference between Lemma 2.7 and Lemma 2.7* is only
concerned with the location of local maximum points of u. Therefore the proof
is the same as that of Lemma 2.7. D

By Lemma 2.7* and Lemma 2.4* we get inequality (5.2). This shows that
the number of the interior critical points of u in K2BI is finite and the proof of
Theorem 6 is complete, since Vu = on I. D
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PROOF OF THEOREM 7. Let pl , ... , pN be the global maximum points
of 0 and let ql,..., qM and zl , ... , ZM be respectively the global maxi-
mum points of Ilao and the global minimum points of Ilao. By considering
g(x) - max 1/;(= max f ) in (1.7), we get u  max 0 in Q. Then all the points

a an 0

Pi 5..., PN belong to I. Therefore by Lemma 2.4* the set of all local maximum
points of u in 0. consists of the points PI, - - - , pN, ql , ... , qM. On the other hand,
it follows from (1.6) and the maximum principle that min f  u in Q. Hence

an

we see that min f  u  max f in S2BI. Therefore it follows from (1.5) and
an an

Hopf’s boundary point lemma that the interior normal derivative of u on ao. is
positive at zj (j = 1, ..., M) and it is negative at qj (j = 1, ..., M). Consequently,
by the assumption (2) of Theorem 7 we get on aS2. Hence, by Theorem
6 and assumption ( 1 ) the set of all critical points of u consists of a finite
number of saddle points in SZBI and PI, ... , PN. Therefore, by using the implicit
function theorem, the theorem of Hartman and Wintner and the maximum

principle, instead of Lemma 3.1 we can obtain the following about properties
of the level curves of u:

LEMMA 3.1 *. Let min f  t  max max f ) and let I be a connected
an 0 an

component of the level curve {x E Q : u(x) = t}. Then we get the following:
(1) does not contain any critical point of u, then either ~y is a simple C 1

regular closed curve in 0. surrounding at least one point of lp, ... , pN }
or ~y is a simple C1 regular arc having endpoints on aQ.

(2) If I contains at least one critical point of u, then ~y is a finite collection
of the following two kinds of curves (a) or (b), each of which meets the
others exclusively at critical points of u: (a) simple piecewise Cl regular
closed curves surrounding at least one point of {Pl ... , pN }, (b) simple
piecewise C1 regular arcs having endpoints on age

(3) Each -1 does not surround any other component.

(4) The number of connected components of the level curve {x E 0 : u(x) = tl
is finite.

(5) Every endpoint of arcs as in (1) and (2) on aS2 belongs to only one
arc which has non-zero angle against the boundary an, and the number
of endpoints is exactly 2M.

Since the critical points of u in S2 are finite in number, it follows from

(2) and (3) of Lemma 2.3 that there exists a small number r &#x3E; 0 which satisfies
the following:

(5.3) max u  max 1/;,8Br(y)nn 12

(5.4) Vu(x) fO for any x E (Br(y) n í1) B{y}
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for any y E {PI, ... , and

for any z E {Zl"’" zM}. Of course we choose r &#x3E; 0 sufficiently small to make
these balls pairwise disjoint. Hence there exists a sufficiently small number 6 &#x3E; 0

such that Vu = 0 in fx(=-i2:u(x)minf +6 or max 1/; - 8  u(x)  
an Q 0

Therefore by Lemma 3.1 * we get:

LEMMA 5.1. For any 0  q  6 we have the following:
( 1 ) {x E S2 : u(x) = consists either of (a) N simple Cl regular

12

closed curves in Q surrounding only one point of {PI, PN I or of (b) M
simple Cl regular arcs, each of which has endpoints on aS2 and is a part of
the boundary of a component of the level set {x E Q : u(x) &#x3E; max V) n },

0

where this component contains only one point of I ql, ... , qM }.
(2) {x E 0 : u(x) = min f + 1/} consists of M simple Cl regular arcs, each

an

of which has endpoints on an and is a part of the boundary of a compo-
nent of {x E Q : u(x)  min f + 1/}, where this component contains only

au

one point of {Zl,"’, ZMI.
As in the proof of Theorem 2, let us show that there exists at least

one critical point of u in S2BI. Suppose that Vu=f0 in K2BI. Then Vu=f0 in

For simplicity we put

By using Lemma 3.1 * instead of Lemma 3. l, with the ~help of the implicit
function theorem, after arguments similar to those used in the proof of Theo-
rem 2, we see that is C 1-diffeomorphic to r min This contradicts

n an

Lemma 5.1. Therefore there exists at least one critical point of u in S2BI.
Let x 1, ... , xk E i2BI be the critical points of u and let m 1, ... , rrak be the

respective multiplicities. We may assume that there is no critical point of u in
except the points X 1, - - - , , x k,pl, .... ,pN

We first consider the case U(Xl) = ... = U(Xk) = t for some t E R.
Note that min f +6  t Since Vu f0 in {x e Q : u(x)  t},

au a

then r, is C 1-diffeomorphic to rmin j+5 for any nun f  s  t. Hence in
an aL2
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view of Lemma 5.1(2) we see that Os is connected for any s  t. There-
fore SZt is connected. Indeed, since by virtue of Lemma 3.1 * the bound-

ary of SZt consists of arcs of aS2 and arcs of rt as in Lemma 3.1 *, if

Ot is not connected, then by arguments similar to those used in the proof
of Theorem 2 we see that ilt-, is not connected for small E &#x3E; 0. This is
a contradiction. Therefore, by Lemma 2.6 and Lemma 3.1 * the number of

_ 

k

connected components of {x E Q : u(x) &#x3E; t} is exactly + 1 and each
j=l

component contains at least one point of { pl , ... , pN, ql , ... , ql,,I } . Of course all
the points pl , ... , pN, ql , ... , qM are contained in these components. Furthermore
we obtain a one-to-one correspondence between these components and these
points. Indeed, as in the proof of Theorem 2, suppose that there exists a

component containing at least two points of {pl, ... , pN, ql, ... , qM}, say w. By
Lemma 2.2*(2) w is simply connected. Furthermore, by using the theorem of
Hartman and Wintner we see that there exists a small number - &#x3E; 0 satisfying

On the other hand, since Vu f0 in {x E w : t  u(x)  max 1/;}, so fx E w :
92

u(x) - s} is C 1-diffeomorphic to { x E w : u(x) - max y - 6 1 for any
0

t  s  max 0. Therefore by Lemma 5.1 ( 1 ) we get
f2

{x E w; u(x) &#x3E; sl has at least two components
(5.10)

for 
f2

This contradicts (5.9). Consequently equality holds in (5.2).
Consider the general case as in the proof of Lemma 2.7 (see (2,1 )).

By modifying the arguments in the proof of Theorem 2 as in the case

= ... = U(Xk) = t for some t E R, we can prove the equality in (5.2)
along the line of the proof of Theorem 2. Therefore we omit this proof. The
proof of Theorem 7 is complete. D
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