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Convexly Totally Bounded and Strongly Totally Bounded Sets.
Solution of a Problem of Idzik

E. DE PASCALE - G. TROMBETTA - H. WEBER

0. - Introduction

A long outstanding problem in fixed point theory is the following

PROBLEM OF SCHAUDER (Problem 54, [G]). Does every continuous function
f : C ~ C defined on a convex compact subset of a Hausdorff topological linear
space have a fixed point?

Schauder [S] gave a positive answer to this problem if the linear space
is a Banach space. Thychonoff [T] generalized Schauder’s theorem for locally
convex spaces. Schauder’s problem is still open even for pyptrizable (nonlocally
convex) spaces. Idzik [11] proved that the answer to 5phauder’s problem is

"yes" if C is convexly totally bounded. This notion was introduced by Idzik
[11]: A subset K of a topological linear space E is called convexly totally
bounded (ctb for short) if for every 0-neighbourhood U there are x 1, ... , xn E E

and convex subsets Cl,..., Cn of U such that Idzik formulated

- comparing his theorem with Schauder’s problem - the following
PROBLEM (cf. Problem 4.7 of [12]). Is every convex compact subset of a

Hausdorff topological linear space ctb?

A positive answer to this problem would imply a positive answer to

Schauder’s problem.
In the first section of this paper we give a negative answer to Idzik’s

problem. In Section 2, we introduce the notion of strongly convexly totally
bounded (sctb) sets and in Section 3 a parameter, which measures "the lack
of strongly convexly total boundedness". This notion and this parameter is -
in contrast to convexly total boundedness - invariant when one passes to the
convex hull of a set. That admits the formulation of a fixed point theorem of
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Darbo type [D] in nonlocally convex spaces. In Sections 4 and 5, we examine
the mentioned parameter in the space lp (0  p  1) and in the space Lo of
measurable functions.

The notion of sctb sets and the corresponding noncompactness measure
is the main tool in [DP/T2] to get a best approximation result of Fan type in
nonlocally convex linear spaces. In [W] strongly convexly total boundedness is
linked with affine embeddability in locally convex spaces.

The main results of this paper were presented on the conference "Approxi-
mation Theory, Spline Functions and Applications" at Acquafredda di Maratea,
Italy, April 29 - May 9, 1991.

In this paper we use the terminology of [J]. N and R stands for the sets
of all natural and real numbers, respectively.

1. - A compact convex set not convexly totally bounded

In this section we construct a compact convex set, which is not ctb; this
solves Problem 4.7 of Idzik [12]. We obtain such a set by a modification of
Robert’s example for a compact convex set without extreme point, see [R], [Ro,
Section 5.6]. Robert’s example is based on his notion of needle point; that is a
point zo f0 of an (in the sense of [J]) F-normed linear space (E, ~ ~ ’ ~ ~ ) with the
following property: for every - &#x3E; 0, the ball Be := {3; c B : llxll contains
a finite set F such that co F c and xo E coF+Be. (Hereby co F
denotes the convex hull of F). In our construction, a stronger property plays
an important role: .

DEFINITION 1.1. We call a point xo of an F-normed linear space (E, ~ ~ ’ ~ ~ )
a strong needle point, if Xo f=0 and, for every 6 &#x3E; 0, there is a natural number k
and an infinite subset M of Be such that co M c co f 0, and xo E co F+B,
for every finite subset F of M, with k. (Hereby we denote by F ( the

cardinality of F).

LEMMA 1.2. For each n e N U {0}, let Fn be a finite subset of an
F-normed linear space E and Cn &#x3E; 0 such that co Fn C co Fo + Ben’ Assume

that ~ is totally bounded.

PROOF. Since is a compact subset of a finite dimensional subspace

of E, also is compact. Furthermore, we have
v-v

Therefore it is enough to prove that for all
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For a, [o,1 ), with a + ,~ = 1 and n E N, we have

hence It follows inductively

that therefore and

THEOREM 1.3. Let E be a complete F-normed linear space, which contains
a strong needle point. Then E contains a compact absolutely convex set, which
is not ctb.

PROOF. Let ên &#x3E; 0, with and xo be a strong needle

point of E. Choose infinite subsets Mn of and kn such that

co Mn c co{ 0, xo} + Ben’ and xo E co F + Ben’ for every finite subset F
of Mn, with (F~ &#x3E; kn. Let Fo := 10, xol and Fn be finite subsets of Mn

with for neN. Since is totally bounded by

Lemma 1.2, C and C-C are compact. Therefore the closed absolutely convex

hull of C is a compact subset of C-C containing C. We now

show that C is not ctb; then neither is K. Let - &#x3E; 0, with xo V Sup-
pose that C is ctb. Then there are convex subsets Ci of Be and yi E E such that

Choose n &#x3E; m with ê. Since Fn

and consequently

for some
Therefore

the set F := Fn n (yj + has at least kn elements.

It follows that
, a contradiction.

We now show the existence of strong needle points in the same way as
Roberts has shown the existence of needle points; see [R], [Ro, Section 5.6].
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In the following, let ~p : [0, +oo [--~ [0, +oo [ be a continuous increasing
concave function such that

If U is an algebra of sets and ii a [0, 1]-valued measure (:= finitely additive
set function) on U, we denote by S(U) the space of real-valued U-simple
functions, i.e. the linear hull of the system of all characteristic functions of sets
of U ; furthermore we put

and

for f E S(U) and 1  p  +00. II . 11, is then a Riesz pseudonorm in the sense
of [A/B, p. 39] and Ilfllcp c for f E S(U).

In the following let Uo be an algebra in the power set P (Qo) of a non-empty
set Qo,

tto : Uo --+ [0, 1] a measure with J-lo(o.o) = 1,

(An) a sequence in Uo with 0  ito(A,,) -+ 0 (n ~ oo),

For f : R and i G N, we define

LEMMA 1.4. Let f E with

For the proof, see [Ro, pp. 244-245] or [R, Lemma 3.8].

LEMMA 1.5. Let 0  b  1 and 6 &#x3E; 0. Then there are a non-negative
function f E S(Uo) and a number a E]O, b[ with the following properties:
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For the proof, see [Ro, Lemma 5.6.3] ] or [R, Lemma 3 .10] . Hereby, 1.4
is used to prove (iv) of 1.5. With the aid of 1.5, one can prove the following
proposition as [Ro, Proposition 5.6.4].

PROPOSITION 1.6. Denote by fo the constant function equal to 1 on 0.
Let - &#x3E; 0. Then there is a non-negative function f E .S’(Zlo) with the following
properties:

is contained in

there is a kEN such that, for every with III &#x3E; k, we have

For small ê, a function f satisfying (i) and (ii) of 1.6 cannot be constant.
The functions Si(f) are then different for different indices i; therefore M is an
infinite set. It follows:

THEOREM 1.7. Denote by N the space N :_ ~ f E = 0) of all
U-simple null functions. Then . contains strong needle points.

COROLLARY 1.8. Let A be the Lebesgue measure on [0, 1 and y~ : [0, +oo[-
[0, +oo [ be a continuous increasing concave function such that Sp(x) = 0 iff x = 0
and Sp(x)/x -&#x3E; 0 (0  z - +oo). Then the Orlicz space L,,(A) contains a

compact absolutely convex set, which is not ctb.

PROOF. Since the measure algebras induced by A and by A o A o A
are isomorphic, the space L,(A) is isomorphic to the completion of a space
(S(U), 11 . considered in 1.7. Since the last-named space contains strong
needle points, so does L~(~). Now the assertion follows from 1.3.

COROLLARY 1.9. Let A be the Lebesgue measure on [0, 1] ] and 0  p  1.

Then Lp(A) contains a compact absolutely convex set, which is not ctb.

PROOF. Apply 1.8 with Sp(x) = xP for 0  p  1 and = xl(l + x) for
p = 0.
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2. - Strongly convexly totally bounded sets

In this section, let (E, T) be a topological linear space. An important
question in fixed point theory is: under which condition for a set .K c E, the
convex hull of any totally bounded subset of K is totally bounded, see [K, p.
10], [H 1, p. 31], cf. also 3.1 (ii). Easy examples show that the convex hull of
a ctb set does not need to be ctb, see 5.3 (b). Therefore we introduce in 2.1 a
property stronger than convexly total boundedness, which is conserved passing
to the convex hull, see 2.2 (b).

DEFINITION 2.1. A subset K of E is said to be strongly convexly totally
bounded (sctb for short) if, for every 0-neighbourhood U, there is a convex

subset C of U and a finite subset F of E such that K C F + C.

A subset of a locally convex linear space is sctb iff it is totally bounded.

PROPOSITION 2.2. (a) If K, and K2 are sctb subsets of E, then the sets
I~1 U K2, K1 + K2 and a ~ K1 for any a E R are sctb. (b) If K is a sctb subset
of E, then the closed absolutely convex hull aco K of K is sctb.

PROOF. Let U be a circled closed 0-neighbourhood in E.

(i) There are finite sets Fi c E and convex sets Ci C U such that Ki c Fi +Ci for
i = 1, 2. Since co(Ci U { 0 } ) c U, we may assume that 0 E Ci. Then the convex
set C := C1 + C2 contains 01 and C2. It follows that K1 U K2 C (Fi U F2) + C,
K1 + K2 C (Fi + F2) + C, C C U + U. Hence Ki U K2 and K1 + K2 are sctb.

(ii) Since Ca. U and K1 C Fi + Ci , C1 1 C U=U,
the sets a ~ Kl and K 1 are sctb.

(iii) Let K be sctb; replacing K by K U ~0~, we may assume that 0 E K. Let F
be a finite subset of E and C a convex subset of U such that K c F+C, and V
be a 0- neighbourhood in E. Since Eo := span F is finite dimensional, V contains
a convex 0-neighbourhood Yo in Eo; morover co F is a compact subset of Eo. It
follows that there is a finite subset Fo of Eo such that co F c Since K
is a subset of the convex set co F + C, we get co K c co F + C c Fo + (Vo + C),
where Yo + C is a convex subset of V + U. We have proved that co K is sctb.
Since aco K c co K - co K, the set aco K is sctb by (i). It now follows from

(ii) that the closure aco K is sctb.

Obviously every sctb set is ctb. In 5.3 (b), we give an example for a ctb
set, the convex hull of which is not ctb; by 2.2 (b), such a set is ctb, but not
sctb. But we do not know whether there are also convex ctb sets, which are
not sctb.

In [W, Section 2] it is proved that a compact convex subset K of E
is sctb iff there is a locally convex linear topology u on E such that the
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relative topologies a I K and coincide. Using the easy implication (=) of
this equivalence for a = Q (E, E’) one obtains:

PROPOSITION 2.3. If the continuous dual E’ of E separates the points,
then every compact convex subset of E is sctb.

Other examples for sctb sets are the compact convex order-bounded subsets
of Orlicz function spaces, as mentioned at the end of [W, Section 2].

In 3.5 we will use the following fact:

PROPOSITION 2.4. Let (TZ )iEI be a family of linear topologies on E and
T = sup Ti. Then a set K c E is sctb, ctb or totally bounded in (E, T) iff K is

icI
or totally bounded in (E, Ti), respectively, for every i E I.

PROOF (of the non-obvious implication (-4--) in the sctb case). Since ev-
ery 0-neighbourhood in (E, T) is a 0-neighbourhood in (E, sup Ti) for some finite

subset J of I, we may assume that I is finite. Inductively iej can reduce the
assertion to the case that T is the supremum of two linear topologies Tl and T2.

Let U be a 0-neighbourhood in (E, T) and Y be a 0-neighbourhood in
(E, Ti) such that (VI - VI) n (V2 - V2) c U. By assumption, there are con-

vex sets Ci c Vi and elements xr, ys E E such that and

V 

arbitrary of E if Crs = 0. Then i

is a convex subset of U. Moreover

3. - Noncompactness measures

One of the main tools in fixed point theory, after the pioneering work
of Darbo [D], is the noncompactness measure. There are many axiomatic

approaches to this concept (cf. [B/G], [B/R], [Rz], [HI] ] and references therein).
All the approaches try to describe the minimal properties for a fixed point result.
An axiomatic approach can be useful also in the frame of nonlocally convex
spaces. Let I be a non-empty set and V = [0, +oo]I the set of all functions from
I to [0, +oo]. V will be equipped with the usual agebraic operations, the usual
order, and with the topology of pointwise convergence.

Let E be a Hausdorff topological linear space.

DEFINITION 3.1. We call a set function p : 2E --~ V a noncompactness
measure in E, if y~ has the following properties.
(1) If A is a convex complete subset of E and = 0, then A has the fixed

point property.
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(3) A C B implies p(B).

(4) If (An ) is a decreasing sequence of complete non-empty subsets of E with
is non-empty.

Classical examples of noncompactness measures with V = [0, +oo] are the
Hausdorff measure [G/G/M] and the Kuratowski measure [Ku].

DEFINITION 3.2. Let C be a non-empty subset of E and ep a

noncompactness measure in E. A continuous function f : C - C is said
to be a p-contraction if there exists 0  q  1 such that q - ep(A) for
every subset A of C.

THEOREM 3.3. let C be a non - empty com subset q/’ E QaTHEOREM 3.3. Let C be a non-empty complete convex subset of E, p 
a

noncompactness measure and f : C --+ C a ep-contraction. If ep(C) E [0, 
then f has a fixed point.

PROOF. It is classic. We define inductively a sequence of sets by Co := C
and Cn+i := co f (Cn). We have .

By Axiom 4 in Definition 3.1, the set is non-empty, moreover

complete and convex. Since Coo and = 0, the statement follows

by Axiom 1 in Definition 3.1.

The crucial problem in the previous approach is that Axiom 2 in

Definition 3.1 in general does not hold in the nonlocally convex case for
the noncompactness measures usually used in locally convex spaces, cf. [H2],
[DP/T1].

We will see in 3.8 that the set function 18 introduced below, which
measures the "nonstrongly convexly total boundedness", is a noncompactness
measure in the sense of Definition 3.1.

In the following, let (11 - ’ be a family of F-seminorms inducing the
topology in E.

NOTATION 3.4. For i E I and A C E we put

there is a finite subset F c E such that A c F + 

there are x 1, ... , xn e E and convex subsets Ci,..., Cn
fl.

of Bi,, such that

there is a finite subset F c E and a convex subset C
of Bi,, such that

Furthermore,
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~y is the noncompactness measure of Hausdorff. The set function 1 is in
some sense equivalent to the "measure of the lack of convex precompactness"
introduced in the [DPrr1], Definition 2.1 ] .

PROPOSITION 3.5. Let A C E.

(a) -I(A) 5 ;y(A) 5 1s(A). The three measures coincide if the F-seminorms
11 ( . Iii i are even seminorms.

(b) A is sctb, ctb or totally bounded iff 1s(A) = 0, 1(A) = 0 or ~y(A) - 0,

respectively.

PROOF. (a) of 3.5 is obvious; (b) follows from 2.4. Hereby observe that
e.g. 1i,s(A) = 0 iff A is sctb in the II . IIi-topology.

LEMMA 3.6. 7, 1 and 1s have property (3) and (4) of 3.1.

PROOF. Obviously, ~y, 1 and 1s are monotone. By 3.5 (a), it is enough to
show that 1 has property (4). Let be a decreasing sequence of complete
non-empty subsets of E with 0 (n - oo) and xn E An for n E N.
Then

hence E N}) = 0 and i c N} is relatively compact. There-
fore (zi : i has cluster points, which obviously belong to the intersection

REMARK. 3.7. An obvious modification of a part of the proof of 2.2 shows
that 18 has property (2) of 3.1, whereas 1 and - do not as Example 5.3 (b)
shows and therefore - satisfy (1) of 3.1 by Idzik’s fixed point theorem [11,
Theorem 2.4]. Whether 1 satisfies (1) of 3.1, is exactly the problem of Schauder
mentioned in the introduction.

COROLLARY 3.8. 18 is a noncompactness measure in the sense of 3.1.

An obvious generalization of the proof of 2.2 (a) yields:

PROPOSITION 3.9. Let A2, and a E R. Then
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4. - Noncompactness measures in lp, 0  p  1

Let 0  p  1. For any real sequence x = (xn), we put

The space is an example for an F- normed, nonlocally convex space,
in which I(A) = 7y(A) = - (A) holds for every convex subset A.

THEOREM 4.1. (a) If A is a pointwise bounded subset of lp, then

(b) If A is a convex subset of lp, then ~y(A) _ 1(A) = 1s(A).

PROOF. (a) For n E N denote by Pn : h the projection -

(~i,..., xn, 0, 0,...). Let Qn = I - Pn, where I is the identity. Put a (A) := 
xEA

and

for

and F be a finite subset of h with

Let A be pointwise bounded. Then

Then a for some n e N. Since Pn (A) is a bounded subset of
a finite dimensional space, I(Pn(A)) = 0 and from A C Pn(A) + Qn(A) follows

(b) By (a) and 3.5 (a), it is enough to prove that 7s (A)  T(A), if A
is convex and pointwise bounded. Let a &#x3E; T(A). As in (ii), we get ~s(A) 

for some n Morover, = I(Pn(A)) = 0 since
Pn(A) is contained in a finite dimensional space and Or(Qn(A))  a,

since Qn(A) is convex.

It follows from 4.1 (b) and 2.2 (b):

COROLLARY 4.2. A subset of lp is sctb iff its convex hull if totally bounded.

By 4.1 (b) or by 2.3, a convex subset of h is totally bounded iff it is ctb
iff it is sctb. In [W] it is proved that any subset of lp is ctb iff it is sctb. On
the other hand t p contains totally bounded subsets, the convex hull of which is
not totally bounded; such a set is totally bounded, but by 2.2 (b) not sctb.

A statement analogous to 4.1 (a) is given in [B/G] if 1  p  oo.
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5. - The non compactness measure 1s in Lo

In the following, let Q be a non-empty set, u an algebra in the power set
P of Q and 7y : P (0.) ---+ [0, +oo[ a submeasure, i.e. a monotone, subadditive
function with r~(~) = 0. Then IIIII := inf{a &#x3E; 0 : a})  a} defines a group
seminorm on R’2. Let Lo be the closure of the space S := span{XA : A E U)
of u -simple functions in . 11). We will identify functions f, g E V, for

= 0. Then the space (Lo, II. II) of "measurable functions" becomes
an F-normed linear space.

In [A/DP], [T/W], the following two parameters A and w are used to

estimate the noncompctness measure 1 in Lo:

A(M) := inf{ ê &#x3E; 0 : there is an a E [0, +oo[ such that 7y({|f| I &#x3E; a})  E for all

f eml,
w(M) inff6 &#x3E; 0 : there is a partition A1, ... , An E U of 0. such that

for every f E M there is a set D C S2 with 7y(D)  - and

By [T/W, 2.2.9] we have max1
use the following parameters:

To estimate "1 s we

there is a set D c Q such that n (D)  6; and

w(M) := &#x3E; 0 : there is a partition A1, ... , An E U of Q and a set D c K2
such that r~ (D)  ~ and sup f (s) - /(~)~ : : s, t E Ai BD }  ê, for

Obviously, A  A and w  w .

THEOREM 5.1. ~yS(M)  ~y(M) + w(M) holds for M C Lo.

PROOF. It is similar to that of the known inequality A+w. Let a &#x3E; A(M)
and ,Q &#x3E; w(M). There are sets Di, D2 C Q and a partition Ai,..., An E u of Q
such that

Let k, m E N such that 1/m  a and -s + k/m &#x3E; s. We put Y :=

and there is

a g E F such that ( f (x) - g(x) I - l/m+/?/2  a +,3 for every x E S2B(Dl U D2);
therefore f - g E C := {h E Lo : E + D2)1  a +,31. Since
F is finite and C a convex subset of it follows that ~s (M)  

One immediately sees that A(coM) = A(M) and 0(coM) = w(M) for
M c Lo and that A and w are monotone. Therefore it follows from 5.1 and 3.8:

COROLLARY 5.2. A + w- is a noncompactness measure in Lo (in the sense
of 3 .1 ).
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We see in 5.3 (a) that in the inequality cannot

replace A, LV, 1 by A, a7, 1s.

EXAMPLE 5.3. Let U be the Borel algebra of Q = [o, 1 ] and J-l = 
the Lebesgue measure. Let A 1~2,... be an enumeration of the intervals

[(i - 2)/2n, i/2n[ [ (i, n E N; i  2n), (an) a sequence of positive numbers such

(b) M is ctb. But co M is not bounded and therefore not ctb if

(a) We prove the last assertion. If &#x3E; 0 and

for n &#x3E; no and C is a convex

subset of B,. Hence M is sctb.

are convex subsets of Be and is finite.

Hence M is ctb.

Let bi := ak if Bi = Ak. Then

Therefore co M is not bounded (in the linear topological sense), if 
+00 (n - oo).

EXAMPLE 5.4. Let U, 0., q be chosen as in 5.3 and n 

and therefore

therefore

In contrast to 5.4, we will see that, under the assumptions of 5.4,
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PROPOSITION 5.5. Let M C Lo and Then and

PROOF. Let A(M) = 0. By 5.1, it is enough to show that A(M)  w(M).
Let a &#x3E; w(M). Then there is a set D c Sz with  a and a partition
Al,...,A,, of Q such that

We may assume that &#x3E; 0 for i  m and Ai c D for i &#x3E; m, for some
Since A(M) = 0, there is a b c [0,+oo[ [ and, for every f E M, a set

D( f ) c Q such that q(D(f))  and b for x E Q(D( f).
im 

-

Let f c M and x c QBD. We show that a + b. In fact, if i  m with
x E Ai, then q(D(f))  77(AiBD); therefore there is an y E (AiBD)BD( f ) and

if (x) - + a + b. It follows that A(M)   a.

PROPOSITION 5.6. Assume that q(B) = B C A E U) for any
B and := additive. Let M C Lo and w(M) = 0. Then

A(M).

PROOF. Let w(M) = 0 and a &#x3E; A(M). By assumption, there is a set

D E U, with q (D)  a, and a number c &#x3E; 0 such that c for f E M
and x e S2BD. Ml := Lo ’ XD is a convex subset of Ba, hence a.

The set M2 . := M ’ XQBD is totally bounded, since w(M2) = a(M2) - 0. On
the ]] . )]-topology coincides with the II . Ill-topology, where

Thereofore M2 is also totally bounded with respect to the

(semi-)norm ||. . III and therefore sctb, i.e.
follows

Under the assumption of 5.6, a set M C Lo is sctb if w(M) = y(M) = 0, in
particular, if M is totally bounded and X(M) = 0. The next proposition clarifies
the meaning of X(M) = 0.

PROPOSITION 5.7. Assume 

PROOF. ~: Let A(M) = 0. By assumption, there are An E U and
such that

....

and and

4=: Let Sp be a positive function of Lo, M c [-cp, p] and E &#x3E; 0. Then there

is a positive number c such that r~({y~ &#x3E; c~)  c, hence A(M)  c})  6;.
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