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Holomorphic Symplectic Normalization of a Real Function

S.M. WEBSTER*

Introduction

The invariant theory of a real-valued function r defined on an open set
in C n or other complex manifold is generally simpler than that of an equation
r = 0, or real hypersurface. If f is a local biholomorphic mapping defined near
a point z, the transformation r --&#x3E; r o f clearly preserves the value r(z), the

complex differential 8r(z), the complex Hessian (or Levi form) aar(z), and
its null space and signature. If the Levi form is non-degenerate, it defines a
Kahler metric, and higher order invariants may be systematically derived form
the curvature tensor via covariant differentiation. This is entirely analogous but
much simpler than the invariant theory of a non-degenerate real hypersurface
(see Chem-Moser [3]). Degenerate, in particular weakly pseudoconvex, real

hypersurfaces play an important role in function theory and have been much
studied. However, there is as yet nothing like a systematic invariant theory for
them. As a step toward such a theory we consider the invariants of a function r
near a point where the Levi form degenerates, but under the larger pseudogroup
of local holomorphic symplectic transformations. Enlarging the group naturally
tends to reduce the number of invariants, and of the above mentioned ones we
shall see that only the null space of the Levi form remains.

To describe the transformation procedure, we let denote the

holomorphic ( 1, 0)-cotangent bundle and the natural projec-
tion. On we have the canonical one- and two-forms

where the pa are holomorphic fiber coordinates relative to the holomorphic
coordinate system zll If we identify T* (C n) with the real cotangent
bundle of in the usual way, then Re 0 and Re w correspond to the
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canonical forms of real symplectic geometry. As is well known, the graph of
dr, or in our notation the image of ar in T*(C’), which we write as

is a maximal submanifold on which Re w vanishes. In the present context such a
manifold will be called real Lagrangian. The local theory of such submanifolds
is the main objective of this work.

If C : T’*(C") - is a (local) holomorphic symplectic (or canonical)
map, i.e., = w, then it is also real symplectic, so M* = is also real

Lagrangian. We assume that M* is also transverse to the fibers of the projection
-x. (This may fail in important cases, but they will not arise here). M* is then
the graph of a (1, 0)-form whose real part is d-closed by the real Lagrangian
condition, and so locally equal to dr*. The real function r*, determined up to
a constant, is the symplectic transform of r.

One of the first important works in holomorphic symplectic geometry
is that of Lempert [4], in which a global version of the above process is
used to construct interesting solutions to the homogeneous complex Monge-
Ampere equation. This is based on the following. Let s denote the section of

defined by ar. Then 8r = and liar = d8r = s*w = 
(7r o 4S o s)*((9ar*). Thus, the null vectors of liar correspond to those of o9ar*
under 7r o C o s, as we claimed above.

If the Levi form is non-degenerate, then there are no further invariants.
In fact, all real analytic non-degenerate functions are locally equivalent under
holomorphic symplectic transformation. This is a consequence of the real analytic
Darboux theorem. Our first main result is the following formal power series
generalization.

THEOREM 0.1. Suppose that r is a real valued, real analytic function
defined near 0 in en, and that its Levi form has rank m, 0  m  n. Then
near 0, r may be transformed into the formal power series form

by a formal symplectic as above. Here the functions are

formal power series in all the variables (z, z) without constant terms.

The original function r may of course be only a formal power series, in
particular the Taylor series of a smooth function at 0. The partial normalization
(0.3) prepares the way for the investigation of higher order invariants, which
requires a study of the isotropy group of the form (0.3) and how it acts on

the coefficients In case m = n, there are no terms and we have a

convergent transformation 1&#x3E;. If m = n - 1, there is precisely one third order
invariant, which can take the values 0 or 1. It is 1 in the generic case, which
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means that (8ar)n vanishes along a real hypersurface which is transverse to the
one-dimensional Levi null space.

Our second main result, also formal, concerns such generic degeneracies
when n = 1.

THEOREM (0.2). Let r be a real-valued, real analytic function of one
complex variable z defined near z = 0. Suppose that rzz(o) = 0, 0. Then
near 0, r may be formally transformed into the cubic function

by a formal power series symplectic map (D.

Thus, Theorem 0.2 completely settles the problem of symplectic invariants
in the case considered. Both theorems indicate the lack of invariants; that is,
any smooth function can be so normalized to arbitrarily high order.

The proof of Theorem 0.1 proceeds rather directly via a formal power
series construction of a generating function for the transformation 1&#x3E;. This is
done in Section 2 after the preliminary considerations of Section 1. The proof
of Theorem 0.2, which may be viewed as a symplectic analogue for the normal
form in Moser-Webster [5], is much more indirect. It begins in Section 3 where,
as in [5], we pass to the complexification Mc of the surface M. On Mc there is
induced a pair of holomorphic involutions Tl , T2 in addition to the holomorphic
two-form w. The study of M is reduced to the study of this triple I

together with the anti-holomorphic involution of complex conjugation. In Sec-
tion 4, we show that the pair Tl , T2, which has a parabolic character, can be
formally linearized by a change of coordinates on Mc. In Section 5 we apply
a further coordinate change on MI to normalize the invariant two-form w.

1. - Complex tangents and Levi form degeneracy

Let M be defined as in (0.2) with the real valued function r. Its real

tangent planes and their complex "envelopes" are given by

The holomorphic tangent "bundle" is given by

Thus, a vector v = (dz, dp) is in H(M) if and only if its projection 7r(v) = (dz)
is in the Levi null space of r. In particular, M is totally real if and only if the
Levi form of r is non-degenerate.
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H* (M) may also be characterized in symplectic terms as the w-isotropic
subspace of 

In fact, since Re w = 0 on T~, and Hz is i-invariant, it follows that Hz c (Tx).
But C = Tx, so (Tx) c Hx. Hence, = (Tx) = 
It follows that T, is totally real if and only if wIT == is a real (non-
degenerate) symplectic form on This leads to the following.

PROPOSITION 1.1. All real analytic, totally real, real Lagrangian
submanifolds of are locally equivalent under holomorphic symplectic
transformatiou.

For the proof, suppose we are given two such, M and M*. Then the
theorem of Darboux gives a locally real analytic map p : M - M* with

= WIM. The complexification 4S : T*(cn) - T*(cn) of y~ is locally biho-
lomorphic. Both the real and the imaginary parts of the holomorphic (2, 0)-form
4S*w - w vanish when restricted to M. It readily follows that = w on C’~.

We note that locally each manifold of Proposition 1.1 is the fixed point
set of a locally defined anti-holomorphic involution p for which p*w = -We The
proposition is analogous to the result in real symplectic geometry [1] ] which
states that, locally, intrinsic equivalence implies extrinsic equivalence for all
submanifolds of a real symplectic space. When M is not totally real, as in
Section 3 below, additional conditions will generally be required.

We add a remark on Poisson brackets. For any smooth function f, the
real and complex Hamiltonians are defined respectively by (t = interior
product)

In case f is real-valued, one has 2X f = Hjl ,0). The real and complex Poisson
brackets are given by

If both f and g are real, ( f , g)r - 4 Re( f , g)~ . Suppose f = 0,...,/~ = 0 are
independent equations defining M2n c Then M is real Lagrangian if
and only if = 0 on M. However, the brackets need not vanish.
Let the f i be the real and imaginary parts of Ra in (0.2). Then

Thus, the complex Poisson brackets will vanish on M if and only if r is

pluri-harmonic. M is then a holomorphic Lagrangian submanifold.
Every holomorphic point mapping of induces a holomorphic symplectic

mapping of which also preserves the 1-form 0. Any holomorphic
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function h generates a symplectic mapping by

which takes the surface pa = aar into pa = ~(r 2013 ~ 2013 h). It allows us to remove
the purely holomorphic and anti-holomorphic terms from the Taylor expansion
of r to any order. Therefore, we assume that r has the form

where b is an Hermitian form.
The sign of any non-zero eigenvalue of b may be changed as follows.

Suppose is diagonalized and Ai f0. The involution

gives in (0.2)

Solving for p*, we get the new eigenvalues al = A~ = Aj. Thus we may
assume

With these normalizations and index ranges we have (z, p) = 0 E M and

The linearized symplectic isotropy group of M, thus normalized at 0, is
still rather large and acts on the higher order terms in r in a complicated way.
Therefore, in the next section we consider maps 4S with 4S(0) = 0, do(0) = I.

2. - The generating function

The mapping (~*,p*) =0(~p) is symplectic if and only if
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This will hold if the graph of (D is an integral submanifold of the Pfaffian
equation

for some generating function 9 on the product space. Choosing

we get

This describes 4S implicitly; the second equation is solved for p* and substituted
into the first. It follows that = 0, = I, and that therefore 4S preserves
the form (0.2), (1.1), (1.2) of M. If we substitute (2.1) into the corresponding
equation (0.2) for M* = 4S(M), we get (dropping indices)

When restricted to M; i.e., when

1-~* o C vanishes, and we get the basic functional relation

Here (z*, p*) are eliminated via (2.1 ), p by (2.2) and an analytic, or formal

power series, equation in the variables (z, z) results.
With a standard multi-index notation (A = (a 1, ... , ak), zA = Zal ... Zak,

HAB symmetric in the indices A and in the indices B), we write

We assume that for a fixed s in Z +, the terms HI, 3  t  s, have already been
normalized. Then we make a transformation (2.1 ) with
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a homogeneous polynomial of degree s. This gives 4S = I + O(s - 1), and we
must compare terms up to degree s - 1 in (2.3). Since

and there are no constant terms, and H, H* satisfy the reality condition in (2.4),
we get

Also,

and

Hence,

and again by the reality of the series,

The substitution p* = bz gives

so (2.7) is equivalent to

We assume that b is diagonalized as in (1.2). In the non-degenerate case (m = n)
the choice S AB - 1 H makes H*- = 0. Otherwise, we take S’ indepen-
dent of p~, m  J-L  n, and set

This makes HAB = 0, unless both multi-indices contain at least one element

greater than m, in which case there is no change: H*- = This is the

normalization required in (0.3). 
AB AB

We make a sequence (D, = I + O(s - 1), s = 3, 4, 5,..., of such transfor-
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mations with polynomial generating functions and consider the composition

It is clear that T,,,, = lim T, determines a formal power series symplectic map
which takes the given series r(z, z) into the form (0.3), and Theorem 0.1 is

proved.
Because of the way the unknown function S enters the functional equation

(2.3), (via (2.1) and (2.2)), it is not clear how to set up a majorant problem to
prove convergence. There is a good deal of similarity between the present pro-
blem and one treated in [7]. Moreover, the solution to the linearized problem, gi-
ven by (2.10), involves no small divisors as in the case in [7]. However, if one
attempts a KAM argument as in [7], serious difficulties arise in trying to con-
trol the size and shape of the surface M under iteration. At this point we can-
not say whether one should expect convergence or divergence in Theorem 0.1.

We consider the third order terms in (0.3) in the case m = n - 1,

Since det(bii) = +1, an easy computation shows that = 2an. The
Levi-form degeneracy at 0 is called generic if an f0. This means that the zn-
axis, the Levi null space at 0, is transverse to the smooth real hypersurface of
degenerate points. The intersection determines an invariant real line. By a linear
change we may make aj = 0, j  n, an = 1. This may disturb the normalization

(0.3), but we then repeat the above process for s = 3 without altering these new
conditions. Thus, we may arrange

which is the starting point for the further normalizations in the following
sections.

3. - Generic Levi-form degeneracies of a function of one complex variable

We now consider submanifolds of T*(C) GC C~ 2, with coordinates (z, p),
relative to the two form w = dp A dz. All holomorphic curves are Lagrangian;
however, the real Lagrangian surfaces are still rather special. The set of all
Re w-isotropic two planes contains as a codimension-one submanifold the set of
complex lines, and is itself a codimension-one sub-manifold of the Grassmannian
of all real two-planes in C2 . Generic surfaces as studied in [2] and [5] have
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isolated complex tangents, while those considered here have complex tangents
along a real curve.

A real function r(z, z) has a generic Levi-form degeneracy at 0 if rzz(O) = 0,
By (2.12) we may assume

The corresponding surface is

and

which degenerates along the real curve rzz = 0. One could, in theory, proceed
to the further normalization of (3.1) via a generating function ,S as in Section 2;
however, this leads to some very complicated linear algebra.

Thus, we proceed somewhat as in [5], which requires the complexification
of M. For this we replace (z, p, z, w) by X G ((:4,

where (w, q) are given complex variables and (w, q) their complex conjugates.
The original C2 sits in C~ 4 as the diagonal A = {w = z, q = pl, which is the

fixed-point set of the reflection p. The reality condition on r, from now on
assumed real analytic, gives

or r o p = r, s o p = s. The complexification of M is

which is a 2-dimensional complex surface in C4. By (3.5) it is invariant under

p and contains M GC m, The 2-form (3.3) extends holomorphically to M~,
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by the real Lagrangian condition; and

The two projections in (3.4) restricted to MI are two-fold branched

coverings. To see this we use (z, w) as holomorphic coordinates on MI and
suppose 7rl (z’, w’) _ 7rl (z, w). Then z’ = z and if p’ = p gives

which defines (implicitly) the non-trivial covering transformation of 7rl. Similarly,
the covering transformation for 7r2 is

We have 1Ti o Ti = 7ri and by (3.7)

The reality condition gives Tri 0 P = c o 7r2, where c(x, y) = (x, y), and

Letting (z’, w’) tend to (z, w) in (3.9), (3. 10) we see that Tl, T2 have the common,
nonsingular curve of fixed points

which is of course the common branch locus of 7!-i and 7r2, and curve of

degeneracy of w.
Suppose F : CC 2 -t is symplectic and transforms M into M’ = F(M),

both real analytic and of the form (3.2). Let denote the corresponding
data on M’~. Let f : MC -t M’~ be the restriction of the complexified map
(z, p, w, q) - (F(z, p), F(w, q)), or equivalently, the extension of F : M - M’.
Then,

We want to show, conversely, that the symplectic theory of M in C~ 2 reduces
to a study of the quadruple on C~.
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LEMMA 3.1. Let M and M’ be as in (3.1 ) and (3.2). Suppose f : MC -t M’~,
f (o) - 0, is biholomorphic and satisfies (3.14). Then there exists a (local)holomorphic symplectic map F : C2 - C2 with F(M) = M’ inducing f.

To prove this we define F as follows. Fix (z, p) near 0 E C2 and find
X E M" with 7ri(X) = (z, p). Then define F(z, p) - 7r’ o f (X). F is well-
defined by (3.14) and clearly bounded and holomorphic off the branch locus

a thin set (eliminate w between (3.13) and the first equation in (3.6)).
By the Riemann extension theorem f is holomorphic in a neighbourhood
of 0, and by definition 7r~ o f = F o To see that F is symplectic, note that
7rÎ F* = (F o o f )* = f * o 7r~*, and

Hence, off the branch locus, and by continuity everywhere, = dpn dz.
In particular, F is (locally) biholomorphic. By the second equation in (3.14)

Mlc and

Clearly F induces f, and the proof is complete.
It is convenient to make a change of coordinates

We readily find

and

the latter being equivalent to rl = I. From (3.7) and (3.15), w = (xl + sl (x))
dx A dx2, 5i o p = s I = O(2). The change I(x) = (x + transforms C
into the X2-axis, and p o f = f o p. So f preserves the forms (3.16) and (3.17).
From Ti (0, x2) _ (0, X2), we get Hi (o, X2) = 0, or
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Also,

4. - Parabolic pairs of involutions

The pair of involutions 7i given by (3.17), (3.18) with common fixed points
along the X2-axis, has a certain parabolic character. Their theory is somewhat
different from those in [5], which are either hyperbolic or elliptic in nature.
The linearization of a single holomorphic involution by a coordinate change is
a simple matter. The simultaneous treatment of a pair Tl , T2 is more involved
and requires a consideration of the commutator T2T1 T2 1 Tl = (T2 Tj )2 . As in [5]
this leads us to the map a = T2T1,

We consider holomorphic coordinate changes f of the form

which preserve the fixed point set. We have

where Ti*, a*, the new coordinate forms, have the same linear parts as in (3.17),
(4.1 ), and non-linear terms More explicitly (4.3) is written

THEOREM 4.1. There exists a formal power series transformation f (4.2)
which takes the pair of involutions Ti in (3.17), (3.18) into the linear pair
Tt = Ti. If in addition p o Tl = T2 0 p, where p is given by (3.16), then p o f = f o p.

For the proof we decompose the power series Hi, G into homogeneous
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terms,

where the superscript s denotes the degree. We assume inductively that

0, t  s, and try to find F = 

for which 0. Comparing terms of degree s + 1 in (4.4) gives

or

Thus, the basic equation is

which is readily reduced to

where B~ _ ~ is the binomial coefficient. It is clear that the null space of K

is all and the set is a complement of the range of K. It follows
that we can find an fii so that Gis = b:x2. We can then choose F2+l to make
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G2s = 0. We assume that these normalizations have already been performed on
Gs+l. We must then restrict (4.7) to the form

We claim that we now actually have 0. From (3.17), (4.1 ) we get

or

The first component of the second equation = 0. So the first

component of the right-hand side of the first equation has no pure x2 term,
proving our claim:

From (4.12), (4.13), and (3.17) we get H2 o S = H2 o T2 o Ti = Hf. Also, we
have ill = T2H2 o Tl = From this follows

Comparing components in (4.14) and using the properties of K (4.9), we get
(i = 1, 2) 

-

Now (4.12) gives

where the upper sign is taken for i = 1, the lower for i = 2. Now (4.13) gives

Thus, for s even we have h 1 lo = h 120 = 0, while for s odd we have h 120 =

-2hiio.
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We now make a further transformation f with (4.11 ) holding. This

preserves all the above normalizations, and via (4.5) gives

Comparing coefficients for i = 1 gives

For s even we set a 10 = 0 and choose a unique a20 to make h i 20 = o. For s
odd, we set a20 = 0 and choose aio uniquely to make hi20 = 0. By the preceding
paragraph we now have Hs = H28 = 0 in both cases. This completes the inductive
step for the first statement of the theorem.

The normalizations just made on (4.7) are equivalent to

With them is uniquely determined. We define f = p o f o p (see (3.16)).
Then

Setting X2 = 0, we see that f is normalized if f is. Now we suppose that

(3.12) holds, and that the Ti have been linearized to order s + 2 by a normalized
f = I + FS+1. Then

where - denotes equality mod 0(s + 2). Similarly,

By the uniqueness it follows that f = f , or p o f = f o p.
As in the proof of Theorem (o.1 ) we construct the formal map

each f 8 normalized. Under the reality condition we have o p = p o as

formal power series. This completes the proof of Theorem (4.1).
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5. - Invariant two-forms

We now take into consideration the Ti-invariant two-form w which was
ignored in Section 4. Under the transformation (4.2), (4.3) we have w = f *W*,
where w* is 2*-invariant. If p o f = f o p and (3.8) holds for w, then it also holds
for w*. In view of Theorem 4.1 we assume that the Ti = Ti are linear. We must
determine the most general invariant w. From (3.19) and (3.17)

As in the last section we readily see that E(x) = E(x 1 ), = so we

set

If the condition (3.8) holds, it follows that v is a power series with real
coefficients.

To simplify the coefficient E, we apply an automorphism g of the pair Ti
which fixes the origin,

It follows easily from Section 4 that g has the form

For such g we have

Thus we take A = 0, and

and try to make the new E equal to 1. This gives the initial value problem for b

Simplifying, we get
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or, for a suitable ~p, ao,

If the reality condition holds, then ao and the aij are real. In case w is

holomorphic (after linearizing the Ti !), then p is holomorphic.
Substitution of the series

into (5.5) and comparing coefficients gives

where the Pj are certain polynomials with non-negative coefficients, which
involve bk only for k  j. Thus (5.5) has a unique formal solution (5.6), which
has real coefficients under the reality assumption. In the convergent case 
is majorized by the series for

if the constant A &#x3E; 0 is sufficiently large. b(t) is then majorized by the solution
b(t) to

which exists and is convergent by the holomorphic implicit function theorem.
This proves the following.

PROPOSITION 5.1. Let w in (3.19) be invariant under the linear involutions
Ti in (3.17). Then there exists an automorphism g (5.4) of the pair Ti taking w
into the form

Furthermore, g o p = p o g if (3.8) holds, and g is holomorphic if w is.

We may now conclude the proof of Theorem 0.2. Given any power series
(3.1 ) we may truncate it to get a polynomial surface M C C2 and the data

on Mc. By combining the arguments of Theorem 4.1 and Proposi-
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tion 5.1, we may find a map f of Mc which takes the data to that induced by
the cubic (0.4), to a given order. As in Section 3 this induces a symplectic map
F of M onto a surface, osculating that corresponding to (0.4), to high order.
Taking a composition of such maps as in the proof of Theorem 0.1 gives the
map required in Theorem 0.2.

A convergence proof of Theorem 4.1 would, in view of Proposition 5.1,
immediately give a convergence result for Theorem 0.2. In view of results
of Siegel [6] on divergence in the normal form for a symplectic vector field,
positive results are not assured. The main difficulty at this point is in obtaining
estimates for the solution of the linearized problem (4.9).
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