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Limit Semigroups of Stancu-Mühlbach Operators
Associated with Positive Projections*

MICHELE CAMPITI

Introduction

In [2] Altomare has introduced a general definition of the sequence of
Bemstein-Schnabl operators associated with a positive projection and has studied
the limit behaviour of this sequence and of its iterates; moreover, in the
same paper, it is established the existence of a (uniquely determined) positive
contraction semigroup which has an explicit representation in terms of the
Bernstein-Schnabl operators [2, Theorem 2.6].

In [3], we have introduced the definition of the sequence of Stancu-
Muhlbach operators associated with a positive projection in the same general
setting of [2] and we have studied the asymptotic behaviour of this sequence
and its iterates. These results generalize to a wider context that obtained by
Felbecker in [5] in the case of Stancu-Mühlbach operators on the compact
convex set of all probability Radon measures on a compact Hausdorff
topological space K.

In this paper, we are interested to investigate the existence of a positive
contraction semigroup represented by Stancu-Miihlbach operators; also in this
case the results that we obtain generalize the case .M 1 (K) studied in [5] by
Felbecker.

Among the properties of this semigroup, we point out that it is mean-

ergodic and strongly converges to the initial projection as t tends to oo;

moreover, its infinitesimal generator is explicitly determined on a dense subspace
of its domain and, in the case of some convex compact subsets X of RP,
the generator is a degenerate elliptic second order differential operator. As a
consequence it is possible to obtain the solutions of the associated abstract

Cauchy problems in terms of Stancu-Muhlbach operators.

* Work performed under the auspices of the G.N.A.F.A. and the Ministero Pubblica
Istruzione (60%) and supported by I.N.d.A.M.

AMS Classification numbers: 47B55, 47D07, 41A36.
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1. - Recalls and preliminary results

We need to recall some preliminary results.
Let X be a compact Hausdorff space and C(X, R) be the Banach lattice of

all real continuous functions on X, endowed with the sup-norm and the natural
order.

If T : C (X, R) - C (X, II~ ) is a linear positive operator and if S is a subset
of C(X,R), we recall that S is called a T-Korovkin set if, for every net 
of linear positive operators on C(X, R) such that

it results

If T : C(X,R) -~ C(X, R) is a linear positive projection, that is T is a

linear positive operator such that T2 = T, we have the following result (cf. [1,
Theorem 1.3] ad [2, Prop. 1.2]).

THEOREM 1.1. Let X be a metrizable compact Hausdorff space and
T : C(X, R) --+ C(X, R) a linear positive projection such that T(l) = 1 and
the range H = T(C(X, I1)) separates the points of X. Let be a sequence

00

in H which separates the points of X and such that the series L h 2 converges
n=O

uniformly to a function ~ E C(X, R).
Then H U ~~~ (and in particular H U H2) is a T-Korovkin set..

REMARK 1.2. As observed in [2], if X is a metrizable compact space
and H is a linear subspace of C(X, R), H is separable and therefore we may
consider a dense sequence (£n)nEN of elements of H; if we put hn 

. 

for every n e N, we obtain a sequence (hn)n,N in H which separates the points
00

of X and such that the series r hn is uniformly convergent on X..
n=o

At this point, we may recall the definition of the n-th Stancu-Mühlbach
operator introduced in [3]; for simplicity, we consider the Stancu-Muhlbach
operators associated with the arithmetic mean Toeplitz matrix (cf. [3, (2.13)])
and a sequence of positive real numbers (an)neN . ·

Let X be a metrizable convex compact subset of some locally convex
Hausdorff space and T : C(X,R) 2013~ C(X, Il~ ) be a linear positive projection; let
H = T(C(X, R)) be the range of T.

Denote by A(X) the space of all continuous affine functions on X and
suppose that
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(hence H separates the points of X and T(l) = 1), and for every x E X,
A e [0,1] ] and h E H

(1.2) the function x E X ~ h((l - A) x + belongs to H.

For every x E X we shall denote by J.-lx E the probability Radon
measure on X defined by putting

Let n e N, n &#x3E; 1; according to [5] ] and [6] we denote by pn : R - R the
real function defined by putting, for each a E R,

= 1,..., n, we put

for simplicity we write Bvlk = n instead of v = (vl, ... , Vk) E V (n, k) -
If we denote by s(n, k) the coefficient of a n-k of the polynomial pn(a),

we have

and further (cf. [5, (1.1.8), pp. 14-16] and [4, II, pp. 49-50])

Finally, for each (vl , ... , v~) E V (n, k) we consider the function 7rVI,...,Vk :
X ~ --~ X defined by putting, for each (X 1, - - - , E Xk,

Let be a sequence of positive real numbers; for each n E N, n &#x3E; 1,
the n-th Stancu-Mühlbach operator C (X, Il~ ) with respect to
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the projection T, is defined by putting, for each f E C(X, R) and x E X,

where = J-lx for every i = 1,..., k.
If an = 0 the n-th Stancu-Mühlbach operator coincides with the n-th

Bernstein-Schnabl operator (cf. [2, (2.4)]).
The iterates of the Stancu-Miihlbach operators are defined by putting

By utilizing (1.6-8), we have the following formulas, established in [3,
(2.15-19)]; for each n E N, n &#x3E; 1, and for each h E H

moreover, if m &#x3E; 1 and h E A(X)

2. - Limit semigroup of Stancu-Mfhlbach operators

Suppose that (an)nEN is a sequence of positive real numbers.
In order to study some convergence properties in the case where the

sequence converges to a real number b, we assume the following
notations; for every m &#x3E; 1, we put

Am = the linear subspace generated by

1 is an increasing sequence of linear subspaces of C(X, R) and further,
the subspace
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is a subalgebra of C(X, R) which separates the points of X and so is dense in
C (X, R) by Stone-Weierstrass theorem.

Moreover, we consider the linear operator Lo : - defined by putting,
for each and h l , ... , hm E A(X),

The following lemma is contained in [5, (3.5.3), (3.5.4)], but for the sake
of completeness, we prefer to state the proof.

LEMMA 2.1. Let n &#x3E; 1, k = 1,..., n, and for 1 put

with

and where ull and U2l are real constants depending on .~.

Further, for each .~ &#x3E; 2, it results

with

and where wll and W2l are real constants depending on .~.

PROOF. If t = 1, (2.5) holds with ull = U12 = o.
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By induction, if (2.5) holds one has

and hence

with

Then (2.5) holds for £ + 1 with = uil + 1 and U2,1+1 = u2l + f - 1.

Now, if t = 1, (2.6) holds with wll = W12 = 0. By induction, if (2.6) holds
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one has

and hence (cf. (2.5))

with

Then (2.6) holds for .l + 1 with w 1,l+1 = Wll + and W2,1+1 = w2l + tW2, and this
completes the proof..

THEOREM 2.2. Suppose that conditions ( 1.1 ) and (1.2) are satisfied and
suppose that (an)nen is a sequence of positive real numbers such that the

sequence (n - converges to b E R.
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Then for every f E Aoo, we have

PROOF. We utilize the same arguments of [5, pp. 85-94].
m

Let f E Aoo and let rra &#x3E; 1 and h 1, ... , hm E A(X) such that f = I1 h j ; for
j=l

every (x 1, ... , Xk) E it results (cf. (2.4))
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and therefore, for each x E X,

By utilizing (2.5) and (2.6) we obtain
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where s(m) is a natural number depending on m and for each i = 1,..., s(m),

(ci and di are real constants depending on i) and Bi(hl ... hm) belongs to the
linear subspace generated by
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By (1.7-9), (2.7) and by the formulas

k

(with the convention E = 0 if k = 1) established in [5, (1.1.3- 4) and
~ i I

i~j
(1.1.11-12)], we finally obtain
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Since lim n - an = b E R, we can conclude that
noo

REMARK 2.3. In the case X = .M 1 (K), Theorem 2.2 has been obtained by
Felbecker [5, (3.5.2)]; if an = 0 for each n &#x3E; 1, Theorem 2.2 has been proved
by Schnabl [12] in the case X = and Altomare [2] in the general context.

Moreover, as observed in [5, (3.5.5)], if X is the compact real inter-
val [o, 1 ], the space is just the space P([O, 1]) of all polynomials on [0, 1 ]

and the operator Lo : P([O, 1]) - P([O, 1]) is defined by putting LO(f)(x) - -p o ([ 0 ) ( , 1]) Y p g o(f 2

for each polynomial f and x E [0,1]; then Theorem 2.2 and (1-3)
yield

for each polynomial f and x E [0, 1].
In the case an = 0 for each n &#x3E; 1, the preceding formula has been obtained

by Voronovskaja (cf. [8, p. 22]).

Now we want to study the asymptotic behaviour of the sequence

in the case where lim ken) = t &#x3E; 0.
n

THEOREM 2.4. Suppose that conditions ( 1.1 ) and (1.2) are satisfied and
suppose that is a sequence of positive real numbers such that the

sequence (n - an)nEN converges to b E R.
Consider the sequence of Stancu-Mühlbach operators associated

with T (cf. ( 1.10)) and suppose that

(i) T(A2) c A(X)
or, alternatively,

(i)’ A(X) is finite dimensional and T(Am) C An for every m &#x3E; 1.

Then there exists a strongly continuous positive contraction semigroup
(Q(t))t&#x3E;o on C(X, R) such that, for every t &#x3E; 0 and for every sequence

k - of positive integers such that lim t, one has
n--·oo n
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Moreover,

strongly on

and the generator of the semigroup (Q(t))t&#x3E;o is the closure of the linear operator
A : D(A) - C (X, II~ ) defined by putting

for every f C D(A), where

Finally Aoo c D(A) and for every m &#x3E; 1 and hl, ... , hm c A(X),
it results (cf (2.3))

PROOF. Let A : D(A) -~ C(X,R) be the linear operator defined in (2.10).
By Theorem 2.2, we have Aoo C D(A) and therefore D(A) is dense in C(X, R).

Suppose that condition (i) holds. We show that for every A &#x3E; 0 the

range is dense in C(X, R), where I denotes the identity operator
on In fact, fix A &#x3E; 0 and consider 1L E such that J.l(g) = 0

for every g E A), i.e. [L(f) - u,(A(f)) for every f E D(A). So,
A 

1
for every E we have (cf. Theorem 2.2 and (2.3)) = 0.rY f ( ( )) 

A 
u(A(f )) = o.

Moreover, according to Theorem 2.2 and (2.3), for every f E A2 we have

~(f ) A J.l(A(/)) = ~ A p(f ) and so again = 0.

m+ 1

Suppose now 0 on Am with m &#x3E; 2 and let f = rj hi, with
i=1

hi E A(X), for every i = 1, ... , m + 1. Then

since T(hihj) II hr E Am for every i, i = 1,..., m + 1, by virtue of (i).
r 4 i,j 

~ ~ 

Consequently = 0. This implies that p = 0 on Am+1; hence by induction on
m, we have ti = 0 on ~oo and so ~ = 0.
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Thus, we have proved that is dense in C(X, R) for every A &#x3E; 0.

Using a theorem of Trotter [14, Theorem 5.3], we infer that the closure of A
is the infinitesimal generator of a contraction semigroup (Q(t))t&#x3E;o and

for all t &#x3E; 0, where [nt] denotes the integer part of nt.
In particular, every Q(t) is positive. Consider now a sequence 

f 
... 

h h 1. 
A(n) 

Thenof positive integers such that lim - = t &#x3E; 0. Then for every
n-·oo n

Again according to Trotter’s theorem, the closure of tA is the infinitesimal

generator of a semigroup (S(u))u&#x3E;o of contractions and for every u &#x3E; 0

Since the closure of tA is also generated by (Q(tu))~&#x3E;o, we conclude that /
S(u) = Q(tu) for all u &#x3E; 0 and t &#x3E; 0 and so

If, alternatively, condition (i)’ is satisfied, then for every Am is

finite dimensional and, by virtue of (2.7), it is invariant under Qn,an for every
n e N. So, the existence of the semigroup (Q(t))t&#x3E;o which satisfies the properties
indicated in Theorem 2.4, directly follows from a result of Schnabl [13, Satz 4]
(see also a result of Nishishiraho [10, Theorem 1]).

and for each h E A(X) (cf. (1.13))
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hence for each h e H, lim Q(t)(h) = T(h) and for each h e A(X),
t--&#x3E;00

by Remark 1.2, we may consider a sequence in A(X) which sep-
00

arates the points of X and such that the series r h 2 converges uniformly
n=0

to a function 0; since Q(t) is a contraction for every t &#x3E; 0, we have

t im Q(t)(0) = T(o) and by Theorem 1.1, we obtain lim Q(t) = T strongly ont-oo 

C (X, R). Finally, for each f E and t &#x3E; 0, by (2.10) and Theorem 2.2, we
have A( f ) = lim n . f ) _ ( 1 + b) . Lo( f ) and this completes the proof..’

REMARK 2.5.

1. In the context of metrizable Bauer simplexes (cf. Ex. 1.) clearly
condition (i) of Theorem 2.4 (and also condition (i)’) is satisfied.

2. In the case X = M 1 (K), Theorem 2.4 has been obtained by Felbecker
[5]; further, Theorem 2.4 has been proved for Bernstein-Schnabl polynomials
by Altomare in [2] in the general case and by Nishishiraho in [10, pp. 79-80],
in the context of metrizable Bauer simplexes (see also Schnabl [12], [13]). For
the classical Bernstein operators on [0, 1], Theorem 2.4 is substantially known
(cf. Karlin-Ziegler [7] and Micchelli [9]). In these articles a detailed analysis
of the properties of the semigroup (Q(t))t&#x3E;o can be found.

3. Other results on the convergence of iterates of positive operators to
semigroups can be found in [5] and [11]. ’

Finally we give an application of Theorem 2.4 in the case where

X = B(xo, r) is the ball in RP (p &#x3E; 1) of center xo and radius r (other examples
may be obtained in a similar manner in the case where X is the standard

simplex of I~~ or the hypercube of RP (cf. [2, 3.1-2] and [3, ex. 1-2]). In this
case, the n-th Stancu-Mfhlbach operator Qn,an associated with the arithmetic
mean Toeplitz matrix is defined by putting, for each f E C(X, R) and x E X
(cf. [3, 2., ex. 2.] and [3, (2.13)])

where up denotes the surface area of the unit sphere and a is the surface mea-

sure on the boundary 8X of X.
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Moreover, the positive projection T : C(X,R) 2013~ C(X, R) is defined by
putting for each f E C(X,R) and x E X (cf. [2, (3.7)])

for every i, j = 1, ... , p, it results (cf. [2, (3.8)])

and therefore the projection T satisfies the condition (i)’ of Theorem 2.4 (cf.
[2, (3.8)]).

If A denotes the operator defined by (2.10), then, by the preceding formula
and (2.11), we may easily deduce that the operator A agrees on with the

degenerate elliptic second order differential operator

and therefore, the function

is the unique solution of the Cauchy problem

where C is the closure of W . ·
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