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Index Estimates and Critical Points

of Functionals Not Satisfying Palais-Smale

VITTORIO COTI ZELATI (*)
IVAR EKELAND (**)

PIERRE-LOUIS LIONS (**)

1. - Introduction

We begin by recalling the definition of a Hamiltonian system with n

degrees of freedom. Define a Zn x 2n matrix J by

If H : Il~ 2n ---~ R is a smooth function, the Hamiltonian system associated
with H is the system of ODE’s:

We are interested in finding periodic solutions of this equation, that is, in
solving the boundary-value problem

for prescribed T. There is a well-known existence result:

THEOREM I . Let H : Il~ 2’~ -; IE~ be strictly convex and C 1. Assume that
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and that, for some constants a &#x3E; 2 and R &#x3E; 0 we have:

Then, for every T &#x3E; 0, the boundary-value problem (3) has a solution with
minimal period T..

Under more general assumptions, Rabinowitz proved in [Rl ] the existence
of a non-trivial solution (the solution x(t) =- 0 being considered trivial) and in
[R2] the existence of an unbounded sequence of solutions. In his statement,
condition (6) is replaced by the following one:

which turns out to be equivalent to (6) in the convex case.
The existence of a solution with minimal period T is due to Ekeland

and Hofer [EH]. Earlier, Ambrosetti and Mancini [AM], and then Girardi and
Matzeu ([GM 1 ) [GM2]) had proved the existence of such a solution under more
restrictive conditions on H.

In all these papers, condition (6) or (7) is crucial to prove that the
Palais-Smale condition holds in the associated variational problem. In fact, this
condition first appears in the seminal paper of Ambrosetti and Rabinowitz,
where it is introduced specifically for that purpose. On the other hand, it is

clearly a technical condition, which is hard to justify on physical grounds.
The purpose of this paper is to replace condition (6) by the condition that

the Hessian H"(x) goes to infinity (in the sense that its smallest eigenvalue
goes to +oo) as llxll --~ 00. In fact, we shall even be able to treat the case when
H is defined only on a convex open subset of R 2n, and goes to +oo on the
boundary. We shall prove the following.

THEOREM 2. Let SZ be a convex open subset of R 2n containing the origin.
Let H E C2(Q,IR) be such that

is positive definite

Then, for every T, the boundary value problem (3) has a solution with minimal
period T..

By assumption (11), we mean that for every a &#x3E; 0, there exist p &#x3E; 0 and

q &#x3E; 0 such that

or
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This implies that H(x)lIxll-2 -~ +00 when IIxll - oo or z - aS2. More precisely,
for every a’ &#x3E; 0 there exist p’ &#x3E; 0 and 7/ &#x3E; 0 such that

Assumptions (6) and (11) are not directly comparable. Theorem 1 only
requires H to be strictly convex and C’, in which case (6) amounts to (7),
which does not imply anything on the behaviour of the Hessian H" (x), if it

exists. Theorem 2 requires H to be C2 and strictly convex, but even then (11)
does not imply (6) (take for Ilxlllarge).

The most natural assumption, subsuming (6) and (11), would be

when

or, failing that,

when

The authors do not know wether assumptions (14) or (15) are enough for
existence. As it is, assumptions (11) enables us to extend theorem 1 to the case
when H is defined on a proper subset of and this is the first result
of its kind (for first order system; for second order ones see the discussion in
section 3).

In the following section, we prove theorem 1. In the last section, we
extend the results to second-order systems.

2. - Hamiltonian systems

We begin by recalling the proof of a weaker version of theorem 1, which
will be enough for our purposes.

PROPOSITION 3. Let H : I~ 2n --&#x3E; R be strictly convex and Assume that:

for suitable constants a &#x3E; 2, R &#x3E; 0 and k &#x3E; 0. Then, for every T &#x3E; 0, the
Hamiltonian system
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has a periodic solution with minimal period T..
The proof is divided in two parts:

PART 1: EXISTENCE: (Ekeland [El])

We introduce Clarke’s dual action functional

defined on the space

Here H* is the Fenchel conjugate (or Legendre transform) of the convex function
H. Since H is strictly convex, H* is C1 and condition (3) yields by duality:

with a! + (3-1 = 1. The operator n : L’3 --+ Ll is defined by

and it is compact. The resulting functional V) is C’ and satisfies condition (C)
of Palais-Smale.

By Clarke’s dual action principle (see [C 1 ], [C2] and [CE]), if u is a
critical point of o on L’3, then there exists some solution x of problem (5) such
that Tt x. In order words, x = Hli + ~ for some constants 

The problem is then to find a critical point 0 for This is done by
noting that:

(a) V) has a local minimum at the origin:

(b) ~ is negative at some point far away:

By a celebrated theorem of Ambrosetti and Rabinowitz (see [AR]), this,
together with condition (C), is enough to ensure the existence of some critical
point t fl 0.
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PART 2: MINIMAL PERIOD: (Ekeland and Hofer [EH])

Since H"(x) is positive definite for x:10, we have the formula:

whereby H* is C2 on R2nB{0}. We know that u = dx, where x solves equation
(5). It follows that u must be and for all t.

We may therefore associate with u a well-defined quadratic form qT on
L), given by:

with

We then have a splitting

into positive, null and negative subspace for qT, where Eo and E- are finite-
dimensional. We define the index the periodic solution x to be:

Hofer [H] has shown that applying the Ambrosetti-Rabinowitz theorem to
a C2 functional with Freedholm derivative yields a critical point with Morse
index  1. This result does not apply directly to the present situation, because
the functional 1/J is not C~, but can be adapted, so that

From then on, using a geometrical interpretation of the index devised by
Ekeland [E2], one can show that x must have minimal period T. *

We now proceed to reduce the general case to the particular situation of
proposition 1. The idea, is that a bound on the index of the critical point (here

1) will yield an L°° estimate on the solution x.

PROOF OF THEOREM 2: Choose ho &#x3E; 1 such that:
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Set:

SZ is an open bounded convex set. Construct a function
such that:

One can, for instance, proceed as follows. Choose a number h, &#x3E; ho such
that:

Now consider the Fenchel conjugate H* of H. It is convex and finite

everywhere. Choose some large number A &#x3E; 0 and write:

Take the Fenchel conjugate again, thereby defining HA := (HA)* . It is

convex, finite everywhere, and grows linearly at infinity. If A has been chosen
large enough, we will have:

Now define:

For 6 &#x3E; 0 small enough, we have

Finally, choose an increasing C2 convex function p : JR+ -+ R+ such that
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where 1 &#x3E; 0 is a large constant. Now set:

H is a convex function, which coincides with H on the set where

H(x)  h 1, and with when ||x|| is large. If 1 is large enough, we
will have fl"(x) :-? ( 2’~ I) at every point x where H is C2 and H(x) &#x3E; hi.

Smoothing H down, we get a C2 function H satisfying (19) to (21).
Apply proposition 1 to H. We get a solution x of the problem

such that x has minimal period T. We claim thath:

Indeed, by formula (16), we have 1, that is, the quadratic form qT
of formula (12) has negative eigenspace of dimension 0 or 1. If (32) did not

hold, we would have H"(x(t)) &#x3E; 2,j for all t, and hence:

On the other hand, the operator - JII is known to have an n dimensional
negative eigenspace F-, corresponding to the eigenvalue - T . Substituting into
qT, we get:

So we have found an n-dimensional subspace on which the restriction of
qT is negative definite, contradicting 1. Formula (32) is proved.

Condition (20) then implies that  ho. Since H is an integral of
the motion:

Condition (27) then implies that H coincides with H on a neighbourhood
of the trajectory i. So £’(iii(t)) = H’(x(t)), and x in fact solves the equation
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3. - Second-order systems

The preceding results do not apply directly to second-order systems:

because the corresponding Hamiltonian:

cannot satisfy any superquadraticity assumption. A special statement is needed,
with its own proof.

THEOREM 4. Let Q be a convex open subset of 1R 2n containing the origin.
Let V E be such that

Then, for every T &#x3E; 0, problem (1 ) has a solution with minimal period
T..

When 0 is a bounded subset of we are dealing with a potential well.
Benci [B] was the first to prove this kind of result; he does not assume 0 to
be convex, but requires that 

°

when x --&#x3E; o9L2. Here D(x) = - dist(x, aS2). This assumption is here replaced by
(6). Minimality of the period was first proved by Ambrosetti and Coti Zelati
[ACZ] in the convex case, using the dual approach.

To prove theorem 4, we have to work in the Lagrangian formalism. The
standard action functional, defined on (a &#x3E; 2 will be chosen

later) is:
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whereas the corresponding dual action is

for u E Lg, + ,~-1 - 1. As before, Hu denotes the antiderivative of u
with mean value zero. If u is a critical point of 1/J on R 2n, then there exists a
solution q of problem ( 1 ) such that d2 

q = u.solution g of problem (1) such that = tt.

The proof now proceeds in two steps:

STEP 1: Assume in addition that there exist a &#x3E; 2 and r &#x3E; 0 such that

We then argue as in the preceding section by applying the Ambrosetti-
Rabinowitz mountain-pass theorem, and showing that the critical point has index
0 or 1. So theorem 3 obtains under the additional assumptions (10) and (11).

STEP 2: In the general case, that is, when V no longer satisfies (10) and
(11), we proceed as follows. With every kEN, we associate the set:

Ok is an open bounded set of R". Prooceding as in the proof of theorem 1, we
construct a function Vk E such that:

Vk satisfies the additional conditions (10) and (11). By step 1, the problem

has a solution qk, with minimal period T and index  1. The latter is the index
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of the quadratic form Ion with and

The critical point uk for Ok found by the Ambrosetti-Rabinowitz theorem
(see section 2). The corresponding critical value qk is given by:

4

where r is the set of all continuous paths c : [0,1] 2013~ Lo I such that c(O) = 0 and
 0. Since = 0, we have lk &#x3E; 0, and since Vk  Vk,,, we have

It follows that the sequence qk is bounded:

From duality theory, we have:

We also introduce the constants:

If the are uniformly bounded, say b, the problem
is over. Indeed, it then follows from (14) and (12) that qk (t) C Qk as soon as
k &#x3E; b, so that qk is in fact a solution of problem (1), with minimal period T.

So all we have to do is to show that the sequence is bounded.
Assume otherwise. Then we may assume that

so that hk -4 oo by formula (22).
We will now relate the hk to the We have, by adding (21) and (22):

Take any At e N, and set
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We take k so large that mk &#x3E; M. Denote by it the Lebesgue measure on
[0, T] and set:

From equations (22) and (24) it follows that:

Rewrite this inequality as follows

Since lk is bounded and hk --&#x3E; +00, we must have T - 21L(Ak) !5 0 for all
but a finite number Thus we have proved that:

By condition (15), there is an M so large that:

Pick the corresponding K from formula (29). With K fixed in this way,
pick a vector ~ and set, for t &#x3E; 0:

otherwise

The function vK has been built to have mean value zero, so vK E

L6(0, T). Since AK is closed, [o, T]/AK is a countable union of subintervals

(tn, tn + 8n), n e N, so that:

Hence:
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with

We have:

Substituting (33) and (35) into the right-hand side yields (after simplifying):

Finally, we use (29) to get a uniform estimate:

We now substitute this into the quadratic form 0" (UK) given by formula
(18). Recall also that VK vanishes outside AK and that estimate (30) holds on
AK:
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Since ~ varies in we have found an n-dimensional space of functions

VK where the restriction of is negative definite. This means that the
index of qK, the solution of problem (19) associated with UK, is at least n.
But we know that this index is  1. If n &#x3E; 1, we have a contradiction, so that
assumption (25) cannot hold, and the theorem is proved. The case n = 1 is of
course trivial, and can be handled directly. ·
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