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Asymptotic Behaviour of Generalized
Poisson Integrals in Rank One Symmetric Spaces and in Trees

PETER SJÖGREN

1. - Introduction

Let X = G/K be a Riemannian symmetric space of the noncompact type
and of real rank 1, with boundary K/M. Some standard notation used here
is explained in Section 2. Take A E a~ . Any f E Ll (KIM) has a A-Poisson
integral

for 9 . o E X . Here H(.) comes from the Iwasawa decomposition of G, whereas
H will be generic in a.

When the real part of A is positive, it is known that f can be recovered as
the limit of the normalized A-Poisson integral pa f = at the boundary.
Here 1 is the constant function. Indeed,

for a.a. In terms of the NA model for X, this reads

for a.a. n1 E N. More generally, one can use an admissible approach here,
which means replacing o by a point x staying in a compact subset of X. Such
results are known to hold also for A = 0, see Sjogren [9].

In this paper, we shall consider the case Re A = 0, a ~ 0, i.e., A = i~ p
with 0 ~ 7 e R .

The normalizing factor is a spherical function, in particular it is
biinvariant under K. For Re A &#x3E; 0, it behaves like e ~ ~‘ - P~ ~’ at exp H . o
for large H E a+. But in our case the dominating term of its asymptotic
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expansion is 2 Re which has zeroes for arbitrarily large H.
To examine the asymptotic behaviour of PÅ f, it is therefore reasonable to divide
by 2c(A)6~’~&#x3E; ~ 0, or simply by e’~~ instead of 

The usual transformation of ( 1.1 ) to N gives

where H. The last factor in the integrand is

where P(n) is the Poisson kernel in N. The expression

has a limit as H -~ + oo which can be written as Here I is a

homogeneous gauge in N and Q the corresponding dimension of N.
If we could let H - +oo under the integral sign in (1.2), the conclusion

would be that

tends to

a divergent integral. In fact, the asymptotic behaviour of Pa , f is given by

with a suitable evaluation of the integral. Notice that oscillating
factors..

This can be written in a neater way if we extend f to all of G by means
of

for k E K, H E a, n E N. This extension is used in connection with the

representation of the principal series of G corresponding to -A E a, the

parabolic subgroup MAN, and the trivial representation of M. Also notice
that the singular integral we obtained defines an interwining operator from this
representation to that corresponding to +a.
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The result of the main part of this paper gives the asymptotic behaviour
of for admissible approach to the boundary. The paper [1] by van den Ban
and Schlichtkrull contains an asymptotic expansion of 

Our result means that for the values of A considered here, the principal
terms of this expansion are determined explicitly. We also obtain a pointwise
estimate of the difference between Pa f and the principal terms. This estimate
holds at all boundary points for Holder functions f and almost everywhere for
f E For K-finite functions f, the expansion was already known,
with explicit formulae for the terms, see Helgason [4, §4]. Our proofs are

more concrete. The only asymptotic behaviour we use is that of the spherical
function To prove our results for Ll functions, we go via a maximal
function estimate.

The last part of this paper gives an analogous result for a homogeneous tree
of branching number q + 1 &#x3E; 3. The z-Poisson integral is defined for integrable
functions f on the boundary by means of the zth power of the Poisson kernel,
z E C. For Re z &#x3E; 1/2 and for z = 1/2 and z = 1/2 + log q, the normalized
z-Poisson integral converges to f almost everywhere on the boundary. This
was proved by Koranyi and Picardello [8]. We shall deal with the remaining
values of Im z when Re z = 1/2. The result is an asymptotic formula

as x approaches the boundary point As in the case of symmetric spaces,
Ix turns out to be an interwining operator between representations of a related
group. The proof is rather straightforward.

2. - Preliminaries

We write the symmetric space as X = G / K in the standard way. For
more details, see [5] or [9]. Here K is a maximal compact subgroup of the
connected semi-simple Lie group G. The Iwasawa decomposition G = KAN
means that any g E G can be written uniquely as g = k ( g) exp ( H ( g) ) n ( g) . Here
k ( g ) is in K, n ( g ) in the nilpotent group N and H ( g ) in a, the Lie algebra of
the abelian group A. Since rank X = 1, both A and a are isomorphic to R.
The positive Weyl chamber a+ c a then corresponds to R+. By ac we denote
the complexification of a, and a* and a* are the duals of these spaces.

The exponential map gives a diffeomorphism between N and its Lie

algebra n. Further, n is the direct sum of the root spaces ~ and which
are subspaces of the Lie algebra g of G. The positive restricted roots a

and 2a are elements of a*. Their multiplicities are dim go &#x3E; 0 and

m2a = dim g2a ~ 0. Write nH for exp (H)n exp(-H) when n E N, H E a.
Then n = exp(Yl + Y2 ) , Y1 E ga, Y2 E implies
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These properties of N are shared by its image N under the Cartan
involution 0, except that a and 2 a are replaced by the negative roots -a
and -2a. Since 0 is an isomorphism, the multiplicities verify m_a - ma and

= m2a.

Both a and p = ( m a + 2 m2 a ) a / 2 E a* are positive in the sense that they
belong to the polar a+ of a+. Let M be the centralizer of A in K, with Lie
algebra m. The root space go = a e m is abelian.

Let o = e K E X, and write 9 . o for gK E X. Because of the Cartan
decomposition, any point x E X can be written as x = ~ o, where
~ E K and is a uniquely determined point in the closure of a+. In fact,

is proportional to the distance from o to x. Because of the modified
Iwasawa decomposition G = NAK, one can also write x = n(x) exp A(x) ~ o,
with uniquely determined n ( x ) E N and A ( x ) E a.

The boundary of X is K/M, and a point k1 M E K/M is the limit of
l~1 exp H E a tends to +oo, i.e., as ci(H) ---+ +oo. Letting n E N
correspond to E K/M, one can also realize the boundary as N, except
for one point. Then n is the limit of o as H --~ +oo.

Any function f in K/M will be defined in G by means of (1.3). We
say that f is Holder if it satisfies a Holder condition in terms of any local
coordinate system in K/M, with exponent in ]0,1]. Then its values in N verify
a local Holder condition.

The A-Poisson integral of any f can now be defined via ( 1.1 ),
and (1.2) follows. The Poisson kernel was defined in the introduction. With
n = exp ( Y1 + Y2 ) , Yj E g-ja, it is given by

see [5, Theorem IX.3.8]. Here c = (ma + 4m~a ) ~~ /4, and I Y I = - B (Y, BY)1/2
is for any Y E g the norm coming from the Killing form B.

The last two terms in the denominator form a homogeneous gauge

where the exponent 1/4 is a matter of convenience. One has = I -ff 1,
for H E a, const(|n| + In’!). The Haar measure of the ball

B(r) = E N : Inl I  r} is proportional to rQ, where Q = rna + 2m2a is the

homogeneous dimension of N.
It is now clear that

We remark that this limit can also be written Inl-Q = see

[5, Theorem IX.3.8]. Here m* E K defines the nontrivial element of the Weyl
group, and B ( g) E a is determined for a.a. g E G by the Bruhat decomposition
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g = ffm exp (B (g)) n, -ff E N, m E M, n E N. This is why the singular integrals
in our result define intertwining operators, cf. Knapp and Stein [7, 1.3].

We next discuss integrals containing the oscillating singular kernel
If F is an integrable Holder function in N, one has

as E ~ 0, with complex constants A and B. This can be seen by means of
polar coordinates in N as in [3, Ch. I.A]. Since (2.2) says that the values of
the integral approximate a circle in C centred at A, we then call A a central
principal value and write

This value is also the limit, or the analytic continuation, of the convergent
integrals obtained by using exponents z, Re z &#x3E; -Q, instead 

Now replace by for n 1 E N so that A = and we have
a convolution. It is well known that the operator F --~ A is of weak type (,,1)
and thus defined for all F E see [3, Ch. 6].

Moreover, the corresponding maximal operator

is of weak type ( 1,1 ) , as one can see by extending the well-known proof in
It follows that satisfies (2.2) for a.a. ~ 1 when FELl.
Hence, A

is defined almost everywhere and coincides with A(nl).
We denote by c(A) Harish-Chandra’s c-function.

3. - The result for symmetric spaces

THEOREM 3.1. Let , f E and assume A = E a~ with

_

Then for a.a. n1 E N
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and for a.a. k1M E K/M

both as H - +oo and x stays in a compact subset of X. When f is Hölder in
an open set 11 c KIM, these formulas hold for all nl with k(nl)M E nand
all k1 M E fl, respectively.

Notice that it is natural that H + A(x) appears here, because H + A (x) =
A(n1 exp H. x) = A(exp H. x).

LEMMA 3.2. For any nl E N,

PROOF. We first claim that the left-hand side here is the limit of the

convergent integrals

- 0, il &#x3E; 0. The only difficulty is near n = e, so consider the integrals in
 1 } . If in (3.3) we subtract from the exponential factor its value at n = e,

dominated convergence will allow us to let p -~ 0 under the integral sign. It
then remains to consider the integral of in Inl  1. By means of
polar coordinates, this integral is seen to tend to

The claim follows.
From (2.1), we know that is the increasing limit of

as H - + oo . Thus by dominated convergence
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where the last equality comes from (1.2). Now = because of

[6, Theorem IV.4.3]. This allows us to use the known asymptotic behaviour of
spherical functions. Applying the Iwasawa decomposition to we get

Here + oo . Considering the distance to o, we

conclude that

for large H. Hence,

The lemma follows if we let p --+ 0.

PROOF OF THEOREM 3.1. We start with (3.1 ). In the case when f _ 1

in K/M, we use (3.4) and the asymptotic formula for Px f, see [6, Theorem
IV.5.5]. We find

Because of Lemma 3.2 and (1.3), this implies (3.1) with f == 1, x = o.
Now consider an f E which is Holder in a neighbourhood of a

point kaM = k(no)M. Write

where fo is the constant function and the Poisson integrals are

evaluated at n 1 exp H ~ o. In the first term to the right, we pass to the limit
as in (1.2) in the introduction, for ni near no . This is justified by dominated
convergence, because

near n = e and 0(lnl-2Q) at infinity, uniformly in H. Moreover,
M) translates  oo. We know the
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behaviour of the last term in (3.5) and need only add to obtain (3.1 ) with
X = o. This is easily seen to be uniform in near no.

With the same f, we now let x be arbitrary in a compact subset of X.
Writing x = exp A ( x) ~ o, we have

with A ( x ) bounded and - e as H - + oo .
This allows us to apply the case x = o. Notice that the expressions f (Hi)

and cpvf ... occurring in the right-hand side of (3.1) depend continuously on
Mi near no. From this and the uniformity mentioned above, (3.1 ) follows for
nl near no.

To get (3.2) when f is Holder near k, M, we use K-invariance and let

f1 (k)=f(k1k). then

and it is enough to apply (3 .1 ) with f replaced by fi and n1 = e.
We remark that one can also find the behaviour of exp H . o) in

another way for these f. Assume ki = k ( n 1 ) for some n 1 E N, which is true
for almost all k1 M. Then

where

Comparing this with (3.2), we conclude that

when fELl is Holder near k(nl)M. In the special case f - 1 in K/M, this
is a consequence of Lemma 3.2.

Next we let f E Ll(K/M). We shall prove (3.1) for a.a. nl in an arbitrary
compact subset of N. Because of the case just treated, we can assume that the
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support of f, considered as a function in K/M, is contained in E L }
for some compact set L c N. For a fixed compact set D c X, we shall prove
that the maximal operator

is of weak type ( 1,1) in L. This is enough by standard density arguments, since
the expressions in the right-hand side of (3.1) define operators of weak type
(1,1).

We write n 1 exp H. x = exp H’. o as before, with H’ =
H + A (x) = H + 0(1). With a = a(H’), we observe that  Ce-a. If

n = exp(Yi + Y2 ) as in Section 2, we have

In this integral, we take as a new variable, still denoted
n = exp(Y1 + Y2 ) . Then the kernel will be evaluated at the point

Multiplying, we see that Yi - Y11  Ce - a . Moreover, 1"1 I and In’l differ
by at most Ce - a because of formula (1.9) p. 12 of [3]. We obtain

Here we first integrate over the ball for a large constant C1.
Clearly, I I

where C = C ( C1 ) and Mo is the standard maximal operator for the gauge in
N.

For Inl &#x3E; we compare the kernel with If C1 is large,
it is elementary to verify that

The integral
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is controlled by the maximal operator My introduced in Section 2, which is of
weak type ( 1,1) . It remains to estimate

which is dominated by CMo f (nl). This gives the weak type (1, 1) estimate.
Finally, we must verify (3.2) for Observe first that (3.6) holds

for a.a. kl, kl = k(nl), by the same argument as before. The following lemma
will therefore end the proof of Theorem 1.

LEMMA 3.3. Let f E Then

exists and (3.7) holds for almost all nl E N.

PROOF. Take n 1 E N and write ni =, E KAN. Let
= where e &#x3E; 0 is small and X, is the characteristic function of the

Inl I &#x3E; E ~ c K/M. Since f, vanishes near J~1 = equation
(3.7) applies to ff.. This means that

where U is the set of n for which k(nln)M fI- n’ E B(e)} or

equivalently k(n’)M for all n’ E B(e). Clearly, U is all of N
except a small neighbourhood of e.

To determine this neighbourhood, assume that r = Inl I is small and write

Further, Cr. There is a unique decomposition
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with small Zj E g;a . Multiplying by means of the Campbell-Hausdorff formula,
one easily finds Z-2 = Y-2 + 0(r 3) and Z- i = Y-1 + 0 ( r2 ) . Now Zo E m ® a
and Zl + Z2 E n. Thus, k 1-1 n -1n = ri’m’a’n’ with m’ E M, a’ E A, n’ E N and

Since M normalizes N, this gives = and n’ is the

only element of N with this property. Notice that

and

We conclude that the symmetric difference

is contained in the annulus

But if n 1 is a Lebesgue point with respect to the gauge, one easily
gets ,

Now (3.8) implies that for a.a. n1

For almost all ni, we know that

exists, which means that the value of the integral in the right-hand side of (3.9)
describes an approximate circle in C as E appproaches 0. The same must then
be true of the left-hand integral. Since the centres of these circles are the central
principal values of (3.7), the lemma follows.
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4. - The result for trees

Let T be a homogeneous tree with branching degree q + 1 &#x3E; 3. We

essentialry follow the notation from [8], see also Figa-Talamanca and Picardello
[2]. In particular, we fix a vertex o E T and identify any x E T with the shortest
(geodesic) path from o to x. The boundary f) of T then consists of all infinite
geodesic paths. If x, x’ E T, we denote by N(x, x’ ) the number of edges that x
and x’ have in common, and similarly for N ( x, w ) and N (cv , w’ ) with w, w’ 6 H.
One sets ’Ixl = N ( x, x ) .

The sets

define a basis of a topology in 0. Similarly, one lets En ( x ) 
N ( x, w ) &#x3E; n). In particular, for n &#x3E; I x 1. The disjoint union T u n
also has a natural topology. If a is a nonnegative integer, an admissible approach
region at wEn is defined as

A complex-valued function f in Q is said to be Holder if it satisfies

f (w’) )  const I for some e &#x3E; 0 and all w, w’ E O.
The standard normalized measure v in Q satisfies = 

for n &#x3E; 1 and w e H.
The Poisson kernel of T is

Let z E C. Any f E (and any martingale in fl) has a z-Poisson
integral Ir

The function is an eigenfunction of the isotropic transition operator
P in T, with eigenvalue = (qz + + 1 ) .

Koranyi and Picardello [8] study the convergence of normalized z-Poisson
integrals, defined for Re z &#x3E; 1/2 and for z = 1/2 and z = 1/2 + i7r/ log q

by For these values of z, they prove that Kz f converges
admissibly to f almost everywhere in il for f E L1 (v). When f is continuous
in fl, one can extend by f to a continuous functions in T u Q. Because of
the properties of the expression this takes care of all eigenvalues of
P except those corresponding to Re z = 1 / 2, 0  I Im z  ?r / log q.

Therefore, we shall have z = (1 + zr)/2 in the sequel, with 0 I 
27r/log q. The "spherical function" then equals where
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see [8] and [2, §3.2]. To avoid the zeroes of we define now 
We shall obtain a formula for the asymptotic behaviour of

Kz f (x) like (3.2). For this we need intertwining operators.
The mean values of a function f are

The differences of f are
E_ 1, f - 0. Clearly,

where

An operator Iz is defined for z E C by

where c ( 0, z ) = 1 and

For Re z = 1/2 we see that Ix is unitary in L 2 ( v ) and of weak type ( 1,1 )
for v. When q is odd, T has a natural free group structure.

Then I. intertwines representations 7r,. and 7r,-,. of T, see [2, §4.4]. These
representations are unitary and belong to the principal series of T when Re
z = 1/2.

THEOREM 4.1. Let z = (1+iT)/2, 0  27r/log q, and take f E 
and a &#x3E; 0. Then for a.a. w 1 E Q

as x --&#x3E; w 1, x E r a (w 1 ) . If f is Hölder, (4.1 ) holds as x E T approaches w 1 in

the topology of T u 0, uniformly for w 1 E f).

PROOF. We have
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If to begin with one gets

for n  lxl, except that the factor q/q + 1 must be deleted when n = 0.
It follows that

Now we write and change the order of summation:

The coefficients of here equals 1 = c(0, z), and we conclude that

for x E 

By standard martingale theory, this implies (4.1) for a.a. wl when a = 0.
If f is Holder, the differences decrease exponentially in m, uniformly in
n. Then (4.1 ) holds as z - w 1 staying in uniformly in w 1. Since f and
Iz f are now continuous in fl, the last statement of Theorem 4.1 follows.

It remains to consider f E L 1 and a &#x3E; 0. Approximating with Holder or
locally constant functions, we see that it is enough to show that the maximal
operator

is of weak type ( 1,1) in n. Letting x we choose w2 E fl with
x E Then we apply (4.2) with w2 instead of w 1 and estimate the two
terms. Since c one has
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All constants C may depend on a. Further, A,,, f (W2) equals ,
- a and is dominated by

result,

Thus Ma f is dominated by the maximal function of the martingale
E and the standard maximal function of f. This gives the weak
type ( 1,1) estimate which ends the proof of Theorem 4.1.
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