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Existence and Multiplicity Results for
a Semilinear Elliptic Eigenvalue Problem

PHILIPPE CLEMENT - GUIDO SWEERS

1. - Introduction

The following eigenvalue problem will be considered:

for A &#x3E; 0. The domain Q is assumed to be bounded and to have a smooth

boundary of class C’.
The function f will satisfy appropriate smoothness conditions. A positive

solution of (P) will be a pair (A, u) in 7,~’ x C2(O) satisfying (P) with u &#x3E; 0 in
Q. We shall call u a solution of (Po). ,

It is a consequence of the strong maximum principle, see [2], that if such
a solution exists, then f (max u) is positive. The main goal of this paper is to
study positive solutions having their maximum close to a zero of f. Therefore
we assume:

(F1) there are two numbers p i and p2 such that pi 1  p2, 0  p2,

and

In [13] Hess proves the existence of solutions (~, u) of (P), satisfying
max u E (P I, P2), when f (0) &#x3E; 0 under the following condition:

In Theorem 1 we prove that (F2) is a necessary and sufficient condition for the
existence of such a solution even without the condition f (o) &#x3E; 0.

Pervenuto alla redazione il 4 Aprile 1986 ed in forma definitiva il 29 Settembre 1986.



98

THEOREM 1. Let f E C I satisfy (F 1 ). Then prohlem (P) possesses a positive
solution (A, u), max u E (f and (f (F2) holds.

Theorem I improves a result of De Figueiredo in [10], since it does not
use the inheritance condition or even the starshapedness of SZ.

It also answers a question of Dancer in [9].
Next to this existence result we will prove a uniqueness result for positive

solutions having their maximum close to We need the following condition:

(F3) there exists an e &#x3E; 0 such that f’  0 in (P2 - ê, p~ ).

THEOREM 2. Let f E CI’Î, sonie 7 E (0, 1), satisf y (Fl), (F2) and (F3).
Let r E C1. Then there are Ao &#x3E; 0 and a nonnegative ,function Zo E tvith

max zo E such all A &#x3E; Ao, (P).) possesses one solution

UA Zo  ua  P2.

Moreover, lim max ua = P2 -
). --+ 00

REMARKS.
1. We will state and prove a sharper version of this theorem in Section 4

(Theorem 2’). -

2. If pi  0, or p, = 0 and f’(0) &#x3E; 0, Theorem 2 was proved in a recent
paper, [3], by Angenent. For PI  0 there are also related results in [8].

3. If pi = 0 and f’(0) = 0, Rabinowitz showed in [19] the existence of

pairs of solutions for A large enough by a degree argument.

When pi = 0 and f’(0) = 0 the question arises, whether or not there are
exactly two positive solutions of (Px), with maximum less than P2, for A large
enough. We shall consider this problem only for Q = B, the unit ball in - - .

It is known, [ 12], that positive solutions for Q = B are radially symmetric,
and can be parametrized by u(O). If f satisfies (Fl ) to (-F3), it follows from
Theorems I and 2’ that A is a monotone increasing function of u(O), for

E ( p~ - ~, p~ ), where e is some small positive number. Let C denote
the component of solutions of (P) containing these solutions (A, u) with

U(O) C (P2 - ê, P2 ).
Set p* := inff u(O): (A, u) E C }. If p* &#x3E; 0, it can be shown that more than

one component of solutions (A, u), with U(O) E (0, P2) may exist, implying the
existence of at least four solutions for A large enough.

In Theorem 3 we find a sufficient condition on f, which guarantees the
existence of a component P of solutions (A, u) of (P) satisfying (A, u) E
D} = 0.

THEOREM 3. I f in prohlenl (P), S2 is the unit hall in 
-- 

N, »’ith N &#x3E; 2,
and f satisfies the condition

(G 1 ) f(u)= g(u) for some 0152 E and with

then the holds.
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êO &#x3E; 0 such that for every 6- e (0, -o) there exists a positive
solution (A, u) of (P) with ~(0)=6’.

Moreover A is a decreasing function of 6’, and limA(6’) = oo.
610

If f satisfies (G 1), (F1) and (F3), there is one branch of solutions
À ~ with = P2, and one branch of solutions A - 

,X ---t 00

with lim yx(0) = 0. Then, since U(O) C (p*,~2) parametrizes the solutions of (P)
A-oo

on the ball, which are radially symmetric, [12], one finds the following. For
A large enough, (PA) possesses exactly two positive solutions, with maximum
less than P2, if and only if p* = 0. If p* &#x3E; 0, there exists a positive radially
symmetric solution of

satisfying u(O) = p*.
For the sake of completeness this will be shown in Section 5. Ni and

Serrin, in [15], found conditions on f which exclude the existence of a positive
solution of (P*).

Combining these results we obtain:

COROLLARY 1. If in problem (P) on the unit ball in ~.~ N, with N &#x3E; 2, f
satisfies conditions (G 1 ), (F 1 ), (F3) and

(G2) for a and g defined in (Gl) either a  N 2 or

then for A large enough problem (PA) possesses exactly two positive solutions
with maximum less than P2.

REMARKS.

1. If N  2, Theorem 3 and Corollary 1 still hold if one replaces in (G 1 )

by (1, oo). Condition (G2) is no longer needed.

2. In [11], Gardner and Peletier prove a similar result when pi &#x3E; 0, by
using different techniques.

3. For every a E a function f exists, for which p* &#x3E; 0.
,- . 

- - . 

-,

Such an f can be found by using the example on page 2 of [15]. This
construction is done in [7].

Concerning the proofs, the main tools will be the sweeping principle
of Serrin, see [22], [21], and the construction of appropriate super- and
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subsolutions. For the sake of completeness we define in the appendix a notion
of super- and subsolutions and we prove a suitable version of the sweeping
principle. Some basic ideas for the proof of Theorem 2 are contained in [3].

The results of this paper where announced in [6].
We learned that Dancer and Schmitt, [24], have independently found a

different proof of the necessity of (F2) in Theorem 1.

2. - Preliminary results

In this section we collect some preliminary results, which will be useful
in the coming proofs. The first result for f (0) &#x3E; 0 is contained in [13].

LEMMA 2.1. Let f E C l satisfy (F 1 ), (F2) and f (0) &#x3E; 0. Then problem
(P) possesses a positive solution (A, u), with max u E (pl , P2).

PROOF. First modify the function f outside of [0, p2] by setting f(p) = 0
for P &#x3E; p2 and f (p) = 2 f (o) - f (- p) for p  0. Note that f is bounded on 3 .
As in [13] we want to minimize

where

For A &#x3E; 0, I(u, A) is bounded below.
Let un be a minimizing sequence for a fixed A, then

Since I( - , a) is sequentially weakly lower semicontinuous and coercive in

W~ ~2(S2), I(., A) possesses a nonnegative minimizer, which we denote by ~.
It is standard that is a solution of (P), with the modified f.

By applying the strong maximum principle, we deduce as in [2], that either

&#x3E; 0 or ua = 0.

 P2, hence (A, u) is a solution of (P).
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Set

Suppose that for all positive A, lIuÀ 1100  pi, then we will obtain a contradiction.

We choose 6 &#x3E; 0 such that 21 L26 10  with Q6 = ~ x E Q; d(x, r)  6)
and IK21 denoting the Lebesgue-measure of Q. This is possible since a &#x3E; 0 and

lim = 0.
610

Next we choose w E Col(Q), satisfying 0  w  P2 in 0.6 and w = P2 in
0. - S2s ; then

for A large enough, since  0.

Then I(w, A)  A), contradicting the fact that ua is a minimizer. This
completes the proof of the lemma.

In what follows it will be convenient to modify f outside of [0, p2] in an
appropriate way.

Let fECI, respectively C1" for some 1 E (0, 1), satisfy (F1) and (F2).
Then there is a function f * E respectively satisfying f * = f on [0,p2] ]
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and

Since we are interested in solutions (A, u) of (P) with 0  u  p2, we may
assume without loss of generality that f satisfies (F*). Then we have

LEMMA 2.2. Let f E C I satisfy (F 1 ), (F2) and (F*).
Then there &#x3E; 0 and v E C2(::~ N), radially symmetric, which satisfy:

PROOF. Since f (u - 1) satisfies (F1) and (F2) it follows from lemma 2.1
that there exists a positive solution (p, w) of

where B is the unit ball in ~’B~ ’, satisfying max w E (pl + l, p2 + 2). By [12] w
is radially symmetric and w’(r)  0 for r E (o, 1).

Set v(r) = w(r) - 1 for r E [0,1] ] and

Since f = 0 on (-oo, -1 ] one verifies that v is the required function. This
completes the proof of the lemma.

COROLLARY 2.3. Let like in Lemma 2.2, and let a E (0, 1) be
the unique zero of v.
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is a subsolution of 

PROOF. The function E C2(‘~ZN) satisfies -Ow - ~ . f (w) in

RN 0 for all p e D+(S2), where 
n

consists of all nonnegative functions in Since w(A, y)  0 on r for

A &#x3E; ~ucx2 . d(y, T)-2, w(A, y) satisfies the definition of subsolution given in the
appendix. This proves the corollary.

Next we establish some results for the one-dimensional problem

where f E C’ satisfies (F 1 ), (F2) and (F*).

LEMMA 2.4. Problem (2.3) possesses a unique solution u6 in ~+ for all
6 E R. The function 6 -; ub E C[0, r] is continuous for every r &#x3E; 0.

Moreover, set

1) &#x3E; then U8(X) &#x3E; (b - 61 )z for x E 
2) if 6 = 81, then u’ &#x3E; 0 on ~~+ and lim u5 (z) = P2,6 

x ---+ 00

3) if -62  6  6,, then E [-b2~ b~}  P2,

4) if 6  -62, then us  0 on R+.

PROOF. Since f is C 1 and bounded, the first assertion of the lemma is

standard.
Note that a solution of (2.3) satisfies

1) If 6 &#x3E; 61 , then using (2.1 ) and (2.4) we have
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Since we obtain
,

It follows from (2.5), f(p2) = 0 and the uniqueness for the initial value problem
that =IP2 for all :c e and thus u6  P2 on R+. Since ub is monotonically
increasing and bounded there exists a sequence Ix,,,I, with lim and

n-00

lim = 0. From (2.1) and (2.5) it follows that lim ~(~c) = /92.
n-00

Hence by
one has

Since 1 8f)  0, one finds, by using (2.1) again, that
for all 2: E ,7~ . From uv(0) = 0 it follows u~  p2 - rra on

4) If 6  - 62, then

for all Uc5(X)  0.

Since  0, one finds us  0 on R+. Hence ud  0 

This completes the proof of Lemma 2.4.
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Lemma 2.4. will be used to establish some results for the problem on the
halfspace D = {(xl, ... , xN) e R~; Xl&#x3E; 0) .

PROPOSITION 2.5. Let f e Cl,1, for some 1 E (o, 1 ), satisfy (F1), (F2) and
(F3). Let u E C~(D) f1 C(D) be a solution of

with 0  p2 in D and lim u(x 1, x’) = p2 uniformly for x’ 
x1-oo

Then = for ~1~0 and x’ e ~Z N-1, where us, is defined in
Lemma 2.4.

In order to prove Proposition 2.5 we also need

LEMMA 2.6. Let (a;i,~) 2013~ be a function such that

for some -1 E (0, 1), and  h(u) for some
be a bounded solution of

Then S, defined by = sup-
with S (0) = 0, and satisfies

is continuous in [0, oo),

~+(R+) consists of all nonnegative functions in 

PROOF OF LEMMA 2.6. Since U and DU are bounded and U = 0 on aD, it
follows from standard regularity properties that U and all first-order derivatives
are uniformly bounded and uniformly Holder continuous with exponent 1. Let

be an increasing sequence of bounded subdomains of D, with smooth
boundary and such that U D. We first prove that for each n e if

vtCN

I satisfy

then u3 = sup(u 1, U2) also satisfies (2.7).
Let c,~ E :~+ be such that u - is increasing on

[min u A min U2, max u V max u2 ] for every x E 
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We obtain

for all
and let w satisfy

Note that satisfies

It is known that SUP(W1, w2 ) also satisfies (2.8), see [23, Th. 28.1 ] . Therefore
u3 satisfies (2.7). Note that u3 E C(Qn) rl HI (Qn)’ By induction it follows that
if ui E n = 1,..., k, satisfies (2.7), then suplu,; i = 1,..., ,1~}
also satisfies (2.7). Let ui be translates of U perpendicular to (1, o, ... , 0). Since
U E C(D) n i = l, ... , I~} will satisfy (2.7). Then by using the
Lebesgue dominated convergence theorem and the fact that U is bounded, one
shows that

also satisfies (2.7) for each n. From the choice of the Qn it follows

By choosing Sp of the form Sp 1 . Sp2, with Q1 1 E D+(R +) and p2 E 
0, one gets (2.6), since S only depends on x 1.

Note that S, as the supremum of continuous functions, is lower
semicontinuous on [o, oo). From (2.6) and the fact that g(x 1, S) is bounded,
we deduce that S is the sum of a convex function on (o, oo) and a C’ -function

on [o, cxJ). Hence S E C(O, 00). Since U(O, x’) = 0 and is) ( 0 ) , ax 
(0,x )

uniformly bounded, S(0) = 0 and S is continuous in 0. This completes the proof
of Lemma 2.6.

PROOF OF PROPOSITION 2.5. Without loss of generality we assume that f
satisfies (F*). Define
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It is sufficient to prove that

We first prove (2.9) for d = 61. By Lemma 2.4, 4), (2.9) holds with
6  -62, since I &#x3E; 0 on ~~ +. We will use a sweeping argument to prove (2.9)
for every 6 E (-S2 - 1,61). Let 6 E (-62 - 1,61). By Lemma 2.4, 3) and 4),
there exists p  p2 such that

For some R &#x3E; 0 one has I &#x3E; p on [R, oo). It follows from Lemma 2.6, with
g(x 1, ~) _ - f (-u), that I E C[O, oo), 1(0) = 0 and

Hence I is a supersolution of

For 0 E [-62 - 1~]. (2.11) shows that uo is a subsolution of (2.12). We are
now in the position to use Lemma A.2 and we obtain I &#x3E; ub on (0, R), hence
on R+. . 0 one has

This completes the proof of (2.9), with 6 = bl.
Next we give a sketch of the proof of (2.10). Since is uniformlyax,

bounded, there exists c &#x3E; 0 such that 
’

By Lemma 2.4, 1), one has (2.10) with 6 = 61 + c. Let 6 E (61, 61 + c). Also from
Lemma 2.4, 1), if follows
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Note that S  p2. Then one concludes as above after using a sweeping argument
for the problem 

~..

This completes the proof of Proposition 2.5.

3. - Proof of the first theorem
P2

NECESSITY: With = f f (s)ds, and assuming pi &#x3E; 0, define
P

Suppose condition (F2) is not satisfied, that is J*  0. Let (A, u) be a positive
solution of (P) satisfying max u E (PI, P2). We will obtain a contradiction.

First, if J* = 0, modify f to f * in C 1 such that f &#x3E; f * &#x3E; 0 in (max u, P2)
and f = f * elsewhere. Still u is a solution of (Pa), but now J*  0. Hence we

may assume without loss of generality that J*  0.

Consider the initial value problem

For a solution of (3.1), (3.2) one has:

Set p* := max

Because of i holds for v(r) in

and hence inf v  p i . 
I

Next we show that v remains positive. If not, there exists an r* such that
v(r*) = p*, and since (3.3) holds, one finds

a contradiction.
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So either v(r) i p C (p*, pi ) if r -~ oo, or v has a first positive minimum,
say in f, and v is symmetric with respect to f. In the first case define

and in the second case

Set 1 - t) ), where 
Then I w (A, t; - ); is a family of supersolutions, and for t large

enough w(~, t; . ) = p2 in SZ.

By the sweeping principle u  w(A, t, .) for all t.

Hence u(x)  inf I w (A, t; x); t E I? ) = inf v  p i, a contradiction.

REMARK 1. Let f E C 1 satisfy (F 1 ). The proof also shows that, if (F2)
is not satisfied, there is no solution u of (Pa) with max u E (PI, P2), even if u
changes sign.

REMARK 2. Let f E C 1 satisfy (F 1 ), and let 0. C :IN be an unbounded
domain.

Note that the same technique shows that problem

may have a solution u, with max u E (PI, P2), only if condition (F2) is satisfied.

SUFFICIENCY: We will prove a stronger result, which will be used later
on.

Let x* E ~2. Then define A* = J-La2d(x*, r)-2 and zx = w(A, x*), where it, a

and w are defined in Corollary 2.3.

LEMMA 3.1. Let f satisfy (F 1 ), (F2) and (F*). Then
1) for A &#x3E; A* problem (PA) possesses a solution ua E [za, P2],
2) there exists A** &#x3E; A*, c &#x3E; 0 and T E (PI, P2), such that for A &#x3E; A** every
solution u E [za, P2] of (P.B) satisfies

REMARK 3. It follows from (3.4) that ua &#x3E; 0 for À &#x3E; a**, and that

max ua C (PI, P2), for A large enough.
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REMARK 4. Lemma 3.1, 2),  0 on r for A &#x3E; A**, even
a 

) 
9n

when (0  0. (9n denotes the outward normal derivative)f ) 
an 

)

PROOF OF LEMMA 3.1. By Corollary 2.3 one knows that for A &#x3E; a*, zx is
a subsolution of (Px), with ZA  p2. Since p2 is a supersolution of (Px), Lemma
A.1 yields a solution UA E [za , p2 ] of (PA), for A &#x3E; A*. This completes the proof
of the first assertion.

Since K2 satisfies a uniform interior sphere condition, there exists

£’0 &#x3E; 0 such that Q = U ~B(x, ~); x E for - E (0, £’0], where K2,, =

with J-L, v and a defined in Corollary 2.3.
Note that c &#x3E; 0, since v &#x3E; 0 on [0, a) and v’(a)  0.

Let (A, u) be a solution of (P) with A &#x3E; A** and U E [ZA, P2]. Since for
A &#x3E; A**, Q 2 is arcwise connected and since w(A,y) is a subsolution for

y E SZa(~/~~ ~ , , with w(A, y)  0 on r, one finds by Lemma A.2 that

Hence
, and

which completes the proof.

4. - Proof of the second theorem

As mentioned in the introduction Theorem 2 will be a consequence of a

sharper version, Theorem 2’.

THEOREM 2’. Let r E C3 and let f E C’,7, for some I C (0, 1), satisfy
(F1 ), (F2) and (F3). Then for some Àl &#x3E; 0,
1) there exists Sp E C ([À1, (0); C2(Q)), such that (A, p(A)) is a solution of (P)

for A &#x3E; a l , with &#x3E; 0 in S2, max E (P I, P2) and lim max Sp(a) = P2;A-00

2) if u) denotes the principal eigenvalue of
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then Ao (A, Sp(~)) &#x3E; 0 for A &#x3E; Ài;
3) for all nonnegative z E with max z E (pi, p2), there exists A(z) &#x3E; Ài’

such that, solution of (P) with A &#x3E; A(z) and u E [z, P2], then
u = 

REMARK 1. Theorem 2 follows from theorem 2’ by choosing a nonnegative
function zo E and setting Ao = A(zo) iri the third assertion of Theorem
2’.

REMARK 2. If p 1 &#x3E; 0, let C denote the component of solutions of (P) in
containing ~(~, y~(a)); a &#x3E; A 1 1. Since C is connected, one has for

(A, u) E C that max u E (Pi, P2) (see [2]) and A &#x3E; 0. By using degree arguments
as in [19], [20], one can show that for A large enough, C n x C2(Q»)
contains at least two solutions of (P). The proof of this assertion will appear
elsewhere.

For the proof of Theorem 2’ we need the following lemmas.

LEMMA 4.1. Let f E C 1 satisfy (F 1 ), (F2) and (F*). For every 6 &#x3E; 0
there is a c(6) &#x3E; 0, such that for all solutions (A, u) of (P), with A &#x3E; A** and
u C p2], the following holds

with A** and za as in Lemma 3.1.

PROOF OF LEMMA 4.1. If P2 - 6  T, we are done with c(6) = c as in
Lemma 3.1. Otherwise, by (F 1 ) there exists o, &#x3E; 0 such that (J (u - T)  f (u) for
all uE [r,p2 - 61-

Let v denote the principal eigenvalue of

where B denotes the unit ball 

Then by using Lemma A.3 with = c-17, one finds

By (3.4) one finds 
’
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with

This completes the proof of the lemma.

LEMMA 4.2. Let f E 01,1, for E (0,1), satisfy (F 1 ), (F2), (F3) and
(F*). Then there A**, such that for every solution u of (Px), with
A &#x3E; A 1 and u C IZA, p2], one finds ito(A, u) &#x3E; 0.

PROOF. Suppose this is not the case. Then there exists a sequence

e N ) of solutions of (P), with un E := po(An, Un)  0
for all n, and lim An = oo.

n-co

Let 6 be defined by (F3). Since An  0, for all n, the associated

eigenfunctions vn, normalized by max vn = 1, satisfy

The constant c(E) is defined in the previous lemma.
Hence the function vn is subharmonic in Q _1 , and vn attains its

KÀn 2

maximum outside of Like in be a point

where vn attains its maximum and let xn E r be a point which minimizes
{d(x, yn); x E r~. Since fXn I and are bounded, there exists a subsequence,
still denoted I (An, Un)1, such that lim xn = # e r and Let 0

n-co n-co 
-

be an open neighbourhood of x chosen so small that it permits C3 local
coordinates (~i,..., ~N): 0 -+ R N, such that x E 0. n 0 if and only &#x3E; 0,
and ~(Y) = 0. In these coordinates the Laplacian is given by

where aij E 02, bj E C I and u(x) = u (~(x)).
Moreover we choose the local coordinates such that bij. Next

define the functions

Since { Un } and are precompact in there exists a convergent
subsequence. Hence there are U, Y C C2 (D), bounded and positive in D =
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satisfying respectively

Moreover by Lemma 4.1 the following inequalities,

hold for every 6 &#x3E; 0. From Proposition 2.5 we have

Set 8(Xl) = Then 0  8 ~ 1 in ~ + and we obtain
by using Lemma 2.6 that 8 e C[0, cxJ), S(0) = 0 and

Since us~ &#x3E; 0 there exists a smallest C &#x3E; 0 such that W := S &#x3E; 0
on [0, K + 1], where K is defined in (4.4). Then one finds by using (4.6) and
-(u§ )" = in ’-I,, that

Since W is nonnegative in [0, K + 1 ~, there is w &#x3E; 0 such that

By [5, Corollary p. 581] ] and the fact that W 0- 0, one obtains

By construction W vanishes somewhere in [0, K + 1]. Since W (0) &#x3E; 0 one finds

W(K + 1) = 0. Moreover f’(u6,)  0 on (K, (0). Hence (4.6) yields that S is
convex on (K,oo). Since W is the sum of a C1 and a concave function on

d- d+
(K, oo), (4.8) shows 0 &#x3E; 1) &#x3E; d+(K + 1), and therefore W(x)  0dx dx
on (K + 1, K + 1 + c) for some c &#x3E; 0. Moreover W cannot vanish on (K + 1, oo).
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Otherwise there would be c &#x3E; 0 such that W  0 on (K + 1, K + 1 + c) and
W (K + 1 ) = W (K + 1 + c) = 0. But this cannot happen since by (4.7) W is concave
as long as W is negative on (K, oo). 

Hence W is concave on (K + 1, 00). W is not( ’ ) 
dx 

( )

bounded below, contradicting W = This completes the
proof of Lemma 4.2.

It follows from Lemma 4.2 that for A &#x3E; a I (PA) possesses at most one

solution in IZA, P2] - Indeed, choose w &#x3E; 0 such &#x3E; 0 for u E [0, P2],
and define the mapping K : C(S2) -~ by

where (-a+w)-1 is the inverse of -0+w with homogeneous Dirichlet boundary
conditions. By our choice of w, K maps IZA, P2] into itself and K has no fixed
point on its boundary. Since K is compact, the Leray-Schauder degree on (za, P2)
is well defined. Because (za, P2) is convex one finds

If (A, u) is a solution of (P), with u E IZA, P2] and u) &#x3E; 0, it follows
that u is an isolated fixed point of K. Moreover, the local degree of I - K
at u is +1. From the additivity of degree it follows that K possesses at

most one fixed point in (za, p2). We denote this solution by p(A). Since
&#x3E; 0, for A &#x3E; ~ 1, one finds by the implicit function theorem and

Schauder estimates, that A - Sp(a) E C’ The estimate (4.1)
implies that lim max = P2.

A-00

It remains to prove the third assertion of theorem 2’. Let z E ~+(SZ) with
max z E (PI, P2). It follows from the first part of the proof, that it is sufficient
to show that there exists &#x3E; a 1, such that any solution U of (Px), with
A &#x3E; A(z) and U E [z, P2], is larger than z-x. This will be done in two steps.

First note that, from the definition of z, there exist S E (PI, P2) and a ball
B(xo, r) such that z &#x3E; s in B(xo, r). Let u &#x3E; 0 be such that f (u) &#x3E; ~ . (u - s)

B /

defined in Lemma 2.2, we can apply Lemma A.3 in order to get

Observe that w(A, xo)  u in Q for A &#x3E; a 1 (z). By Corollary 2.3 w(A, xo) is a
subsolution of (Px) for A &#x3E; ~ 1 (z).

Finally, like in proof of Lemma 3.1 part 2), one uses Lemma A.2 to show
that if u &#x3E; w(A, xo) in Q and A &#x3E; A(z) := max (a 1 (z), A**) also the following
estimate holds, 

- .
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This completes the proof of Theorem 2’.

5. - Proof of the third theorem

Note that, if (A, u) is a positive solution of (P), then v := (u(O»-lu satisfies

Moreover by defining w(r) := v(R-1 r) with 6 = u(O) and

Let w(,-, .) denote the unique solution of the initial value problem (5.2-5.3)

LEMMA 5. There exists - 1 &#x3E; 0 such that for - in [0, ê1), w (6, - ) possesses
a first zero, which we denote by R(,-). Moreover R as a function of - is

CI(o, 61) n C[O, 61) and d R is bounded on (0, 1/2E1).( 0,E 1) [ 0,E 1) 
de 2 2 )

We first show that the assertion of Theorem 3 is an easy consequence of

this lemma. By (5.1) we have A(e) = R(ê)2êl-a, and hence

Since a - 1 &#x3E; 0, R 0 &#x3E; 0 and d R is bounded on
- 

( ) 
d,-

it follows that

on some interval (0, 60).
-1 

Then for A &#x3E; A(eo), is a solution of (Pa) on the
unit ball, where e(A) is the inverse of the function A(e). This function E(A) is

well defined on (A(eo), oo), decreasing and satisfies lim e(A) = 0. This completes
,X ---+ 00

the proof of the theorem.

PROOF OF LEMMA 5. It is known, see [17], that (5.2-5.3) with e = 0
possesses a solution w, having a first positive zero which we denoted by R(O).
We want to obtain the function W(ê, .) by a perturbation argument.
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Since we are only interested in bounded positive solutions, we modify the
right-hand-side of (5.2) by setting h(E, w) = k(W)g(êW) where k is a C l -function
satisfying

The function h is and has bounded derivatives. The initial value

problem

possesses a unique solution on [0, oo).
For e in [o, 1 ), since is decreasing until it possibly becomes zero,

this function is identical with the one in the lemma, as long as it is

positive.
We claim, for every r &#x3E; 0, w(., r) is a C’ -function of e. First this will

be proved for r E (0, 6), with 6 small enough. Note that (5.4-5.5) can be

rewritten as w = w), where for

z in C[0, S]. For every 6 &#x3E; 0, T : (-1, 1) x C[O, 61 - C[0, b], where C[O, b] is

equipped with the supremum-norm, is continuously Fréchet-differentiable. For
6 small enough, T (~, . ) : C[0, b - ] is a strict contraction with a unique
fixed point such that E -&#x3E; is continuously differentiable.

Since wee, r) = z(e)(r), the claim is proved for r  8.

By repeating the argument it can be shown that E -&#x3E; w(e, r) is continuously
differentiable for every r &#x3E; 0.

Since w(0, R(0)) = 0 and wr(O, R(0))  0 it follows from the implicit
function theorem, that there exists ei 1 &#x3E; 0 and a continuously differentiable
function R( . ), defined on such that 0. From (5.4) it
follows that is the unique zero of w(e, . ) on }Z~ +. This completes the proof.

PROOF OF THE COROLLARY. Since u(0) parametrizes the solutions (A, u) of
(P), p* = inf{6 &#x3E; 0; (P) has a solution (A, u), with u(O) = p, for all p E [6, P2)1-
Suppose p* &#x3E; 0 and let v be the solution of the initial value problem
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Since f (p) &#x3E; 0 on (0, p*], v is strictly decreasing while v is positive. If v has a
(first) positive zero R, then (R2, )) is a solution of (P), which contradicts
the definition of p*. If v stays positive, then

Otherwise, there are c &#x3E; 0 and R &#x3E; 0 such that f (v(s)) &#x3E; c for s &#x3E; R. By
integrating (5.6), one finds

for r large enough, contradicting the fact that v stays positive. The existence
of a positive function satisfying (5.6-5.8), is contradicted by Theorem 2.2 of
[15], if a  N/(N - 2), and by Theorem 3.1 of [15], if the integral condition
of (G2) is satisfied. Therefore p* = 0.

This completes the proof.

6. - Appendix

In this section we state, for the sake of completeness, a definition and
some lemmas concerning sub- and supersolutions of problem

where Q is a bounded domain with Cl-boundary, h c C~ and g c Co.

DEFINITION. We call a function v a subsolution (supersolution) of (H) if:

on aQ, and

where D+(S2) consists

of all nonnegative functions in Co-(92).
LEMMA A.1. Let v and w be respectively a sub- and supersolution of (H)

with g = 0. If v  w in S2, then there exists a solution U E C2(Q) of (H) with
g = 0, which satisfies v  u  w.

PROOF. We essentially follow the proof in [21] on page 24. Choose a
number w &#x3E; 0 such that h’(u) + w &#x3E; 0 for min v  u  max w, and define the
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nonlinear map T by u = Tu, where

Clearly T : C(S2) -~ C(Q) is compact. (Where C(Q) is equipped with the

supremum-norm)
It is standard that T is monotone on [v, Next we show that v := Tv &#x3E; v

in Q.

By the definition of a subsolution and by the construction of vi, we have

Thus z = v, - v satisfies z &#x3E; 0 on and

We claim that z is nonnegative in Q.
Otherwise there exists a ball B(xo, r) c S2, such that z is negative in

B(xo, r) and achieves its minimum in xo.
Hence

This shows z is superharmonic on B(xo, r), and from the minimum principle
we get z(x) = z(xo) on B(xo, r).

Then 
- -

for every nontrivial p E D+(B(xo, r)), a contradiction. Thus Tv = v on

L2. Similarly, one proves Tw  w on Q. Now it is standard, see [ 1 ], that T

possesses a fixed point in [v, w], which is a solution of (H) with g = 0.

Next we prove an appropriate version of the sweeping principle of Serrin,
[22], [21].

Let r = aS2 be the union of two disjoint closed subsets rl and r2, where T’1
1 - 

. 

ae
or r2 may be empty. Let e E C1(Q) satisfy e &#x3E; 0 on QuF1 and e = 0, ’  0 on

,9n
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r2. (n is the outward normal) Set Ce (S2) _ { u E C(Q); Jul  ae for some a &#x3E; 0)
and for u E Ce(SZ) define liull, = inf{a &#x3E; 0; lul:S ae}.

LEMMA A.2. Let u be a supersolution of (H) and let A = (vt; t E [0, 1
be a family of subsolutions of (H) satisfying vt  g on rl and vt = g on r2, for
all t E [0, 1]. If
1) t - (vt - vo) E Ce(SZ) is continuous with respect to lie-norm,
2) u &#x3E; vo in 0., and
3) vt, for all t E [0, 1], 

_

then there exists a &#x3E; 0, such that for all t E [0,1] ] u - vt &#x3E; ae in Q.

PROOF. Set E = It E [o, 1]; u &#x3E; vt in Sz}. By 2) E is not empty. Moreover
E is closed. For t E E wt := u - vt satisfies

Since wt fi 0 it follows from [5, Corollary p. 581] that there is # &#x3E; 0, such
that wt &#x3E; for some uo C which satisfies uo &#x3E; 0 in 0

and The function w is positive on r which is compact,
an 

° ~ 
_ 

t p 1 ~ P

and continuous on SZ. Hence there exists -1 &#x3E; 0 such that wt &#x3E; 1e. Since
t --~ (wt - wo) is continuous with, respect to E is also open.
Hence E = [0,1] ] and there is a &#x3E; 0, such that wt &#x3E; ae in Q for all t E [o, 1 ].

This completes the proof of Lemma A.2.

Let o be the principal eigenfunction, with eigenvalue v, of

where B denotes the unit ball 

Let V) be normalized such that max V) = 1.

a family of subsolutions of the problem



120

By using Lemma A.2 one finds u(xo) &#x3E; b.
It remains to show that 0(zo, is a subsolution of (Pba). By the

assumption of the lemma u &#x3E; a = 0(zo, À, t) on aB( ).
The integral condition is also satisfied:

This completes the proof of the lemma.
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