@article{ASNSP_1987_4_14_1_79_0, author = {Dieckerhoff, R. and Zehnder, E.}, title = {Boundedness of solutions via the twist-theorem}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {79--95}, publisher = {Scuola normale superiore}, volume = {Ser. 4, 14}, number = {1}, year = {1987}, mrnumber = {937537}, zbl = {0656.34027}, language = {en}, url = {http://www.numdam.org./item/ASNSP_1987_4_14_1_79_0/} }
TY - JOUR AU - Dieckerhoff, R. AU - Zehnder, E. TI - Boundedness of solutions via the twist-theorem JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 1987 SP - 79 EP - 95 VL - 14 IS - 1 PB - Scuola normale superiore UR - http://www.numdam.org./item/ASNSP_1987_4_14_1_79_0/ LA - en ID - ASNSP_1987_4_14_1_79_0 ER -
%0 Journal Article %A Dieckerhoff, R. %A Zehnder, E. %T Boundedness of solutions via the twist-theorem %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 1987 %P 79-95 %V 14 %N 1 %I Scuola normale superiore %U http://www.numdam.org./item/ASNSP_1987_4_14_1_79_0/ %G en %F ASNSP_1987_4_14_1_79_0
Dieckerhoff, R.; Zehnder, E. Boundedness of solutions via the twist-theorem. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 4, Tome 14 (1987) no. 1, pp. 79-95. http://www.numdam.org./item/ASNSP_1987_4_14_1_79_0/
[1] A case of boundedness in Littlewood's problem on oscillatory differential equations, Bull. Austral. Math. Soc., 14 (1976), pp. 71-93. | MR | Zbl
,[2] Some problems in real and complex analysis, (Heath, Lexington, Mass. 1968). | MR | Zbl
,[3] On invariant curves of area-preserving mappings of an annulus, Nachr. Akad. Wiss. Göttingen Math. Phys. Kl. II, (1962), pp. 1-20. | MR | Zbl
,[4] Stable and random motions in dynamical systems, Ann. of Math. Studies 77, Princeton, N.J. (1973). | MR | Zbl
,[5] On boundary value problems for superlinear second order differential equations, J. Differential Equations 26, (1977), pp. 37-53. | MR | Zbl
,[6] Periodic solutions of x + f (t, x) = 0 via the Poincaré-Birkoff fixed points theorem, J. Differential Equations 20, (1976), pp. 37-53. | MR | Zbl
,[7] Existence of oscillating motions for three-body problem, Dokl. Akad. Nauk., SSSR., 133, 2, (1960), pp. 303-306. | MR | Zbl
,[8] Quasirandom dynamical systems, I, II, III, Math. USSR-Sb., 5, (1968), pp. 73-128; 6, (1968), pp. 505-560; 7, (1969), pp. 1-43. | MR | Zbl
,[9] Proof of Poincaré's geometric theorem, Trans. Amer. Math. Soc. 14, (1913), pp. 14-22. | JFM
,[10] An extension of Poincaré's last geometric theorem, Acta Math. 47, (1925). | JFM
,[11] On the existence of invariant curves of twist mappings of an annulus, Preprint, Mainz (1982). | MR
,[12] Démonstration du théorème des courbes translatées de nombre de rotation de type constant, manuscript, Paris (1981).
,[13] Forced Vibrations of Superquadratic Hamiltonian Systems, Acta. Math., 152, (1984), pp. 143-197. | MR | Zbl
- ,[14] Sur les courbes invariantes par les difféomorphismes de l'anneau, Vol. 1, Astérisque (1983), pp. 103-104, Vol. 2. Astérisque (1986), pp. 144. | Numdam | MR | Zbl
,[15] Periodic solutions of Hamiltonian equations, Lecture Notes in Math., Springer, 1031, (1983), pp. 172-213. | MR | Zbl
,[16] Integrability of Hamiltonian Systems on Cantor Sets, Comm. Pure Appl. Math. 36, (1982), pp. 653-695. | MR | Zbl
,[17] On the continuation of solutions of a certain non-linear differential equation, Monatsh. Math. 71, (1967), pp. 385-392. | MR | Zbl
- ,