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Twistorial Construction of Harmonic Maps
of Surfaces into Four-Manifolds.

J. EELLS - S. SALAMON

Dedicated to Professor Nicolaas H. Kuiper

0. - Introduction.

Twistorial constructions of harmonic maps were first made by Calabi [C2]
who gave an effective parametrization of isotropic harmonic maps of Rie-
mann surfaces into a real projective space. More than a decade later, y
analogous constructions were produced for maps into a complex projective
space [EW~]. Harmonic maps are the solutions of the Euler-Lagrange equa-
tion of the energy functional

(see [EL]). Local minima of E may not exist; indeed, there is only a
fragmentary existence theory for harmonic maps of surfaces. It is quite
significant therefore to discover that harmonic maps can sometimes be

constructed explicitly via their twistor transforms.
The study of maps into a 4-dimensional manifold received a large

impetus from the work of Bryant [Br], who proved that any compact
Riemann surface can be conformally and harmonically immersed in the
4-sphere 84. This was achieved by applying Calabi’s techniques to the
Penrose fibration ~54. In the present work we examine the 4-dimen-
sional case in a more general context by considering conformal harmonic

Pervenuto alla Redazione il 25 Ottobre 1984 ed in versione definitiva il 2 Set-
tembre 1985.
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maps from a Riemann surface ~VI into an arbitrary oriented Riemannian
4-manifold N. Although conformal harmonic maps M- N are the same
as minimal branched immersions, we study the consequences of the confor-
mal and harmonic properties separately. Our approach is then based upon
a parametrization of such maps announced in [ES].

In the early sections, y w e consider in detail the fibre bundles 8+ over N
consisting of unit eigenvectors of the Hodge * operator acting on A2 TN.
These total spaces admit a natural almost complex structure Jl, which was
shown by Atiyah, Hitchin and Singer [AHS] to be integrable if N is =t=
selfdual. Our parametrization involves a different almost complex struc-
ture J, obtained from J, by reversing orientation along the fibres:

COROLLARY 5.4. There is a bijective correspondence between nonconstant
conformal. harmonic maps M--&#x3E;N and nonvertical J2 holomorphic curves

1f,: M~8:f:.

This correspondence is achieved by taking to be the natural  Gauss
lift » of cp, whose value at a point is determined by the 1-jet of 99 at that
point. Unlike Jl, the almost complex structure J, is never integrable, so
its relevance may come as a surprise. However in homogeneous cases J2
has made previous appearances, y namely in the description of invariant

almost complex structures by Borel and Hirzebruch [BH], and in the clas-
sification of 3-symmetric spaces by Wolf and Gray [WG].

Having obtained a twistorial description for all conformal harmonic

maps, it is an easy matter to distinguish special classes. If y is both J1
and J2 holomorphic, then it is horizontal, and as explained in section 6,
its projection 99 is a real isotropic harmonic map. Such maps include

Bryant’s superminimal immersions in S4, most of the known minimal sur-
faces in the complex projective plane CP2 [EW2], and by work of Mical-
lef [M] many stable minimal surfaces in Euclidean space ll~4. Indeed, we
explain that twistor methods are most valuable when the target manifold
is selfdual and Einstein.

Spinor terminology is used for the first time in section 8, to introduce
the twistor degrees of a conformal harmonic map (p of a compact Riemann
surface into a 4-manifold; these are used to relate analytical and topological
properties of 99. The twistor bundle CP3 of S4 is considered in detail in

sections 9 and 10, first from the viewpoint of 3-symmetric spaces, and then
as a Riemannian submersion. This enables us to obtain examples of har-
monic maps into CP3, and more generally to introduce the theory of har-
monic maps into Kahler manifolds.

This theory is in turn applied to study maps into Kahler surfaces, y for
which we pay special attention to the notions of real and complex isotropy.
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Calculation of twistor degrees allows us to extend the validity of a formula
of Eschenburg, Tribuzy and Guadalupe [ETG]. Conformal harmonic maps
M - CPI are interpreted in terms of J, holomorphic curves in a flag
manifold. This implies that such maps into CP2 really come in triples, and
explains the existence of associated harmonic maps.

Applications of our techniques to 3-dimensional domains appear in [E,],
and to higher dimensional domains in [S3]. There will also be analogous
results for maps of surfaces into pseudoRiemannian manifolds. For back-

ground information concerning harmonic maps we recommend [EL], and
for 4-dimensional Riemannian geometry [S2].

Starting with the construction in [Br], Friedrich [F] studied Jl holo-

morphicity of Gauss lifts into the twistor space of a 4-manifold, with

examples.
During the preparation of this manuscript, the authors enjoyed the

hospitality of the Scuola Normale Superiore, the Institut des Hautes Etudes
Scientifiques, and the Universite Libre de Bruxelles. They are much in-
debted to F. E. Burstall, A. Gray, and J. H. Rawnsley for their comments
on earlier versions-and especially to latter for assistance with some of

the proofs.

1. - Harmonic maps.

Throughout ~VI denotes a Riemann surface, i.e. a connected complex
1-dimensional manifold. If z = x + iy is a local complex coordinate on M,
then

span respectively the space of complexified tangent vectors of type
(1, 0), and the conjugate space of (0, 1) vectors. The complex struc-
ture of M is equally well defined by a conformal class of Riemannian metrics
together with an orientation, in accordance with the isomorphism GL(l, C)
~ R+ X SO(2). A Riemannian metric g belongs to the conformal class of M iff

Letting g also denote the complex symmetric extension of the metric,
eonformality is therefore equivalent to the vanishing of the quadratic dif-
ferential
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Let N be a Riemannian manifold with metric h, and consider a mapping
~ : M - N. Its differential TN defines a section

where TN denotes the pulled-back bundle. Fixing a compatible metric g
on M, and using V to denote the Levi-Civita connections on both TM and

enables one to compute the tensor Vdgg. To this end, take a complex
coordinate z on an open set of ..M~ and let

be the corresponding covariant derivatives acting on cp-l TN. For complete-
ness we also define ~cp, ~g~ by the formula

In the sequel we shall frequently identify the fibres of TN and TN in

order to write 6T = p*(o 12z), 3q == 
Because the Levi-Civita connection on TN has zero torsion,

and the quantity 66,p - ôôq is real. Moreover on M, ~dz is proportional
to dz ~ dz = dz2, so

is a section of If tr denotes contraction with g, the

tensor TfP === with values in is ealled the tension field and
represents an invariantly defined Laplacian of the mapping 99. Thus ; is

said to be harmonic if = 0 on M, or equivalently if ô3q = 0. In par-
ticular this notion depends solely on the conformal class of M.

If 99: .M~ -~ (N, h) is harmonic,

so (cp* h) 2 ~ ° = 6(p) is a holomorphic quadratic differential. Now we
shall call a mapping (,v which satisfies (g~* h) 2~° = 0 conformal ; this means
that away from the zeros of the pullback cp* h is a Riemannian metric

compatible with the conformal structure of M. For example since a Riemann
surface of genus 0 admits no holomorphic differentials, any harmonic map
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99 : S2 - N with domain the 2-sphere is automatically conformal. Similarly
M - N is harmonic with the restriction conformal for some non-

empty open subset’lL c M, then 99 is conformal on all of M.

Now suppose that 99 is a conformal immersion, and work exclusively
with the induced metric g = cp* h on M. In this case for any vector field X
on M,

where ~1 denotes the covariant derivative on TN followed by projeotion
to the orthogonal complement in TN. It follows that

and Vdq can be identified with the second fundamental form whose trace -r,,
equals the mean curvature of the immersion. A nonconstant conformal
harmonic map q : 1V1 -~ (N, h) is then the same thing as a minimal branched
immersion. Indeed the zeros of cp* are isolated and if z is chosen so that

z = 0 is one of them, there exist local coordinates xl, ..., xn on N for which 99
is given by

[GOR]. This fact will enable us to handle the zeros of the differential of g
without special problems. Any holomorphic or antiholomorphic map of a
Riemann surface into a Kahler manifold is easily seen to be both conformal
and harmonic. We will see two important generalizations of this in the
sequel (proposition 3.3, theorem 5.3).

Some additional definitions can be given under the continued assumption
that 99: (N, h) is conformal and g = cp*h. First 99 is said to have con-
stant mean curvature if 0. The condition complementary to T~= 0
is that Vdgg have no trace-free component; in this case cp is said to be totally
umbilic. Using = 0, this is equivalent to the equation = 0.

Finally 99 is totally geodesic if Vdcp = 0.

2. - Gauss lifts.

Let denote the Grassmannian of real oriented 2-dimensional

subspaces of Rn . Each TT E may be identified with the simple 2-vector
a = e2 , where e2l is any oriented orthonormal basis of V. Therefore
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Alternatively, one can associate to V the complex projective class [v] E ep.-iy
where v = e, + ie2 E Cn. If h denotes the complex symmetric metric on Cn, y
then h(v, v) = 0, and this construction identifies with the quadric
hypersurface

The action of 80(n) on gives a Riemannian symmetric space description

Any immersion cp: M- defines a Gauss map

is the real 2-plane cp*(TmM) translated to the origin. If 99 is
conformal, then = 0 in Cn, and in terms of the quadric
identification YqJ is the projective class It follows that a conformal

immersion 99: M- Rn is harmonic iff its Gauss map is anti-

holomorphic, a result due to Chern [Chl]. More generally a theorem of

Ruh-Vilms [RV] states that a conformal immersion 99: M- Rn has con-

stant mean curvature iff YT is harmonic.

For an arbitrary manifold N, there is no way of associating a Gauss
map in the traditional sense to an immersion 99: M- N. However there

is a related concept involving the Grassmann bundle 0,(TN) over N whose
fibre at is the space of real oriented 2-subspaces in TxN.
For each with 99 (m) = x, the oriented subspace is an

element of and in this way we obtain the Gauss lift

Obviously xo§3 = g~, where x is the bundle projection. In the case N= Rn

there is a canonical isomorphism X G2(Rn), and Î’flJ == n2°ip, where
~c2 denotes projection to the second factor.

When N is 3-dimensional, 0,(TN) can be identified, via orthogonal
complementation, with the sphere bundle S(TN) of unit tangent vectors.
In fact
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and there is the star operator

Now in 4 dimensions the star operator defines an endomorphism of A2 (R4)
with *2 === 1 and ±1-eigeiispaces A 2 say. If e2, e3 , e4} is an oriented

orthonormal basis of R4 then (with appropriate conventions) A) has an
oriented orthonormal basis

The action of SO(4) on each eigenspace gives rise to a double covering

and

is a product of spheres.
Now let N be an oriented Riemannian 4-manifold. Associated to the

principal SO(4)-bundle of oriented orthonormal frames is a vector bundle

for each representation of SO(4). In particular the eigenspaces of * give
rise to a decomposition

let

be the corresponding 2-sphere bundles of unit vectors. Then fibrewise

G2(TN) is the product of ~+ with 8-, and there are projections

We define subsidiary Gauss lifts

Let F E 8~ with N. By choosing an appropriate orien-

ted orthonormal basis e~~ of TzN, it is possible to write
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J~ + e4 . Then under the isomorphism

defined by the Riemannian metric h, .F’ corresponds to the almost complex
structure J on with

The 2-vector .F is in fact dual to the so-called fundamental 2-form

The same argument shows that the disjoint union

parametrizes all the almost complex structures on Tx N compatible with h,
i.e. such that h(JX, JY) = h(X, Y). Those in 8~ are oriented consistently
with N, those in 8_ are oriented contrariwise.

Suppose that 99: M - N is a conformal immersion. Fix m E M with

x = g~(m), and choose a complex coordinate z on M such that

where el , e2 extend to an oriented orthonormal basis ~el , e2, e3 , e4l of Tx N.
Then

equals the projection to The almost complex struc-
tures corresponding to are uniquely determined by the requirement
that g*(m) be complex linear. Using the word holomorphic for this point-
wise property, we have

PROPOSITION 2.1. A conformal immersion g~ : M - N is holomorphic with
respect to both of its Gauss lifts g~+, ~_.

EXAMPLE. To investigate the Gauss lifts of a map into the sphere 84,
it is convenient to identify 84 with the quaternionic projective line 



597

as follows. The group Sp (2 ) of 2 X 2 quaternionic unitary matrices acts
naturally on the space H2 of column vectors; let U denote the underlying
complex 4-dimensional vector space. Then Sp(2) leaves invariant a skew
form oi E ~1.2 U, and its action on the orthogonal complement of co in A2 U
defines a 2 :1 homomorphism ~’p (2 ) - SO(5). Restricting to the subgroup
of diagonal matrices defines another double covering

that coincides with (2.1) at the Lie algebra level (for more details see for
example [S2]) . Since is the isotropy for the transitive action
of Sp(2) on there is an isomorphism

~ of Riemannian symmetric spaces.
Using (2.1) and (2.4) it is now an easy matter to identify

and these isomorphisms are compatible with the projection p+ -. Further-

more the isotropy subgroup Sp(1 ) X of Sp(2) defining 8_ is conjugate
to so 8~ and 8- are isomorphic as homogeneous spaces.
Indeed both are isomorphic to the complex projective space P( U) = CP3.

In addition to p~ : G2 ( T S4 ) ~ ~~ , there are distinct projections p1, p,
of to

such that is the Gauss of the composition

and is the Obata normal Gauss map * (OAyo) [0, Ei]. Since CP3 and

~ 03 are complex 3-manifolds with certain similarities (for example
the same additive cohomology) one might expect the Gauss lifts - -
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and the Gauss map to have similar properties. If (p is conformal and

harmonic, then 0 is pseudo-umbilic with constant mean curvature which
implies that Yø is also conformal and harmonic (for more details see [0,
RV]). We shall see that the same is true for ~_ (corollary 9.2).

3. - Almost Hermitian manifolds.

In this section we review some standard facts concerning 
tures, but from a new point of view which will be developed in the sequel.

Let N be an almost Hermitian manifold of real dimension 2n. This

means that N has a Riemannian metric h and an almost complex struc-
ture J satisfying

and the tensors h and J taken together reduce the structure group of the
tangent bundle TN to SO(2n) n GL(n, C) == U(n). As is customary, y we
write

where {X - iJX: X c TNI is the i-eigenbundle of J, and 
= its conjugate. Then h has type (1, 1), so is totally isotropic
and defines an isomorphism

If ..., «,) is a unitary basis of so that al) == ~kL, we shall

call

the fundamental 2-vector of N; it is invariantly defined and dual to the
2-form Y) = h(JX, Y).

For the type decomposition of the exterior algebra of TN, we use the
notation

where
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Note that are both (the complexifications of) real
vector bundles. Let V denote the Levi-Civita connection on TN, uniquely
determined by the Riemannian metric h. Fix a real vector .X E Tx N, and a
unitary basis of in a neighbourhood of x. If we set

then

has (1, 1)-component Thus

PROPOSITION 3.1. For any X c TN, B1 xF E T2 ONG) 

The tensor VF is a convenient measure of the torsion of the unitary
structure on N. More precisely if V is any U(n)-connection on TN then
VF 1= 0, and VF = (V - V)F can be identified with an invariant component
of the torsion of B7. By proposition 3.1, at each point VF belongs to

where

and Here we have made use of the isomorphism
{3.1). Set

Then D1F and D2.F’ represent the irreducible real components of VF relative
to GL(n, C).

THEOREM 3.2. D1I’ = 0 iff the almost complex structure J is integrable,
whereas DF = 0 iff the 3-form dw has no component of type (1, 2).

PROOF. Take a local unitary basis of and set

so that Replacing in (3.2) gives
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On the other hand, by the Newlander-Nirenberg theorem [NN], J is in-

tegrable iff is closed under Lie bracket. This is the case iff

vanishes for all j, k, 1. Therefore 0 implies that J is integrable.
Conversely if J is integrable,

vanishes, y and D~ F = 0.
As for we have

Now OJ is dual to F with respect to the covariant constant metric h, so
equals the component of parallel to It follows

that can be identified with the real part of (dw)1,2. D

The significance of the vanishing of D1I’ needs no comment. Now if

the non-degenerate 2-form OJ is closed, N is called symplectic; accordingly
when D2F = 0 we shall say that N is (1, 2)-symplectic. Observe however

that when N is 4-dimensional, the prefix (1, 2) is redundant. By definition N
is a Kahler manifold iff 0; this means that the (restricted linear)
holonomy group lies in U(n). The expression « quasi-Kähler » has been
used (for instance in [WG]) for (1, 2)-symplectic, but this terminology is

somewhat contrary to our viewpoint in which Kahler should be thought
of as the intersection of complex and (1, 2)-symplectic.

In order to demonstrate the relevance of D2F to the theory of harmonic
mappings we first recall a definition. A map q : (M, (N, J~) between
almost complex manifolds is said to be holomorphic if its differential is

complex linear, i.e. This is the same as saying that T*
preserves types, but does not require integrability. The following result
is due to Lichnerowicz [Li, section 16] (see also Gray 

PROPOSITION 3.3. Let ~9: holomorphic map from a Riemann

surface to an almost Hermitian (1, 2)-symplectic manifold. Then 99 is harmonic.

PROOF. Take a local coordinate z on if and a local unitary basis 
of and set bq = p*(o joz) - (summation). Replacing X by ii
in (3.2),
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Hence D2 ~ = 0 implies that

belongs to Since 36q _ ô3q is real, it must vanish. 11

EXAMPLE. Consider the manifold N = 81 X S3 with the product metric.
There is a Riemannian fibration p : N- 52 formed by following the projec-
tion to S3 by the Hopf fibration h : 83 - 82. Let X be a unit vector field

on S’ and Y a unit vertical field relative to h. An orthogonal almost complex
structure J = (Jh, J") can then be defined on N by letting J’ be the

horizontal lift of the complex structure on S2 , and setting Y,
J"(Y) = - X. Then J is integrable and gives N the structure of a Hopf
surface; p is a holomorphic fibration whose fibres are elliptic curves [Be,
Exp. VII].

Now N cannot admit a Kahler metric, so the above structure is not

(1, 2)-symplectic. Despite this every holomorphic map M- (Sl X S3, J) goes
into a fibre of p [K]; and is therefore conformal and harmonic.

On the other hand, an example of A. Gray [EL, § 9.11] shows that the
hypotheses of proposition 3.3 cannot be weakened. More to the point,
when dim N ~ 6 maps satisfying the hypotheses of proposition 3.3 will not
generally minimize energy. (See the remark after corollary 9.2.)

Suppose finally that the almost Hermitian manifold N has real dimen-
sion 4. If denotes the space of primitive (1, 1 ) vectors, i.e. those

orthogonal to the fundamental 2-vector F, then

At each point the right hand side is the direct sum of three real U(2)-
modules of dimension 2, 1, 3 respectively. But at the same time there is

the direct sum (2.2) relative to the larger group ~0(4). Choosing the standard
orientation for N so that F is a section of A’ TN, we must have

PROPOSITION 3.4.

The Levi-Civita connection certainly preserves the subbundle A) TN of
r1.2 TN, so for any X E TN, Furthermore the fact that F

has constant norm implies that VXF is orthogonal to F. In 4 dimensions

one therefore recovers proposition 3.1 from proposition 3.4.
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4. - Twistor spaces.

The results of the last section can be understood more fully by con-
sidering the sphere bundles 8+, 8_ over an oriented Riemannian 4-manifold
N, no longer assumed to admit a global almost complex structure. For

ease of notation and consistency with [AHS] we concentrate on 
although with a change of orientation everything will hold for ~+. Suppose
that ~ is an open set of N, and that s : 8- is a smooth section. Re-

serving the symbol s for the mapping, let y denote the corresponding 2-form
defined on U. Thus a is the fundamental 2-vector of some almost complex
structure J on relative to the Riemannian metric h. We shall relate

the geometry of the submanifold s(%L) in 8- with properties of the almost
Hermitian manifold h, J).

Fix and consider the tangent space to 8- at y = s (x).
This has a distinguished subspace V,, consisting of vertical vectors, y that

is those tangent to the fibre (8-)x. The latter is a 2-sphere, and its tangent
space at y is the orthogonal complement of the corresponding 2-vector in
A’ T.N. From proposition 3.4 with signs reversed, we obtain an isomorphism

which we denote by x 2013~ The type decomposition in (4.1) is relative

to the almost complex structure J on 9.1, but in fact depends only on the
point y that represents the value of J at x. Consequently there exist well
defined vertical subbundles (T2,0)" of which detect the com-

plex structure of each fibre S2!2t~ Cpl.

Proposition 3.1 expresses the fact that the Levi-Civita connection V

reduces to the bundle 8_. Given X E the vector

depends only on x and s(x), not on neighbouring values of s. Indeed

is the so-called horizontal subspace which is defined by V at any y c 8_,
and VXJ represents the vertical component of s* X in accordance with the
direct sum
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For any y E X - X~ = defines an isomorphism TxN rov Hy,
and so a subspace (T,,,’)’ of (Hy)c consisting of (1, 0)-vectors relative to y.
In this way we obtain a horizontal subbundle (T’,O)’ of 

Using (4.2) it is now possible to define two very distinct almost complex
structures Jl, J2 on the total space S_. It suffices to give the respective
bundles of (1, 0)-vectors which are

In other words at y c 8-, Ji and J, consist of the direct sum of the almost
complex structure on Hy ro..J defined by y, and plus or minus a standard
almost complex structure on V~. The section s now becomes a mapping
between two almost complex manifolds, namely (tL, J) and (8_, J.) for

a=1 or 2.

PROPOSITION 4.1. s : (~, J) -~ ( ~_, Ja ) is holomorphic iff Da a~ = 0.

PROOF. If a E TtL is a (1, 0) vector relative to J, then on s(U) the
horizontal vector a’t is automatically of type (1, 0) relative to both Jl and
J2. Thus s is holomorphic iff has type (1, 0) relative to

Ja. The result follows from the definitions (3.3) and (4.4). 0

For brevity we shall call a holomorphic map into ( ~_, Ja) Ja holomorphic.
If the section s above is J2 holomorphic and the induced almost complex
structure J is integrable, then theorem 3.2 and proposition 4.1 imply that
~a = 0 and s is horizontal. As a consequence, we can conclude that (8_, J2)
is never a complex manifold [S3’ proposition 3.4.]

To sum up: the almost complex structures Jl , J2 are characterized by
certain non-linear differential operators Dl, D2 acting on sections of ~_: -.
The relationship between D1 and D2 , while not at all obvious in theorem 3.2,
corresponds to a reversal of the orientation of the fibres of 8_.

Properties of J1 and J2 will depend on the Riemannian curvature tensor
.R of N, which is a section of Now

where t is the scalar curvature, A is an invariant, B represents the trace-
free Ricci curvature, are the two halves of the Weyl
conformal curvature (we use the notation of [S2]) . The manifold N is said

to be Einstein if B = 0, and ± selfdual if W:::: = 0. The curvature of S-
is then determined by tA -f- B + W , and guided by the Penrose twistor
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programme, Atiyah, Hitchin &#x26; Singer [AHS] showed that Jl is integrable
iff W - 0. In this case the holomorphic structure of (8 , depends
only on the conformal class of h, and 8_ has become known as the twistor
space of N. Equally important for us is the following result (essentially [S2, y
theorem 10.1]) which brings the Riemannian structure of N more into the
picture.

THEOREM 4.2. Zet N be selfdual, so that (8-, J1) is a complex manifold.
Then (T’,O)’ is a complex analytic subbundle of iff N is Einstein.

Now suppose that N is an Einstein selfdual 4-manifold. The resulting
short exact sequence

defines a complex analytic 1-form on 8_ with values in the line bundle
(T°)v. Provided t:A 0, this makes 8_ into a complex contact manifold.
With the same hypotheses, Rawnsley [R, section 10] shows that there exists
a Riemannian metric k on 8_ making (8_, k, J2) almost Hermitian and
(1, 2) symplectic. The most important cases are those in which N is a

Riemannian symmetric space, and these are covered by [WG, theorem 8.13]
(see section 9).

PROBLEM. Let 99: be a conformal map into a Riemannian

4-manifold. Bearing in mind the conformal invariance of Jl, when is there
a conformal map qi regularly homotopic to cP and a metric hl conformally
equivalent to h, with respect to which g~1 is harmonic?

5. - .J2 holomorphicity.

From now on N will denote an oriented Riemannian 4-manifold and ~f

a Riemann surface. In general N will not admit a global almost complex
structure, so it makes no sense to talk about holomorphic maps 99: M - N.

However associated to N there are always the twistor spaces 8+, 8_, and
an immersion T: produces the Gauss lifts M- 8, described
in section 2. For example, at each point x E ~p- defines an almost
complex structure on T~N. Thus §3_ gives rise to an almost complex
structure on the fibres of cp-l TN, and so a decomposition

similarly for §3~. If is a local oriented orthonormal basis of
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99-ITN with spanning then

We shall continue to work with 8_, although all the results of this

section are equally valid with all signs reversed.

LEMMA 5.1. rp-18- is naturally isomorphic to the complex projective bundle
,

PROOF. Given a 2-vector or E g~-1 ~_, ~(cr) = m, there exists an oriented
orthonormal basis e2, e3, e4l of with

(cf. (2.1)). Then + a = 2ellBe2 represents a 2-plane in invariant

by the almost complex structure §3+(m). Identifying J with the projective
class [el - ie2] E gives the required isomorphism, ll

Given any map q : M -&#x3E; N, the vector bundle over the Rie-

mann surface If has a natural complex analytic structure described by
Koszul-Malgrange [KM]. Local complex analytic sections s are characterized
by the equation

Indeed the complex structure on the total space of (cp-1TN)c is obtained
by o adding » the almost complex structures of the base and fibre, using
the splitting determined by the Levi-Civita connection V. This makes the

zero section a complex submanifold and its normal bundle, isomorphic to
(cp-l TN)c itself, is complex analytic. It follows from (5.3) and is well known

that (p is harmonic iff is a local complex analytic section of 
The next result is an extension of this fact.

THEOREM 5.2. A con f ormal immersion 99: M- N is harmonic 

is a complex analytic subbundle of 

PROOF. Since 99 is conformal, 6q spans (see (5.2)). Now 
is complex analytic iff it is closed under the application of 3. If this is the

case, then 36q E T’,O, so by reality 36q = 0 and cp is harmonic.

Conversely suppose that cp is conformal harmonic, and take a local

unitary basis ~8~ of T+’,o with 0153 = ~cp/ ~~ ~ ~~ . Then both ~S belong to
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T+°, the second because

Thus ~(T+°) c T’,O. 0

Given an immersion (p, there is a natural map

Moreover if 99 is conformal, i maps the canonical section [ôq] of 

onto the Gauss lift §3_. The following result is then a re-interpretation of
theorem 5.2:

THEOREM 5.3. An immersion 99: conformal and harmonic iff
§5_ is J2 holomorphic.

PROOF. be the fundamental 2-vector defined

by §3_; J has type (1, 1) relative to (5.1). Exactly as in proposition 3.1,
we have

where = l12(Tl~°), and in analogy to (3.3) we can write

where Here and in the sequel ( denotes the

component of type (p, q) relative to (5.1). Now

(cf. (4.2)), so as a combination of propositions 2.1, 4.1 we deduce that §3_
is Ja holomorphic iff (i) cp* is holomorphic relative to and (ii) b. a = 0.

Condition (i) is satisfied is conformal. Suppose this is the case.

By (2.3),

where c is a positive normalizing factor. Hence
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and by proposition 3.4,

Since h(699, - ~~~) = 0, ~2 ~ = 0 iff (66q)b° = 0. This holds iff
the real quantity ô3q vanishes, i.e. 99 is harmonic. Cl

When N = R4 is Euclidean space with its flat metric, 8::1:~ R4 X S2 and
the traditional Gauss map of a conformal immersion 99: M- R4 is given by

(see section 2). By convention the projection ~c2: (8:1::’ J2) ~ S2 is anti-

holomorphic, so one recovers from theorem 5.3 the result that is harmonic
is antiholomorphic [Chl].

As another special case, suppose that is a holomorphic mapping from a
Riemann surface ~ into an almost Hermitian (1, 2) symplectic manifold N.
Then there exists a global section 8+) with D2 F = 0, and by
proposition 4.1, ~+ = Fogg is J2 holomorphic. Proposition 3.3 then becomes
a corollary of theorem 5.3. In the general situation a conformal map cp
is « rendered holomorphic’» by the almost complex structure on cp-l TN.

We shall call a smooth J. holomorphic map from a Riemann surface
into 8+ or 8_ a J. holomorphic curve. Given a nonconstant conformal har-

monic map 99: its Gauss lifts ~+, are both J2 holomorphic
curves; by remarks in section 1 this is true even at the isolated points
where cp* = 0. Conversely given a J2 holomorphic curve ~: 1Vl -~ 8:1::, its

projection 99 is conformal. Provided is not vertical, i.e. not

contained in a fibre, we must have VJ _ so by theorem 5.3 again 99 is

also harmonic.

COROLLARY 5.4. The assignment y~ is a bijective correspondence bet-
ween nonconstant conformal harmonic maps 99: M-&#x3E; N and nonverticat J2
holomorphic curves 1tl ~ 8:1::.

As a corollary one therefore obtains in addition a bijective correspond-
ence between the J2 holomorphic curves in 8+ and those in 8_. This is

significant since the manifolds 8+ and 8_ are generally distinct. A local
existence theorem for holomorphic curves in an arbitrary almost complex
manifold has been given by Nijenhuis &#x26; Woolf [NW]. See also [Gr].

PROBLEM. For compact manifolds the regular homotopy classes of

smooth immersions (two being equivalent iff they are homotopic through
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immersions) have been classified by Hirsch and Smale [Hi; Sm]. One can

define analogously the regular homotopy classes of branched immersions

q : M - N of a surface. When does such a class contain a minimal represen-

tative, i.e. a conformal. harmonic 
Not always. If M has genus 2, there is no nonconstant conformal

harmonic map (p: into a flat torus. For its Gauss map y. would
determine two meromorphic functions on .lVl of degree 1, in violation of
the Riemann-Roch formula. By way of contrast, every homotopy class

of maps M- T4 has a harmonic representative minimizing energy.

6. - J, holomorphicity.

Up to now orientation has not played an important role; we have been
able to formulate results by working with just one of the twistor spaces
8+7 S_ . For example given a map g~ : M-N from a Riemann surface

into an oriented Riemannian 4-manifold, it follows from theorem 5.3 that

both or neither of ~_ are J2 holomorphic. As will become apparent
in the proof of the following result, the situation for J, is very different.

PROPOSITION 6.1. A conformal immersion M-N is totally umbilic

iff both g~+, §3_ are Ji holomorphic.

PROOF. From the proof of theorem 5.3 and in particular (5.4), §3- is Jl
holomorphic iff = 0. Now

so has no component proportional to and = 0 iff

((5~)~~= 0. Similarly for so at a given point

Both §3, §3_ are Ji holomorphic iff ð2cp E 699. The latter

defines totally umbilic for a conformal map. 11

A mapping from a Riemann surface into a Riemannian mani-

fold with metric h is said to be real isotropic if

relative to any complex coordinate on M. This just means that the dif-
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ferentials r &#x3E; 1, span an isotropic subspace of (TN)o, and for N = RP-
coincides with [EW2 , definition 5.6; R, section 6]. Putting r = s = 1 shows
that cp is conformal, so real isotropy may be regarded as a generalization
,of conformality.

EXAMPLE. For N = Sn or I it is known that any harmonic map

q : S2 - N must be real isotropic. For Sn this was proved by Calabi [Ci]
who called real isotropic harmonic maps « pseudo-holomorphic ». The crucial
point is that a Riemann surfa,ce of genus 0 admits no holomorphic differen-
tials, and it suffices to show inductively that 6’99) = 0. For Cpn, 99
actually satisfies a stronger condition called complex isotropy which will
be studied in section 10. If N is a real space form and q: M- N a har-
monic map which is real isotropic on an open set’lL c M, then 99 is real

isotropic on all M [Bu].

PROPOSITION 6.2. A conformal M- N is real isotropic iff
.either g~+ or §3_ is J, holomorphic at each point.

PROOF. Suppose that 99 is real isotropic; so,

Then span an isotropic subspace, and at a given point m E M
either or E Tl,o. By (6.2), §3~ or §3_ respectively is Jl holo-

xnorphic at m.
Conversely if either §3~ or §3_ is Jl holomorphic at each point, then (6.4)

must be satisfied everywhere. Let ’B1 be the open subset of M where

6299 =1= 0. Then on 99 is totally umbilic and so clearly isotropic.
It is therefore enough to prove that (6.3) holds at each m E U. At m, ôq
and ~2g~ span a maximal isotropic subspace W of Differentiating
(6.4) gives

for r = 3, and thereafter for all r by induction. Hence 6rT E W at m, and
(6.3) holds. L7

If 99: M- N is conformal and harmonic, then by theorem 5.2 the line

bundle

is complex analytic in both T+° and Tb°. The second fundamental form

of .L in is determined by the component of (ô2q)%° orthogonal to ~g~,
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or more invariantly by the form

Here K denotes the canonical bundle of M and as before, 
_ ~1.2(T~°). Note that does not depend upon the choice of coordinate z
on M

LEMMA 6.3. An ~VI -~ N has ,u~ = 0 iff Jl holomorphic.

PROOF. Consider §3_ for definiteness. Let fl be a non-zero vector in
To,’ 0 TI+10, so that C 699 0153 Cfl. (See (5.2).) Using (6.1) and (6.2),

But

and the last term vanishes iff It+ = 0. D

A mapping y: M-&#x3E;- is said to be horizontal if each image 
is contained in the horizontal distribution H defined by (4.3). Since J1
and J2 coincide on H, if 1p has two of the properties Jl holomorphic, J2
holomorphic, horizontal, then it has the third. In this case one can say

that is horizontal holomorphic, the distinction between Jl and J2 being
unnecessary. For example, by theorem 5.3 and lemma 6.3, a conformal
harmonic map 99: has p* = 0 iff is horizontal holomorphic. A
similar approach was adopted by Poon [P]. On the other hand,

PROPOSITION 6.4. I f 99: conformal. harmonic map with N ± self-
dual and Einstein, then p* is complex analytic in the sense of 

PROOF. It is necessary to show that

where V denotes the Levi-Civita connection on Since cp is har-

monic, 33p = 0. Put @ = ( ~ 2 g~ )~1. Then from the definition (6.5) of it

remains to check that relative to the almost complex structure §3*,

has (1, 0) component proportional to 699. First note that this is true

for the second term on the right hand side: the equations h(p, = 0,
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= 0 imply that (3fl))° is proportional to 3p. Now.

where R = tA -~- W, is the curvature tensor of N (see (4.5)). The constant
curvature operator A is essentially the identity, so certainly A(699, 3p)(3p)
is proportional to 3p. Now we can use proposition 3.4 to deduce that

has no primitive (1, 1)-component (i.e. no component in relative to 

Consequently 699)(699))’,’ is also proportional to 699. 0

Suppose in addition to the hypotheses of proposition 6.4 that cp is real

isotropic. Then by proposition 6.2, if 0 for some 

on a neighbourhood of m. It follows that either fl+ = 0 on lVl or ~C_ - 0

on M. Let N) denote the set of horizontal holomorphic curves

lVl -~ ~~ , and the equivalence relation that identifies two curves in

u ~- having the same projection 99 in N. If the curves are distinct then

one is 7 the other is and by theorem 5.3 and proposition 6.1, ~? is

totally geodesic. Combining corollary 5.4 with the above remarks yields

THEOREM 6.5. Let N be :1: selfdual and Einstein. There is a bijective
correspondence between real isotropic harmonic maps g~ : _lll --~ N and the set

~-) /^~.

Euclidean space N = R4 has twistor space 8+=== CP-; §3 or _
is horizontal iff 99 is holomorphic with respect to some orthogonal complex
structure on R4. This is equivalent to saying that the Gauss map Yq;: M
~ ,~2 X ,~2 (5.5) is constant in one of its factors. Micallef [M] has proved
that a wide class of oriented complete (area) stable minimal surfaces in R4,
including those of finite total curvature, have this isotropy property. Similar

remarks hold for N = T4, 2 a flat torus. In this case ( ~+, Jl) is integrable
(Blanchard’s variety [AHS]) but not (1, 2)-symplectic, whereas (8+, J2) is

(1, 2)-symplectic but not integrable.
For the sphere N = S4, real isotropic harmonic maps are called super-

minimal by Bryant [Br], and such a map cp is said to have positive or
negative spin according as ~ is horizontal. Indeed the forms fl-, p+ are

closely related to 61, cr2 in [Br], and the prefix « super » refers to the vanish-

ing of the quartic differential h ( ~ 2 ~, ~ 2 ~ ) dz4. The case of S4 will be ex-

amined in more detail in section 8.

More generally, if N is :1: selfdual and Einstein, it follows from theo-

rem 4.2 that there is no local obstruction to the existence of horizontal
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holomorphic curves in Th e analyticity of is then a reflection of the

complex contact structure of 8 =F: -. Conversely if N has JC~ ~= 0, the curvature
tensors B and are severely restricted. However there are instances

of 4-manifolds N not satisfying the hypotheses of theorem 6.5, but for which
0 (see the example following proposition 3.3).

REMARK. The following characterization has been given by Friedrich [F,
proposition 5]. A map q: M-N has §3* horizontal holomorphic iff for

any path ct in M the compositions

of parallel translation 7: along 99(ot) with the orthogonal projections are
conformal.

7. - The case of 3-manifolds.

In this section we shall state without proof a theorem which is based
upon results of the two preceding sections. For more details we refer the

reader to [E2, S3].
Suppose first that N is an oriented 4-dimensional Riemannian manifold

containing an embedded 3-manifold N’. As usual set

and in addition let 8 = S(TN’) denote the bundle of unit tangent vectors
to N’. If v denotes the oriented unit normal to N’ in N, then 
defines elements

In this way we can identify 8 with the restriction of both ~+ and 8- to N’.
Moreover if 99: is an immersed surface, then

where p : X---&#x3E; 8 is the Gauss lift defined by the normal to lVl in N’.
In the above situation the almost complex structures Ji, J2 on 8*

induce almost CR structures on 8, which may therefore be treated as a
type of twistor space in its own right. We shall explain this more carefully
in the abstract setting in which N’ is an arbitrary oriented Riemannian
3-manifold. In this case we use the Levi-Civita connection of N’ to give a
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splitting

as in (4.3). The horizontal space HlI contains a distinguished 2-dimensional
subspace HlI 

I 

equal to the orthogonal complement of the vector y, and we
define a distribution II on 8 by

Since g~ , 1~ are oriented 2-planes, they admit natural almost complex
structures, and in analogy to (4.4) there exist tensors

satisfying Jf = -1.
Given a Riemann surface M and an immersion N’, we shall

say that its Gauss lift is Ja holomorphic if c Il and Ja 3§3 = i ~g~.
Associating g~ with ip then yields

THEOREM 7.1. There is a bijective correspondence between

(i) nonconstant conformal totally umbilic maps M N’ and nonvertical
Jl holomorphic curves .M~-~ ~ ;

(ii) nonconstant conformal harmonic maps X--&#x3E; N’ and nonvertical J2
holomorphic curves M--&#x3E;- 8.

In this set-up the Gauss lift ip is horizontal iff g is totally geodesic.
Moreover in the situation of an embedding i: N’ c N, the natural map
8 ~ 8-~- is J2 holomorphic in the obvious sense iff i is totally geodesic. This

ensures that harmonic maps into N’ remain harmonic into N.

The subbundle

is always closed under Lie bracket; curvature provides no obstruction be-
cause the horizontal part of II has only 1 complex dimension. This means

that is an integrable OR manifold; that w3:s in fact exploited by
LeBrun [Le] in a conformally invariant setting to furnish examples of non-
realizable OR manifolds. Although twistor CR manifolds exist in higher
dimensions [S3], a 3-dimensional base guarantees that II has real codimen-
sion 1. When N= R3 is Euclidean space, 8 fibres over the twistor space

used by Hitchin to study monopoles 
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Although (8, J2 ) is not integrable, theorem 7.1 does show that J2 holo-
morphic curves exist in abundance. The distinction between J, and J2
in this regard is best appreciated in terms of the Levi form. Fix a nowhere

zero 1-form

on S annihilating the distribution II; xi are local coordinates on N’ and ai
are suitable fibre coordinates on TN. The Levi form of ( ~, Jl) is the Her-
mitian form

and is nondegenerate with signature ( --~- 1, -1). This imposes stringent
conditions on the existence of ~Tl holomorphic curves. For example such a
curve y: M- 8 satisfies y*y = 0, and so has a null tangent vector:

On the other hand dy has no component of type (1, 1 ) relative to J2 , so
(7.1) is no extra condition on the tangent vector of a ~T2 holomorphic curve.

8. - Spinors and degrees.

We resume work with an oriented Riemannian 4-manifold N. A section

of + over an open set’lL c N determines an isomorphism of the twistor
space 8 - ] flL with the associated complex projective bundle by
the proof of lemma 5.1. However for a more invariant description of this
type one must resort to the so-called spinor bundles.

The homomorphism (2.4) exhibits Sp (1) as the universal covering
Spin (4) of ~’0(4). Regarding the quaternions H as a right H-module and a
left H-module respectively gives the isomorphism of modules R4

corresponding to (2.4). To avoid the confusion between left and right, it

is more convenient to treat H as a complex 2-dimensional vector space.
In this case we may write

where the right-hand side is the complexification of the basic 

Complex conjugation on the left is given by a (8) b = and a typical
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real element in (8.1) can be represented by complex matrices as

This is the decomposition of a vector (right) into the product of spinors
(left); for more details see [S,].

Now suppose that N is a spin manifold, which means that its structure
group can be lifted from SO(4) to X Sp(l). Then associated to (8.1)
are complex rank 2 vector bundles d _ such that

Given u E Z)_~ ~ ~ 0, 7r (u) = x,

defines a maximal isotropic subspace of which must be the space
of (1, 0)-vectors for some almost Hermitian structure on With the

correct orientation convention, the corresponding fundamental 2-form be-
longs to ~_ . Since Wu depends only upon the projective class [~c], this

argument establishes

and similarly with the opposite signs. Taking exterior powers of (8.2) gives
related isomorphisms ~S2 4 ~ .

The pullback n-14_ over the total space -P(zi_) contains a tautologous
complex line subbundle i whose fibre at [u] E P(4_) is the subspace ~~c.

The fibre of its conjugate or dual ~-1 can be identified with the com-
plementary subspace Cju. It follows from (8.3) that the horizontal bundle

~ 

of (1, 0 ) -vectors on the almost complex manifold (8_, JJ = 1 or 2) is

Consequently

and these expressions can now be substituted into (4.4). Using the same

symbol ~ to denote the tautologous line bundle over 8+, and omitting 0,
for ease of notation
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Even if N is not a spin manifold, (8.5) can be established by choosing a

spin structure locally. In particular the bundles ~2, ~L1::¡:: are unambiguously
defined over 8* and independent of the choice of spin structure. We shall
give (8.5) a group theoretic interpretation in the next section.

PROPOSITION 8.1. For any oriented Riemannian 4-manifold N, the 
Chern class of the almost complex (S:f:’ J2 ) is zero.

PROOF. By general principles [Hir, theorem 4.4.3], the first Chern class
of relative to J2 equals that of

An identical argument gives

the right hand side is four or two times an integral cohomology class

according as N is spin or not.
For the remainder of this section we suppose that p : M- N is a non-

constant conformal harmonic map from a compact Riemann surface into
the 4-manifold N. Define the twistor degrees d+, d_ of rp by

2 being the bundle of (1, 0)-vectors tangent to the fibres in either 8 or 8-
relative to Jl. Thus dzL is an integer whenever N is spin. Identifying
.H2(M, Z) ~ Z, we have

LEMMA

PROOF. The second equality follows immediately since 1%° = A2(1)°)
is the determinant bundle of From proposition 8.1,

By definition of §3* and (5.1),

The lemma follows. 0
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From theorem 5.2 and its proof,

is a complex analytic subbundle of both T~ and Ib° relative to the Koszul-
Malgrange structure on Given a complex coordinate z on M, L
is spanned generically by 3p = p*(8j8z), and the globally defined form

is complex analytic. Thus where K is the canonical bundle

of M. If p is the genus of M, X = 2 - 2p the Euler characteristic, and

the ramification index of p, then

Now cl(.L) = ci(I)°) - where

is the quotient. Note that (e.g. by (5.2)) and the real vector

bundle underlying Q+ or Q- is the normal bundle of cp(.lVl) in N, so e = cl(Q+)
= - c,(Q-) is its Euler number. From lemma 8.2 we obtain

PROPOSITION 8.3. The twistor degrees of a conformal harmonic map
.lVl -~- N f rom a compact Riemann surface satisfy

When the 4-manifold N is :1:: selfdual there is by proposition 6.4 in
addition to A, a complex analytic differential

If x E M is a zero of 3p of order k, then has a zero of order 2k

at x ; therefore

for some integer 0. Provided fP+ is not horizontal, is not identically
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zero and by lemma 8.2,

Combining this with

(proposition 8.3) and picking one sign for definiteness gives

PROPOSITION 8.4. I f is conformal harmonic, with N selfdual
and Einstein, and not horizontal, then

REMARK. If N is selfdual and Einstein, and §3_ is horizontal holomorphic,
then

where tN is the (constant) scalar curvature of N and A(cp) is the area of the
map 99 [F, P]. This follows from examining the curvature of the line bundle

~2 over 8- used to define d_.

9. - Maps into S4.

The spinor description of the last section is best appreciated by con-
sidering the twistor space

of HPl (see (2.5)). C, C2 now denote the basic complex
representations of and then the basic representation decomposes
as

under the action of the isotropy subgroup U(l) X The tangent space
T,, 8+ at the identity coset can be read off from the isomorphisms
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Thus To§+= where H~ ^~ ~d _ Q+ ~’d _ and VC - ~2 EÐ ~2 are the hor-
izontal and vertical subspaces.

Because the isotropy representation has precisely two irreducible
real components, there are exactly 22 = 4 S p (2)-invariant almost complex
structures (see [BH]). These are of course +Ji and as defined in (8.5),
and J1 is the standard complex structure of CP3. The integrability of Jl
follows from the formula

which implies that the subspace of s~ (2 ) is closed under Lie bracket.
There are also important Lie bracket relations concerning J2; namely if

then

Thus if w denotes a primitive cube root of unity, the transformation 0 of
sp (2 ) which acts on ai as w2 times the identity is a Lie algebra automorphism
with 83 = 1. Observe that on the tangent space (To ~+)~ = al (D a2,

A homogeneous space for which the Lie algebra g m admits

an automorphism 0 with 83 = 1 and h = ker (0 -1) is called 3-symmetric [G2].
Therefore CP3 has a 3-symmetric structure arising from ~I2.

Let ~c denote the projection §+ -~ S4. It is also convenient to

identify ~_ with CP3 ; in this case the projection 8_ - S4 equals aon, where a
is the orientation reversing antipodal map of S4 [Br]. Any invariant almost
Hermitian metric on CP3 (relative to Ji or J2 ) is a constant multiple of

where t &#x3E; 0 is a constant, and hv is the induced metric on the vertical space
The next theorem then follows from results of Wolf &#x26;

Gray [WG, theorems 8.13, 9.4].
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THEOREM 9.1. 1) For a unique value t = to, (CP3 , kt., J,,) is a Kiihler

mani f otd.

2) For any t &#x3E; 0, the almost Hermitian manifold (CP3, J2 ) is (1, 2)-
symplectic.

Part 2 is related to proposition 8.1 which implies that CP3 has an SU(3)-
structure. Indeed if

denotes the fundamental 2-form for J2, the (3, 0) component of do)2,1
trivializes the canonical bundle for J2. This phenomenon also occurs with
the sphere S6 !2--~ which is another 3-symmetric space. More gen-

erally, 3-symmetric spaces are classified in [WG; theorem 7.10]; as ex-

plained in [S3], many consist of twistor bundles over Riemannian symmetric
spaces. Note that an invariant almost complex structure can be defined
on any 3-symmetric space by using (9.2).

Combining proposition 3.3 and theorem 5.3, we obtain

COROLLARY 9.2. If g~ : con f ormat and harmonic, so are both
Gauss ti f ts M-+(CP3, kt ) for any t &#x3E; 0.

REMARK. Not every holomorphic map y: M- N into an almost Her-
mitian manifold is a minimum of the energy functional E even if N is (1, 2)
symplectic. For instance, take N = (CP3, J2 ) and let y be the Gauss lift
of a conformal harmonic map M--&#x3E;- S4 which is not real isotropic. Then 1p
is J2 holomorphic but not Ji holomorphic; we conclude from [EW,] that ip
is not an E-minimum. In particular, in corollary 9.2 unless is horizontal

its energy is not an E-minimum.

Any harmonic map g~ : S2 -~ S4 being real isotropic necessarily has g~+ or
ji_ horizontal holomorphic (theorem 6.5). We illustrate this with Veronese
surfaces.

Regard the quaternions H as a right H-module, and let the group 
of unit quaternions act by left multiplication. The complex 2-dimensional
vector space W underlying H then admits an antilinear endomorphism j
satisfying j2 = -1 and commuting with the action of /S~(1) ~~~7(2). The

subspace 53 W of Tf0c totally symmetric tensors’is also a right
H-module with (w ~ w Ox w) j = wj 0 wj. Consider the quaternionic ba-
sis of S3 W consisting of
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Identifying c+, e- with the row vectors (1, 0), (0, 1) defines an isomorphism
~’3 W ^~ lHf2 relative to which acts as the matrix

where Since 1, we obtain an explicit mon-
omorphism

The 7-dimensional homogeneous space Sp(2)ji(Sp(1)) has irreducible isotropy,
and has strictly positive sectional curvature [B].

Given any element e E S3 W, let Ne denote the subgroup of Sp(2) which
preserves e up to a complex multiple, so that CP3 Next consider

the subgroup of since i

induces a map V": Cpl &#x3E; CP3 for any e such that i( U(1 )) c But a e 

acts on ~’3 W with eigenvalues a3, oc3, a, a and respective eigenvectors e+,
e_, thus e must be proportional to one of the latter Taking e = e,

gives embeddings

which are defined explicitly by the rows of X. In terms of the in-

homogeneous coordinate z = on ~P1 and homogeneous coordinates

on CP3,

LEMMA 9.3. The curve is horizontal holomorphic, v)hereas 1/’- is 

holomorphic.

PROOF. If q denotes the standard representation of c Sp(l), then

The differential (1jJ+)*: is determined by the substitution

in (9.1 ), so that
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Decreeing using (8.5), we see that "P+ is horizontal holo-

morphic. A similar argument holds for ~_ . D

By construction,

where n : (zo, Zl, Z2, Z3) (zo -f- jZ1 Z2 + jZ3), and a is the antipodal map send-
ing a quaternionic line to its orthogonal complement. Consequently qJ is

isotropic harmonic and we can identify ’lfJI- = 

Just as 7p+ is essentially the Veronese curve in CP3, so p is the Veronese
surface in S4 [EW2 , section 8]; that interrelationship has been studied in
detail by Rawnsley. Lemma 9.3 generalizes to give various harmonic maps

n ~ 2, [S3].
From theorem 4.2 the distribution of horizontal (1, 0) vectors

in CP3 is complex analytic. Indeed, Bryant shows in [Br] that given mero-
morphic functions f, g on a Riemann surface M,

is horizontal holomorphic, and that f, g can be chosen to make ’lJl an em-
bedding when .M is compact. The projection T = noy : M P1 is then
an isotropic harmonic or « superminimal » immersion. Taking f = - 2z3,
g = on gives V - (9.3).

The canonical bundle of (CP3, J1) is isomorphic to Q4 (cf. proposition 8.1),
so is the positive generator of H2(CP2, Z). It follows that the twistor

degrees of a conformal harmonic map 99: lVl ~ ~’4 from a compact Riemann
surface are the ordinary topological degrees

For an immersion without double points, y the Euler characteristic e

- c(Q,) of the normal bundle equals twice the self-intersection number

(cf. [LS]).

PROPOSITION 9. 4. If 9?: a real isotropic harmonic immersion
which is not totally geodesic, then e ( ~ 2~ + 4.

PROOF. Reversing orientation if necessary, we may assume that is

horizontal holomorphic. If §3~ lies in a hyperplane CP2, one can deduce
from (9.4) that §3~ actually lies in a Cpt and that q maps to an equatorial
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82. Therefore §3~ is full and from proposition 8.3,

In the above proof, the twistor degree d+ can be identified with 1/4n
times the area of cp(M) [Br, proposition 2.4]. Taking p = 0 we retrieve a
theorem of Ruh [Ru] which asserts that any minimal immersion 52 - 84
with a trivial normal bundle is totally geodesic. See also Gauduchon and

Lawson [GL]. By the Hirsch-Smale theory, the set S4] of regular
homotopy classes (i.e. immersions S2 - S4 homotopic through immersions)
is parametrized by e with all even e realized [Hi]. In particular the 
c = 2 has no harmonic. representative.

PROBLEM. For any 4-manifold N two immersions 52 - N are regularly
homotopic iff they are homotopic as maps and have the same normal class
in g2(~S’2, Z) [Hi]. Which classes can be realized by minimal immersions?

10. - Riemannian submersion formulae.

This section is a continuation of the last; by studying the fibration
n: S4 we shall introduce the notion of complex isotropy for maps of
surfaces into Kahler manifolds. Accordingly we focus attention on the

Kahler on CP3.

Let V denote the Levi-Civita connection on CP3 corresponding to k,
and as usual V denotes the Levi-Civita connection on HPl. We shall

generally use a, a’ for basic vector fields on CP3 and f3, ~’ for vertical fields ;
the former are a-related to vector fields on which we denote by the
same symbol. Thus

are the components of a corresponding to (4.3). Since

the fibres of CP3 are totally geodesic, the Riemannian submersion equations
of O’Neill [ON] give
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where A is the ten.sor defined by

Now A measures the obstruction to the integrability of the horizontal
distribution H, and is essentially the curvature of CP3 as a fibre bundle.
Actually defines a U(2)-invariant element of (cf. pro-

position 3.2]), y but we shall only need

LEMMA 10.1. I f are tangent vectors belonging to then

PROOF. Extend a, a’ to basic vector fields so that

For any ~’ E TCP3, preserves the Ji type decomposition. Since the-

extensions are of type (1, 0) to first order along horizontal directions, y

Similarly D

Suppose that cp: is an immersion, and denote
either of the Gauss lifts Set

Thus are really sections of but in order to use (10 1) it is

convenient to extend « to a basic vector field and f3 to a vertical field on
CP3. We can then write a = ,ind 99 is conformal iff « E By
theorem 5.3 p is also harmonic E (T°)v, and in this case « and fl aie
both (1, 0)-vectors relative to J,.

It is instructive to prove corollary 9.2 directly for the case t = For

the remainder of this section we shall use superscripts to indicate type
decompositions relative to the standard complex structure J1 on CP3. First

suppose that p is conformal so that 0 (if y = in previous
notation); then
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Hence hor (33y)°&#x3E;1 === Aa (~8°~ 1 ) which vanishes by lemma 10.1, and V is « hor-
izontally harmonic &#x3E;&#x3E; in the sense that its tension field (1p is vertical. If p
is conformal and harmonic,

which proves that ’lp is harmonic relative to k.

THEOREM 10.2. A conformal harmonic map .1~1-~ S4 is real isotropic
iff the Gauss lift ’lp satisfies

PROOF. Firstly,

is a (1, 0)-vector for Ji, so belongs to (Z’1~°)’~. But AaP E (TO,’)’ which
implies that

thus

hor

an d cp is real isotropic.
Conversely suppose that 99 is real isotropic, so that at least one of q_

is horizontal (theorem 6.5). If fl = 0, (10.2) is immediate, so we may
assume that bp A (32 p) 1&#x3E;° = 0 (see (6.5)). Thus

is proportional to a, and at each point of cpa,

Moreover

span 1
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being the horizontal component of ,4$, and (10.2) tollows from the

orthogonality condition

Given a mapping ?p: M--&#x3E; N from a Riemann surface M to a Kahler

manifold N with

the notation

is often used. If y satisfies (10.2) which means that the D’ and D~~ osculat-
ing spaces are orthogonal, then y is said to be complex isotropic [EW2 ,
definition 5.5; R, section 8]. Since (10.2) implies (6.3) (with y in place
of 99), complex isotropy implies real isotropy. Twistor space interpretations
of various types of isotropy are given in [S3, section 6].

Suppose that p: ~11-~ S4 is a real isotropic harmonic map with ø-’/.-
horizontal holomorphic. Then like §3_ is a complex isotropic h,-trmopic
map. Such maps have been classified and consist of the complex
analytic maps together with certain associated curves or «transforms ».

One can show that §3_ is the first associated curve of §3~ in the sense of Eells
and Wood [EW2, remark 6.10 (iv), r = 1]; for instance this applies to (9.3).
From proposition 8.3,

Any harmonic map is necessarily complex isotropic, as is

any harmonic map of degree # 0 from a Riemann surface of

genus 1 [EW2 , section 7].

PROPOSITION 10.3. If cp: eon f ormal, harmonic, but not real

isotropic, then

PROOF. Since ~’4 is conformally flat and neither §3_ is horizontal, y
proposition 8.4 is applicable with either sign. D

The only known examples satisfying the hypotheses of proposition 10.3
are minimal immersions in S3 [Ll] composed with the totally geodesic inclu-
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sion S3 c ~’4. In this case §5_ can be identified (see section 7), and will
not be horizontal unless 99 is totally geodesic. Except in the latter case, 
is not real isotropic, and q* is far from being complex isotropic in the sense
that its D’ and D" osculating spaces each have their maximum possible 3
dimensions. Putting r = 0 = e in proposition 8.3 gives deg §3* = 1 - p. In

particular any branched minimal immersion of a surface of genus zero in ~3
must be a great 2-sphere [A; C,I.

The techniques of this section are applicable to other Riemannian mani-
folds N admitting a Kahler twistor space. If N is compact and 4-dimensional,
the only possibilities are ~S4 and CP2 The complex projective plane
CP2 is selfdual, and the corresponding fibration 8_ - CP2 will be discussed
in section 12. More generally one can take N to be a 4n-dimensional
quaternionic Kahler symmetric space with positive scalar curvature (there
is one for each compact simple Lie group [W; S1; S3]). Provided 99: N

is inclusive in the sense that each lies in a quaternionic line, then
has a well defined Gauss lift y : M--&#x3E;Z, where Z is a homogeneous Kahler
manifold of complex dimension 2n + 1.

11. - Kahler surfaces.

Throughout this section, we suppose that the Riemannian 4-manifold N
is Kahler, so that it has an orthogonal covariant constant complex struc-
ture J. Given a mapping cp : M- N from a Riemann surface, we adopt
the notation of section 10 to write

Hence p is conformal iff h(«, p) = 0. Because the Levi-Civita connection

preserves types and 33p is real, 3a = 3fl, and p is harmonic iff 0. In

this case « are complex analytic forms which vanish iff cp is

holomorphic or antiholomorphic respectively.

LEMMA 11.1. A conformal macp 99: M- N is real isotropic iff = 0,
and complex isotropic iff p) = 0.

PROOF. The first assertion follows from the characterization (6.4) of

real isotropy. Now suppose that /3) = 0. Differentiating h(a, /3) = 0
gives also h(«, 3fl) = 0. But form an orthogonal basis of where
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they are both non-zero, so

and p is complex isotropic. 0

From section 6 we know that, roughly speaking, real isotropic harmonic
maps 99: M - N are those for which one of the two Gauss lifts is

horizontal. To assess the possibilities, we first express the twistor spaces
of the Kahler surface N as complex projective bundles. Below, C denotes
the trivial complex line bundle, and ~).

THEOREM 11.2. There are isomorphisms

relative to which the Gauss lifts of a immersion M- N are

PROOF. First note that (11.2) makes sense even at points where one
of a, fl vanish. For §3~ is taken to be the projective class [1, 0] where

# - 0, and §3_ is the line orthogonal to where oc = 0.

The fundamental 2-vector .I’ of N is a horizontal section of the twistor

space 8~. 1 The proof of lemma 5.1 then gives 8_~ Indeed,
given J c 8_ , n(a) = x, we have

in some orthonormal basis, and (1 corresponds to the projective class

[e1- ie2] . By (2.3) and proposition 3.4,

where c is a positive normalizing factor, and the subscript 0 denotes the
primitive component of the (1, 1) vector. Since is proportional
to ~- corresponds to [a].
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If 7: C and u E C, the projective class [r, ~c] determines an element

(see proposition 3.4 again), which after normalization lies in ~+ . * We leave
the reader to verify that this induces an isomorphism P(T2,0 N (f) 8+.
Putting 7: = = gives a 2-vector proportional to

whose normalization equals §3~. 0

The isomorphisms (11.1) are related via (8.4) to the representation
theoretic formulae

for the spinor bundles of an almost Hermitian 4-manifold (see for exam-
ple [82~ section 7]).

Using (11.2) it is easy to check properties of the Gauss lifts. For ex-

ample g~_ is J2 holomorphic iff the line [a] is stable under 3 ; i.e. = 0.

This is actually equivalent to the equation 6a = 0, thereby illustrating the-
orem 5.3. Moreover

COROLLARY 11.3. A conformal. harmonic map 99: M-N into a 

surface is complex isotropic iff g~_ is horizontal, or 99 is holomorphic or anti-
holomorphic.

PROOF. The argument is reminiscent of the proof of proposition 6.2.
For 99 is complex isotropic iff ~3) _ - h(a, vanishes. At each point
this implies # = 0 or = 0, and since is complex analytic, one
of these possibilities must hold everywhere. If «A 3a vanishes identically
but a does not, then ~g-== [x] is Jl holomorphic and so horizontal. The

converse is similar. 0

COROLLARY 11.4. A con f ormat harmonic map 99: M- N has g~+ horizontal
iff is constant. If N is Kähler-Einstein with nonzero Ricci tensor,
that constant is 0, 1, or oo.

PROOF. Since h(boe, ti) == ð(II(X1I2), we have
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Therefore 11f3112] is stable under 6 iff

which is equivalent to _ 0.

If is some constant other than 0 or oo, then some multiple of
7: = oc/B,B is covariant constant and

where C is the curvature tensor of the Kahler manifold N.

The space of primitive vectors acting as a derivation annihilates
T2 ON, whereas .F’ acts as the identity. Consequently in (11.3) .R can be

replaced by the Ricci form e to yield o(a, a) = If o is a non-zero

multiple of the Kahler form (o, then 0

The values oo, 0, 1, of ~~ correspond holomorphic, antiholo-
morphic, and totally real respectively. In the latter case, is

orthogonal to p*TmM. We remark that one can define [CW, ETG] the
Kahler angle 8~ at a point where 0 by

That plays the same role as the basic function k~ : M- R of Lichnerowicz [Li,
section 17], defined by where wM, wN are the

Kahler forms of M, N (as in section 3). If is compact, then

is a homotopy invariant of the map g~.
It may be that no multiple of represents an integral cohomology

class. In contrast, the Ricci form e represents 2 times the first Chern class
of N. Accordingly given a map p: M -+ N from a compact

Riemann surface, we consider the integer

The next result appears in [ETG] for immersions into CP2; in this case

c = 3 degp since the first Chern class of CP2 is 3 times the positive genera-
tor of H2(CP2, Z). The more general proof below is due to J. H. Rawnsley,
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and is based upon a calculation of the twistor degree d- using lemma 8.2
and proposition 8.3.

THEOREM 11. 5. If is a con f ormat harmonic map into ac Kgahler

surface which is neither holomorphic nor antiholomorphic, then

PROOF. The Gauss lift ip- determines a splitting

(5.2), in addition to the type decomposition

relative to J. Generically the components a, ~8 of 6g~ span a negatively
oriented maximal isotropic subspace containing which is therefore T’,’
Hence ocy # generate line bundles [x], [fl] satisfying

Furthermore

and so

Therefore

and putting X = 2 - 2p gives the result. 0

The last three lines also give

this inequality was proved independently by Webster [We, theorem 3],
and used to deduce that any embedded minimal 2-sphere in CP2 is a

complex line or conic. See also [ETG, theorem 4.7; GL, theorem D].
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EXAMPLE. The case of CP2 will be covered in depth in the next section,
but first consider at the other extreme a Kahler surface N with zero Ricci

form. This means that the bundle ~+ is flat, and in particular that N is
- selfdual. If we also suppose that N is simply connected and compact,
then it is a .K3 surface endowed with the Yau-Calabi metric [Hl]. In this

case ~+ is naturally a product N X S2 , and N is said to have a hyperKahler
structure because each point aI + bJ -f- cK C ~’2 (a2 -E-- b2 -~- c2 = 1) defines
a Kahler metric.

Since 0, any conformal harmonic map g~ : M-N satisfies

This was obtained independently by Poon [P], using integral representa-
tions of the characteristic classes. In analogy to (5.5), p has an antiholo-
morphic Gauss map I where n2 is the projection 8+~82. Thus

Yep is constant iff 99 is holomorphic relative to one of the complex structures
cI + bJ + in which case one may say that cp is hyperholomorphic.

PROBLEM. Is every real isotropic harmonic map T: M- N hyperholo-
morphic This amounts to asking whether cp- can ever be horizontal, and
requires knowledge of the curvature of the Yau metric.

PROBLEM. Any map 1f- N between compact Riemannian manifolds
can be deformed to a harmonic map, provided that the sectional curvature
of N is nonpositive [ESa]. We doubt that such an assertion would be valid
if the curvature restriction is replaced by one involving Ricci curvature. A
search for the simplest counterexample leads us to the following question:

Let N be a .K3 surface endowed with a Ricci-flat Kahler metric. Does

every homotopy class of maps p : 52 - N have a harmonic representative?
We know that there are such N for which every holomorphic map 52 - N

is consta,nt. On the other hand, there is a set of genérators of 2(N) con-
sisting of conformal harmonic maps [SU].

12. - Maps into CP2.

The projective holomorphic tangent bundle of CP2 can be

identified with the flag manifold

Labelling the factors in the isotropy by the digits 0, 1, 2, let ~o? Cl, C2
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denote the corresponding complex 1-dimension.al modules. Thus

where

can be identified with the tangent space to F at the identity coset. The

three real subspaces of m are the vertical spaces of respective projections
To be more precise, define a nonintegrable almost

complex structure J on F by

For each i there is an identification for which ~ci is the twistor

projection that identifies J with the almost complex structure J, of (4.4).
By general principles .F’ admits 23 = 8 invariant almost complex struc-

tures and exactly 3 ! = 6 of these are integrable [BH, chapter 4]. For

example, there exists a unique complex structure J02 for which no is holo-
morphic and is antiholomorphic:

In fact Jo2 coincides with the structure J, of (4.4) with respect to By
contrast J is up to sign the only invariant structure which is not integrable,
and makes .F’ a 3-symmetric space, as explained in section 9.

Let y: 1f1 -~ .,F be a map, and in terms of a local coordinate z on M,
suppose that y(z) is the flag corresponding to an orthogonal sum

where ggi(z) == nio1p(z) is a line in C3. Let a = alaz denote componentwise
differentiation in C3.

LEMMA 12.1. 1p is ~T holomorphic iff

PROOF. The component of in g~3 can be identified with the

component of the tangent vector y*(8j8z) in C7
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The inclusions in lemma 12.1 can be represented by a triangle:

Equivalently one could reverse the direction of the arrows, y and replace a
by a = 0 joz.

By corollary 5.4, there is an essentially bijective correspondence bet-
ween J holomorphic curves in 1" and conformal harmonic maps into CP2.
Given a J holomorphio curve y: M- F, the three projections

will all be conformal and harmonic. Conversely if we start with a conformal
harmonic Map 99 = po: M-CP2, its Gauss lift y = §3_ via ~o is J holo-
morphic ; thus:

THEOREM 12.2. A con f ormat harmonic map p : M- CP2 has two « trans-

f orms &#x3E;&#x3E; which are also conformal harmonic.

Take a local lift f : flL ~C3, %L c M, of p, so that oia U, 99 = [f]. If . , .~
denotes the standard inner product on C3, antilinear in the second factor,
then

provided 99 is not antiholomorphic or holomorpbic respectively (cf. [EW2,
remark 6.10 (iv)]).

The above theory is well known if 99 = qo happens to be holomorphic,
so that c CPo. In this case (12.3) breaks up into a linear sequence

Consequently qJ2 is antiholomorphic, whereas qi is a conformal harmonic

map which in general is neither holomorphic nor anitholomorphic. In these

circumstances qi is said to be associated (to the holomorphic curve qo) [ETG;
EW2]. Referring to (12.2), y must be the natural Jo2 holomorphic lift of g~o
to P(T’,OCP2) = F. But y is also J holomorphic, so it is actualy horizontal
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for the projection ni and by corollary 11.3, is complex isotropic. Con-
versely if M - CP2 is any complex isotropic harmonic map which is

neither holomorphic nor antiholomorphic, then its Gauss lift 1p via ~1 is

horizontal. Therefore qo = 7too1fJ is holomorphic and gal is associated. Let-

ting 0 denote the set of full holomorphic maps M- CP2 (those not con-
tained in some one obtains the following special case of the classifica-
tion theorem [EW2 , theorem 6.9]:

COROLLARY 12.3. There is a bijective correspondence between full complex
isotropic harmonic maps M - CP2 and the set 0 X {O, 1; 21.

Combining the above facts with theorem 6.5, we conclude that the real
isotropic harmonic maps into CP2 consist of the holomorphic, antiholomorphic,
associated, and totally real ones. The latter are yet to be classified.

The fact that has constant holomorphic curvature implies that
globally defined forms

associated to a harmonic map 99: are complex analytic. The

contraction of their product equals - 2P2, where

is the cubic differential introduced in [EW2 , section 7] and studied in detail
in [CW] and [Wo]. (Chern and Wolfson call T superminimal if P vanishes;
in our language this is equivalent to 99 being complex isotropic.) If 99: if

-~ ~P~ is a conformal harmonic map which is not complex isotropic, then
proposition 8.5 is applicable giving

On the other hand, proposition 11.5 yields

and in particular

(cf. [EW2 , proposition 7.8]).

EXAMPLES. Consider the parametrization
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of the Clifford torus in CP2. Take a complex vector 0 ¡oz = 8f8t -~-- coa/au
on M= T2, 7 where o is to be determined. Applying (12.4) gives

and the orthogonality of g~2 (equivalent to the conformality of q) implies
that w2- w + 1 = 0. Thus (o is a primitive 6-th root of unity, which
ensures the 3-fold symmetry:

These transforms give essentially the same map. The harmonicity of 99
now follows from the formula The above representatives of

~2 correspond to the components (x, P of the tangent vector 6T. Since

II a II = 99 is totally real. See Naitoh [N] for similar examples.

PROBLEM. Does there exist a conformal harmonic map T2 - CP2 which

is not real isotropic? Such a map has degree 0 by (12.5), and r = 0 = s+
by proposition 8.4 and theorem 11.5.

The Veronese map 99: CP2 is given by

and qJl has degree 0 [EW2, example 8.1]. More generally, in the context
of theorem 12.2 we have

PROPOSITION 12.4. If is conformal harmonic with twistor

PROOF. Put 99 = (p, and di = deg (pi. There are complex line bundles
’0’ ~2 on F such that ~o 0 ~1 E) ~2 is trivial, and

degree then



637

By (12.1) the vertical bundle (T2,0)’V for the projection no equals ’l~2’ so
by lemma 8.2

The result now follows from the equation do + dl + d2 = 0. 0

Finally, y if 99 is also holomorphic then by considering the horizontal
lift it is easily shown that 2d+ = 3 deg p, so that in this case

REMARK. The ideas of this section are also applicable for studying
maps M CJP" for arbitrary n. In place of F one can first consider the
flag manifold

which also has an almost complex structure J for which lemma 12.1 holds,
except that is now a, map into the Grassmannian 

Once again, J holomorphic curves correspond to conformal harmonic maps
into CPn, but they also correspond to inclusive conformal harmonic maps
in the quaternionic Kahler manifold (see the end of section 10).

PROBLEM. Let N be a compact simply connected 4-manifold. A theo-
rem of Thom asserts that every homology class a E .H~2(N) can be represented
by an embedded closed oriented surface. The minimum genus of such a

surface is not yet determined; however, not every class can be represented
by an embedded 2-sphere. Given Riemannian structures on If and N,
which classes a can be represented by branched minimal immersions? Is

there a lower bound for genus ~1 in terms of the twistor degrees? For

instance, if N= CP2 and oc = ay where y generates H2 (CP2), then is genus

M&#x3E; (a - 1)(a - 2)/2?
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