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On the Hausdorff Measures Associated

to the Carathéodory and Kobayashi Metrics.

J. BLAND - IAN GRAHAM (*)

1. - Introduction and statement of results.

The purpose of this paper is to give explicit expressions (in some cases)
and estimates for the Radon-Nikodym derivative with respect to Lebesgue
measure in local coordinates of the top-dimensional Hausdorff measure
associated to the Carath6odory and Kobayashi metrics (Theorem 1). In

conjunction with the results of [8], this gives a new criterion for the bihol-
omorphic equivalence of a bounded strictly convex domain in Cn with
the unit ball (Theorem 2), thus answering a question posed in [8]. Our

main tool for the proof of Theorem 1 is the work of H. Busemann on

Hausdorff measure and Finsler metrics [3]. A second result of Busemann

and)Mayer [4] is used to deal with the fact that the indicatrix of the

infinitesimal Kobayashi-Royden metric is in general not convex.
To state our results, y let if be a complex manifold of dimension n and

let Choose local coordinates zl, ... , zn at p and let A2" denote Le-

besgue measure in these coordinates. Let Bn denote the unit ball in C".

Let (respectively denote the 2n-dimensional Hausdorff measure

associated to the Carath6odory (respectively Kobayashi) distance. Let ~cn
(respectively 8£") denote the 2n-dimensional spherical measure associated
to the Carath6odory (respectively Kobayashi) distance. Let Ic(p) (respec-
tively denote the indicatrix of the Carath6odory (respectively Ko-
bayashi-Royden) metric at p. Let ÎK(p) denote the convex hull of the latter.
Let Cn(p; (respectively En(p; de-

note the Carath6odory (respectively Eisenman-Kobayashi) volume density
at p.

(*) Partially supported by the Natural Sciences and Engineering Research
Council of Canada.

Pervenuto alla Redazione il 10 Ottobre 1984.
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THEOREM 1. With the notations as in the previous paragraph, we have
the following:

(a) If M is Carathiodory- hyperbolic and p E M then

(All volumes are Euclidean volumes.)

(b) If M is taut (more generally if M is hyperbolic and the infinitesimal
Kobayashi-Royden metric is continuous) then

(c) If M is hyperbolic then

Parts (a) and (b) of Theorem 1 enable us to answer a question posed
in [8].

THEOREM 2. Let Q be a strictly convex bounded domain in M
be an n-dimensional complex manifold. Let p denote either a point of Q or a
point of M, and let Zl, ..., zn denote either global holomorphic coordinates on

or local holomorphic coordinates in a neighborhood of p E M.

(a) If there exists a point p E Q such that

then Q is biholomorphic to Bn.

(b) If there exists a point p E Q such that

then Q is biholomorphic to Bn.
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(c) -If M is Carathéodory-hyperbolic and there exists a point p E M
such that

then there exists a holomorphic map f: M - Bn such that f is an isometry
relative to the Carathiodory metric at p, i. e. d f : To Bn is Carathiodory
length-preserving.

(d) If M is taut and there exists a point p E M such that

and if Ix(p) is convex then there exists a holomorphic map f : M such

that f(0) = p and f is an isometry relative to the Kobayashi metric at 0.

2. - Preliminaries.

For the moment let .l~ denote a real m-dimensional differentiable mani-

fold and let d be a distance function on .~ which induces the usual topology
of M. Thus d : M X --~ R, and if p, q, r denote points of .lVl then d(p, q) &#x3E; 0,
d(p, q) = 0 iff p = q, d(p, q) = d(q, p), and r) q) + d(q, r).

We recall the definition of the top-dimensional Hausdorff and spherical
measures associated to d. Let am denote the Euclidean volume of the unit

ball Bm in Let A be a subset of M. We first let

and then define (noting that W§’(A) increases as 8+0) the m-dimensional

Hausdorff outer measure of A. by

If in (1) we require the sets to be balls in the metric d, and then
take the limit as in (2), we obtain the top-dimensional spherical outer
measure ~~(A). In either case all Borel subsets of are measurable [6,
p. 170]. In R- with the Euclidean distance, and 8m coincide with each

other and with Lebesgue measure [6, p. 197]. On a Riemannian manifold,
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and 8m coincide with the measure defined by the Riemannian volume
element [6, p. 281]. (The situation in lower dimensions is more compli-
cated [6].)

Busemann [3] studied the top-dimensional spherical and Hausdorff meas-
ures associated to a (real) Finsler metric on a differentiable manifold.

Precisely, y the properties assumed by Busemann are the following:

DEFINITION. A Finsler metric on lVl is a nonnegative real-valued func-
tion F on the tangent bundle T M such that

(3a) ~’ is continuous

The condition (3d) means that the restriction of I’ to each fibre satisfies

the triangle inequality. This property is equivalent to requiring convexity
of the indicatrix

at each point Finsler metric on which is independent of 
is called a~ Minkowski metric.

Busemann [3, § 6] showed that the top-dimensional Hausdorff and
spherical measures defined by the distance function d associated to F

coincide, and that their Radon-Nikodym derivative with respect to Lebesgue
measure in local coordinates is given by vol (Bn)/vol (I(p)). (Note that
this expression gives the Riemannian volume density on a Riemannian
manifold.)

The idea behind Busemann’s results is roughly as follows: for a Min-
kowski metric in lEBm a form of the Vitali covering theorem immediately
gives the Radon-Nikodym derivative of 8m with respect to Lebesgue meas-
ure ; that 8m = Rm is a direct consequence of the fact that for a Minkowski
metric the subsets of which maximize Euclidean volume for a fixed
Minkowski diameter are precisely the Minkowski balls. Busemann’s result
for a general Finsler metric is then obtained by using the continuity of the
Finsler metric to locally approximate it by a Minkowski metric. Convexity
of the indicatrix plays an important role, for only with this assumption
(and not with continuity of I’ alone) can one locally approximate balls in
the distance d by scalar multiples of the indicatrix.



507

Convexity of 7(p) has the following additional consequence [4, p. 186]:
suppose that F satisfies only properties (3ac)-(3c) and that y : [0, 1] - M
is a piecewise C1 (absolutely continuous would suffice) parametrized curve
on M. There are then two possible ways to define the length of y, namely

where the sup is taken over all partitions of [0, 1]. These definitions coincide
for all curves iff I(p) is convex at all points p E -M [4, p. 186].

A key result of Busemann and Mayer [4, p. 184] which applies to the
Kobayashi metric on a taut manifold is the following: if we replace a given
metric F satisfying (3ac)-(3c) with the Finsler metric F whose indicatrix
at each point is precisely the convex hull of the indicatrix of F, then the
distance d associated to F coincides with the distance d associated to F.

(On referring to (4a) and (4b) we see that will change in general when
we replace .F’ by F but will not.)

Turning now to the case of an n-dimensional complex manifold M, we
recall the definition of the Carath6odory and Kobayashi pseudometrics.
Let D denote the unit disc in C. The Carath6odory distance between two
points p and q of lVl is defined by

where the sup is taken over all holomorphic maps f : M - D and e denotes
the Poinear6 distance on D, i.e.

.M is called Carathéodory-hyperbolic if C( , ) is a genuine distance, y i.e. if

C( p, q) = 0 iff p = q. The infinitesimal Carath6odory pseudometric is de-

fined by

where the sup is taken over all holomorphic maps f : M - D such that

f(p) = 0, and indicates Euclidean length. The indicatrix Ic(p) of the

Carath6odory metric at a point p E ltl is easily seen to be convex, and C( ; )
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is known to be continuous [15]. Reiffen [15] showed that on a Carath6odory-
hyperbolic manifold the two possible definitions of the Carath6odory length
of a piecewise C’ parametrized curve y: [0, 1] - M, namely

where the sup is taken over all partitions of [0, 1], coincide. This result

does not follow immediately from the convexity of IC(p) using the theorem
of Busemann and Mayer [4, p. 186] because the Carath6odory distance is
not an inner distance. That is, if we define C(p, q) = inf 1’(y) = inf Z2(y),
where the inf is taken over all piecewise C1 curves joining p to q, then

C(p, q) ~ C(p2 q) in general. A counterexample appears in [1]. Busemann’s

theorem [3] applies directly to the Hausdorff and spherical measures as-

sociated to C on a Carathéodory-hyperbolic manifold; however it is not

hard to see that these measures are the same as those associated to C.

LEMMA 1. If M is a Carathéodory-hyperbolic manifold then given a point
po E M and a number 8 &#x3E; 0, then there exists a neighborhood U of po such that
for all p, q E U

PROOF. This result is essentially contained in Reiffen’s proof [15] of

the equivalence of (5a) and (5b).

COROLLARY. The top-dimensional and spherical measures as-
sociated to C and (7 on a Oarathéodory-hyperbolic manifold all coincide.

PROOF. Refer to the definitions of Hausdorff and spherical measure

(eqs. (1 ) and (2)) noting that increases as 

The infinitesimal Kobayashi-Royden metric is defined [16] by

~) = I a e To D and there exists f : D ~ M such that

again we may take the Euclidean length of oc. The associated distance func-
tion obtained by integrating K( ; ) along curves is the Kobayashi distance
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K(, ) ; see [9] for the original definition of the Kobayashi distance and [16]
for the proof that it coincides with the distance function associated to

.g( ; ). ~1 is said to be hyperbolic if K( , ) is a genuine distance. The

indicatrix 1,,,(p) is in general not convex. Also K( ; ) is in general only
upper semicontinuous [16]. A sufficient condition that K(p ; ~) be continuous
and nonzero whenever $ # 0 (and in fact that M be hyperbolic) is that M
be taut [16, Proposition 5]. That is, the set of holomorphic mappings from
the unit disc into .,M~ should form a normal family.

Finally we recall the definitions of the Carath6odory and Eisenman-
Kobayashi volume densities [5]. Letting zl, ... , zn be local coordinates at

p E .Nl, the former is defined by

= there exists a holomorphic map f : ~-~-~ Bn satisfying f ( p ) = 01

and the latter by

= there exists a holomorphic map f : if satisfying f (0 ) = p}.

Our notation arises from the fact that these quantities are values of certain
intrinsic norms on the n-th exterior power of the holomorphic
tangent bundle of if (see [7, 8]).

On a Carathéodory-hyperbolic (respectively hyperbolic) manifold we let
JC2n (respectively JC,2,") denote the top-dimensional Hausdorff measure as-
sociated to the Carath6odory (respectively Kobayashi) distance. It is easy
to see that these measures are absolutely continuous with respect to Lebesgue
measure in local coordinates (compare with the Carath6odory or Kobayashi
Hausdorff measure on a small ball). Also the inequalities

are consequences of standard facts about intrinsic measures [5, 14]. Namely, y
letting denote the Euclidean volume form (ij2)n if
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we equip the unit ball Bn with the volume form (1 - then

is the smallest (respectively largest) volume form on if such that all holo-
morphic mappings from if to Bn (respectively all holomorphic mappings
from j6" to .M) are volume-decreasing.

3. - Proofs of the Theorems.

PROOF OF THEOREM 1. This statement follows from Busemann’s

theorem [3, § 6] and the Lemma in § 2 of the present paper.

(b) This follows from Busemann’s theorem [3, § 6] together with the
theorem of Busemann and Mayer [4, Theorem 1, p. 184] which implies
that K( ; ) may be replaced by the Finsler metric ~( ; ) whose indicatrix
at each point p is without changing the Kobayashi distance.

(c) We first show

LEMMA 2. If real m-dimensional differentiable manifold and F
is a pseudometric on M (i. e. a nonnegative real-valued f unction on the tangent
bundles TM satisfying F(p, c;) - whenever c E R) which is upper

semi-continuous then there exists a sequence of continuous pseudo-
metrics on M such that FjtF. Furthermore if M is a complex mani f old and F
satisfies F(p, c$) - IcIF(p, ;) whenever c E C then the .F’’s inherit this property.

PROOF. It suffices to do the construction locally and then patch using a
partition of unity. Thus let V be an open subset of if whose closure is

contained in a coordinate neighbourhood. We restrict I’’ to the unit sphere
bundle (the unit sphere in the Euclidean metric in the coordinate neigh-
borhood) over V, which we denote ~(Y). We observe that .~~~~p~ is bounded
above, and that the standard procedure for constructing a sequence of

decreasing continuous functions which converge to a given upper semi-
continuous function [11, Proposition 2.1.2] depends only on the existence
of a distance function. Since the tangent bundle T(V) is trivial, we may
use the Euclidean product metric in VxR-. We thus obtain a sequence
of continuous functions fj on 27(V) such that We now define,
for p E Y,
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To prove the last statement of the lemma (which we do not need) we
observe that the regularization procedure could be carried out on the

complex projective bundle obtained from the tangent bundle over V, using
the Fubini-Study metric on the fibre and the Euclidean metric on the base.

CONTINUATION OF THE PROOF OF (c). Let Fj be a sequence of continuous
pseudo-metrics on ~f such that ). Let d; be the distance function
associated to .F’~ ; it follows from the monotone convergence theorem that

(pointwise, as functions on MX M). Let R§° (respectively 8§°)
denote the Hausdorff (respectively spherical) measure on If associated to

of course Je¡n = 8¡n via the theorem of Busemann and Mayer [4, p. 184]
since F, is continuous. Let I~(p) denote the indicatrix of .F’j at p and Îj(p)
its convex hull. By the already-quoted theorems of Busemann [3] and

Busemann-Mayer [4] we have

It is not hard to see that and hence Also clearly

Thus letting j - oo in (9) we obtain

(The left-hand inequality is clear from the definition of Hausdorff and

spherical measures.)

REMARK. In some ways a lower bound for the Radon-Nikodym deriva-
tives would be more interesting. We already know that

PROOF OF THEOREM 2. The following facts are eontained in [8]; we
formulate them here explicitly as a lemma.

LEMMA 3. (i) Suppose that M is Carathéodory-hyperbolic and there is a

point p E M such that, choosing local coordinates zl , ..., zn at p,
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Then the holomorphic map f : M - Bn such that f (p) = 0 which realizes the

supremum in the definition of Cn ( p ; a / az1 n ... / must be Caratheodory-
isometric at p.

(ii) Suppose that M is taut and there is a point p E M such that, choosing
local coordinates Zl, ..., zn at p,

Then the holomorphic map f: M such that f(O) = p which realizes the
infimurn in the definition of En(P; ... /~ must be Kobayashi-
isometric at 0.

PROOF. (i) The holomorphic map in question must satisfy both 1*(I,(p)) c
c B n (by the distance-decreasing property) and vol 

From this it follows that f*(Ic(p)) = Bn. (By abuse of notation we are
writing Bn for the unit ball in ToBn.)

(ii) The extremal holomorphic map in question (which exists because
M is taut) must satisfy both f*(Bn) c I(p) and (Bn)/vol (Ix(p)).
From this it follows that vol (f*(Bn)) - vol (7~(p)). Since has a con-

tinuous boundary (because of the tautness of it now follows that

f*(Bn) _ 

We are now in a position to complete the proof of Theorem 2. To

prove (a), we note that from Lemma 1 and Busemann’s theorem [3, § 6],
the assumption implies that holds. Hence by Lemma 3 there is a

holomorphic map such that f (p) = 0 which is Carath6odory-
isometric at p. We now invoke Theorem 2 of [8]: such a map must be bihol-
omorphic. (This result uses properties of the Lempert map [12].)

To prove (b), we note that because the Carath6odory and Kobayashi
metrics coincide on a strictly convex domain [13, 17], I~(p) must be convex.
Hence the assumption together with Busemann’s theorem [3, § 6] implies
that (11b) holds. Hence from Lemma 3, noting that SZ is taut [2], it follows
that there exists a holomorphic map f : such that f (0) = p and f is
Kobayashi-isometric at 0. By Theorem 2 of [8] it follows that f must

be I - 1 and onto. (Again we make use of properties of the Lempert
map’ )

To prove (c) we use the first part of the argument from the proof of (a).
To prove (d) we use the first part of the argument from the proof of (b).
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REMARK. The inequality

at a point p in a Carathéodory-hyperbolic manifold can be deduced in two
different ways: (i) from Theorem 1 (a) and the inequality (8a) ; (ii) from
the distance-decreasing property of holomorphic maps f : as in

Lemma 3.

Similarly, the inequality

at a point p in a taut manifold where 1,(p) is convex, can be deduced in
two ways: (i) from Theorem 1 (b) and the inequality (8b), or (ii) from the
distance-decreasing property of holomorphic maps f : as in Lem-

ma 3. (The latter argument of course works without the assumptions of
tautness or convexity.)
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