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Large Time Behaviour of Solutions
of the Heat Equation with Absorption.

S. KAMIN - L. A. PELETIER

1. - Introduction.

In this paper we consider the large time behaviour of nonnegative solu-
tions of the Cauchy Problem

in which n ~ 1, p &#x3E; (n + 2)/n and a nonnegative function in 
which decays to zero as Ixl - oo at a prescribed rate:

where a and A are positive numbers.
We shall also consider several generalizations of this problem. In the

first we allow the constant A in (1.2) to vary with the angle co of the ray
along which Ixl - oo : A = A(w) (Theorem 2), and in the second we merely
require to be uniformly bounded in R" (Theorem 3). Finally in the
third generalization we replace the absorption term - up by a more general
nonpositive which has prescribed behaviour as 
(Theorem 4).
A number of results are already known about the asymptotic behaviour

of solutions of Problem I as t -~ oo [4]:

(a) If 0  ce  2/(p -1 ), then

Pervenuto alla redazione il 28 Dicembre 1983 ed in forma definitiva il 25 Gen-
naio 1985.
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where ) uniformly on sets of the form

(b) If a &#x3E; n and p &#x3E; (n + 2)/n, then

for some nonnegative constant co -which depends on u uniformly on sets

In this paper we shall be concerned with the case a  n. Assuming in
addition that p &#x3E; (n + 2)/n and hence 2/(p - 1)  n, we can distinguish
three cases:

(i) I

(ii) , 

(iii) .

In the absence of absorption, the solution w of the problem

in which 99 satisfies (1.2) for some cx c- (0, n) and A &#x3E; 0, has the property

uniformly on sets Pa, a &#x3E; 0. Here fo is the solution of the problem

in Ixilti and primes denote differentiation with respect to q.

Property (1.3) can be proved by means of the Poisson integral formula or
by the scaling methods used in this paper. Thus the solution converges
to a similarity solution of the heat equation which is uniquely determined
by the two parameters oc and A in (1.2).

In this paper we are interested in the effect of absorption on this behav-
iour, and in particular of a term of the form - uP in which p &#x3E; (n + 2)/n.
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We shall show that (Theorems 1 and 3):

1) I f 2/~p -1 )  a  n, then

uniformly on sets .

Hence, in this case, as t -~ oo, the effect of the absorption term vanishes
and, in view of (1.3): if 2/(p - 1)  a  n, then

uniformly on sets Pa , a &#x3E; 0.
Our second result concerns the intermediate case when a = 2/(p - 1 ),

in which-as it turns out-the effects of diffusion and absorption just balance.
Specifically we prove (Theorem 1) :

II) I f a = 2/(p -1 ), then

uniformly on sets Pa, a &#x3E; 0, where fl satisfies

Thus, in this case, u(x, t) converges to a similarity solution of the full equa-
tion (1.1) which reflects the effects of both diffusion and absorption.

We note that as a by-product of our analysis, we prove the existence of
solutions f o and f 1 of, respectively, Problems III and IV.

Finally, for the first case, when a  2/(p - 1) and converges to zero

as - oo less fast than in the previous two cases, it has been shown by
Gmira and Veron [4] that it is the effect of the diffusion term which vanishes
as t 2013~ oo. Specifically they prove that in this case

where c* = (1/(p -1))1~~~°-1~ uniformly on sets Pa, a &#x3E; 0.

Theorems 1-4 are proved by a method, first used in [5], which consists
in considering the family of solutions E R+} of problems obtained from
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Problem I by scaling the variables by means of the similarity transformation

and by studying the behaviour of the functions u, = u’ as k - 00.
The same method may be used to study the large time behaviour of solu-

tions of the equation

in which m &#x3E; 1. However this case requires different estimates. For this

reason we shall present it elsewhere.

Equation (1.8) with (1.2), but without the absorption term has been
discussed by Alikakos and Rostamian [1].

2. - Preliminaries.

Let R+ = (0, oo), and let for any T &#x3E; 0, ST = T].
Assume that p &#x3E; (n + 2)/n and that cp E 0.

DEFINITION. A solution u of Problem I on [0, T] is a nonnegative func-
tion u E which satisfies the identity

for any C E which vanishes for large Ixl and at t = T.
The existence and uniqueness of such a solution is well established [6].

By means of standard interior estimates [2] it can be shown that u E C2,1(8 T).
For any a e [2/(p - 1), n) we say that an initial function has the prop-

erty .H’1 if

for some positive constant A.
Here, the limit is understood in the following distributional sense: for

f

We say that cp has the property .IC2 if: f or some positive constant B
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For k &#x3E; 0, we define the family of functions t) = k2t).
It follows by substitution that if u is a solution of Problem I then uk is a
solution of the problem

in S

in Rn

in which v = oc(p 2013 1) 2013 2 and = 

REMARKS. 1) Since a &#x3E; 2/(p - 1)~ ~ 0. In particular, if a = 2/(p - 1),
then v = 0 and Uk is again a solution of equation (1.1).

2) If 99 has the property Hl, then for any y E 

Note that the singularity at the origin in (2.2) is integrable because a  n.

To provide bounds for the functions uk in S, we shall use the solution W
of the problem

in S

in

If a  n, and hence w(., 0) E the existence and uniqueness of a
classical solution ~V’ is ensured, i.e. TP E 02,1(8) t1 C(S§((0, 0))) and sat-
isfies (V) in the classical sense.

Note that if W (x, t) is a solution of Problem V, then so is the function
k2 t) for any k &#x3E; 0. Hence, since Problem V has only one solution,

for all ;

Thus if we set k2 t = 1, we find that ~ can be written in the form

Substituting this expression into Problem V, we find that f is a positive
solution of the equation
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that /’(0) = 0, and that at any x E R-B{O},

or

Thus, f is a positive solution of Problem III with A = 1. It follows from
the uniqueness of W that Problem III can only have one solution.

LEMMA 1. Suppose 99 has the property H2. Then there exists a positive
const,cant a such that for any k &#x3E; 0

PROOF. Since g~ E LCO(RfI) and 99 has the property H2, there exists a
constant a &#x3E; 0 such that

Hence

Set z(x, t) = k2 t -~-1 ) Then z is a solution of the heat equation
and z(x, 0) = Therefore, 1ny the Comparison Principle,

COROLLARY. Suppose 99 has property H2. Then there exists a positive con-
stant M such that for all k &#x3E; 0

PROOF. By Lemma 1 and (2.3):

a

max I

where .~ = a max .
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By means of classical Bernstein type arguments-see for instance [6,
Lemma 4]-we may conclude from (2.4) that for each 1 &#x3E; 0 there exists a
constant Ci(i) which does not depend on k, such that

By [3] this implies the existence of positive constants and ð(1’), which
do not depend on k either, such that

if It - tol  3(1). Thus, we have proved the following lemma.

LEMMA 2. Suppose 99 has the property H2. Then for each z~ &#x3E; 0, the family
of functions t) : k &#x3E; 0~ is uniformly, locally, H61der continuous in 
with exponent 1 in x and 1 in t.

3. - The main result.

Let T &#x3E; 0 and i E (0, T ), and define the sets ST = B, = ~x 
f0153l C R) and Q,(I) = B, X (1/1, T], I = 1, 2, ....

By Lemma 2, and the theorem of Arzela-Ascoli, there exists for each
I &#x3E; 1 a subsequence and a function IT E such that

By taking a diagonal subsequence we obtain a sequence ~uk.~ and a function
rI E such that

for any compact subset .g of 8p:
Note that by Lemma 1, for 0

We shall show that ZT is a classical solution of the problem

where 0=0 if a &#x3E; 2/(p - 1 ) and 0 = 1 if a = 2/(p - 1).
We begin with two technical auxiliary results.
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PROPOSITION 1. satisfies .H’2. Then there exists a constant

o E R+, which d oes not depend on k &#x3E; 0 such that

PROOF. By Lemma 1,

where denotes the area of oBI, 8 = and s = t + s. Since f is a
solution of Problem III, and hence 2013~ as q -~ 00,

for some positive constant C*. Thus

which completes the proof.

PROPOSITION 2. Suppose 99 satis f ies H2. Then there exist positive constants
01 and O2, which do not d ep end on k, such that

where y = n - cxp + 2.

PROOF. Proceeding as in the proof of Proposition 1, we obtain
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The remainder of the proof consists of an elementary, but involved compu-
tation of an upper bound of the integrals on the right hand side of (3.4).
We omit it here.

LEMMA 3. Let g~ have the properties HI and H2. Then U is a classical
solution of Problem VI.

PROOF. By the definition of uk we can write for any 7: E (0, T), and any
test-function C,

Let s &#x3E; 0 be given. Then, by Propositions 1 and 2, there exist positive
numbers T and ko such that if k &#x3E; ko, then

and, because Il  ayY by Lemma 1 and Propositions 1 and 2,

By (3.1) we have as 1~’ - omitting the primes, y

and by and (2.1),

Putting (3.5)-(3.9) together we obtain

Since s can be chosen arbitrarily small, it follows that
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and hence, because C was an arbitary test function, ~I is a weak solution of
Problem VI in the sense of the definition given in section 2, with the only
difference that in Problem VI, Z7(x, 0) E 

In view of Lemma 2, and the (locally) uniform convergence of uk, to U
as k’-&#x3E; oo in ST, for any complact subset ..g’ of ST: Hence,
by standard interior regularity results, U C- C2~1(ST), and thus satisfies the
equation in the classical sense.

We shall now show that the entire sequence uk converges to This

will follow from the uniqueness of IT, which will be established in the next
lemma.

LEMMA 4. Let ul and u2 be classical solutions of Problem VI, in which
which satisfy (3.2) for Then UI = U2 in 

PROOF. For 0 = 0, Lemma 4 is well known. Thus, we shall only consider
the case 0 = 1.

Let .R &#x3E; 0, and let C be any function in X (0, T]) which vanishes
at t = T and on aBR X (0, T]. Then u1 and U2 satisfy the identity

whence v = UI - U2 satisfies the identity

in which

Note that c is a smooth positive function, which is bounded in for

any T E (0, T).
Let FE Oc;(Sp), and choose for C the solution of the problem

(3.10a)

(3.10b)

(3.10e)

ln ..

on

on
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Since c and F are smooth functions, y the existence and uniqueness of C is
ensured.

Let C be the solution of the equation

which satisfies (3.10b and c). Then, because c &#x3E; 0, it follows from the

maximum principle that

and hence that

Finally, we let R - oo. It can be seen from the Poisson integral formula
that --~ 0. Hence, because 1’01 is bounded for large lxi, we obtain
in the limit

Remembering that .~" was an arbitrary function in O;’(Sp) and that v is con-
tinuous in Sp, we conclude that v = U2 = 0 in Sp.

LEMMA 5. Let q; have the properties .H’1 and H2. Then

uniformly on every compact subset of where U is the (classical) solution of
Problem VI.

The proof is standard, and we omit it here.

REMARK. If a = 2/(p - 1 ), then if ZT (x, t) is a solution of Problem V in S,
then so is the function IT (kx, k2t) for any k &#x3E; 0. Hence, if ~" is

bounded for large ~x~ and t &#x3E; 0, it follows from Lemma 4 that

Therefore, ZT can be written in the form
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Substituting this expression into Problem VI, we find that f 1 is a positive
solution of the equation

that f’(0) = 0, and that the initial condition (3.3b) implies that

Thus, fi is a positive solution of Problem IV. It follows from the uniqueness
of P’y that Problem IV can only have one positive solution.

Having determined the limit of the sequence as k --~- oo, and char-

acterized the limit function U, we now turn to the description of the be-
haviour of the solution u(x, t) of Problem I as t 2013~ 00.

We have proved that

uniformly on compact subsets of R". Thus, if we write kx = x’ and

k2 = t’, we obtain, omitting the primes again

uniformly on sets Pa, a &#x3E; 0.

THEOREM 1. Suppose p &#x3E; (n + 2)fn. Let u be the solution of Problem I,
in which 99 has the properties .H’1 and H2, and, 2/(p -1 )  a  n. Then

uniformly on sets Pa, a 2 0, where is the positive solution of the problem

in which 6 = 0 i f oc &#x3E; 2 / ( p - 2 ) and 0=1 if a = 2 / ( p - 1 ) .

REMARK. We conjecture that by letting A -* one can retrieve the

fact that

where uniformly on sets Pa, a&#x3E; 0 proved in [4].
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4. - Generalizations.

Lemma 1 and Lemma 2, which yield the compactness of the set are

based on property .g’2 only. This property allowed us to bound u and Uk
by a multiple of W. Thus, we may expect that some convergence theorem
still holds if we relax or even omit Hl.

As a first generalization, we do not make the symmetry-assumption that
the limit of as oo is the same along every ray.

Hl* For every fixed = 1,

in which 0 ( ~ 0 ) .

Proceeding as before, we obtain:

THEOREM 2. Suppose p &#x3E; (n + 2)/n. Let u be the solution of Problem I
in which (p has the properties H1 * and H2, and 2/(p - 1)  a  n. Then

uni f ormty on sets Pa, a &#x3E; 0, where h(~) is a positive solution of the problem

in which 0 = 0 if a &#x3E; 2/(p - 1) and 9 = 1 i f a = 2/(p - 1).

The existence and uniqueness of a positive solution of Problem VII is
ensured by the proof of Theorem 2.

EXAMPLE. Let n = 1, P = 5 and a = 3 (= 2/(p - 1 ). Then Problem I
becomes

Suppose



406

Then (4.1) implies that

where h satisfies

Note that the function h(~) is not symmetric.

Fig. 1. - The function h(~) in the Example.

’ 

If we only assume H2, it is still possible to give some characterization
of the large time behaviour of u(x, t) if a &#x3E; 2/(p - 1).

THEOREM 3. Suppose p &#x3E; (n + 2)/n. Let u be the solution of Problem I
in which 99 has the property H2, and 2/(p - 1)  oc  n. Then

uniformly on sets Pa , a &#x3E; 0, where w is the solution of the problem

in S

in R" .
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PROOF. Define the functions wk(x, t) = k2 t) and 
Then, for any T &#x3E; 0, zk satisfies the integral identity

Thanks to the properties of ux~ and Wk I there exists a subsequence 
and a function Z E C(ST) such that zx, -&#x3E; Z as k--* oo uniformly on any
compact subset of ST. As in Lemma 3 we prove that

Since Z satisfies (3.2) it follows from Lemma 4 that Z(x, t) = 0 for all

(x, t) E ST. Thus the entire sequence z,. converges to Z = 0.

The proof is completed as in (3.11) and (3.12).
Thus, if a &#x3E; 2/(p - 1), the large time behaviour of the solution u of the

nonlinear equation (1.1) is up to order o(t-a2) the same as that of the solu-
tion w of the much simpler heat equation, which can be determined by the
Poisson integral formula.

We conclude with a generalization of Theorems 1-3 for solutions of the
problem

in which 99 is as in Problem I and g a nonnegative OI-function. We find
that if g(., u) behaves like uP near u = 0 and p &#x3E; (n + 2)/n, the three
theorems continue to hold. As an example, we formulate the analogue of
Theorem 1..

THEOREM 4. Let u be the solution of Problem VIII. Suppose for some
oc  n,

(1 ) 99 satis f ies Hl and H2;

(2) There exists a constacnt ~, E {0, 1~ such that

uniformly with respect to x Then the conclusion of Theorem 1 holds,
with 0 = Â.
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Note added in proof. After this paper was submitted a paper by Galaktionov,
Kurdjumov, Samarskii [7] appeared, which contains part of our results, proved,
however, by different methods.
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