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Nonsteady Flow of Water and Oil
through Inhomogeneous Porous Media (*).

H. W. ALT - E. DI BENEDETTO

1. - Formulation of the problem.

The flow of two immiscible fluids through a porous medium is described
by (see e.g. [2] (9.3.25) and [3] (6.36), (6.52))

with

and

and

The differential equation (1.1) is considered in Qp:= T[, where
,~ c is the porous medium. 8i, i = 1, 2, is the fluid content of the i-th
fluid and so the porosity, y that is, the relative volume of the pores, which
for inhomogeneous media depends on x. ki is the permeability depending
on x and si, the hydrostatic pressure is given by p,, and ei is the gravity
term. Although we restrict ourserves to scalar functions ki all our results
remain valid for symmetric matrices ki, that is, if we consider unisotropic
media.

In the following we often suppress the argument x in the functions ki
and si .

(*) Supported by Deutsche Forschungsgemeinschaft SFB 72.
Pervenuto alla Redazione il 3 Ottobre 1983 ed in forma definita il 28 Novem-

bre 1984.



336

The content si as a function of the capillary pressure Pl - P2 as well
as the permeability ki as function of si are obtained by experiments, see
[2; fig. 9.2.14, 9.2.15] and [3; fig. 6.6]. For the definition of Pi see [3; fig. 6.7].
The qualitative behavior of these functions is shown in fig. 1-3.

We refer to [2; fig. 9.2.7a), 9.2.10, 9.3.1], [3; fig. 6.9, 6.13, 6.16, 6.17],
[4; fig. 6-13], and [5; fig. 6]. Because of this behavior of the coefficients
the system (1.1) is a degenerate elliptic-parabolic equation. Since is not
determined by its differential equation when 8i = 0 we have to add the
condition
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where pmin and pmag are given For ex-

ample pm;n = - oo in fig. 2 and Pmin &#x3E; - oo in fig. 3. In particular, if

s2 = 0 then P2 = pi - p and pi is determined by an elliptic equation.
If 0  ~2  80 then pmin  pi - P2  Fmax and pl and P2 satisfy an elliptic-
parabolic system.

We consider three types of boundary conditions for each fluid, that is,
for i = 1, 2 the boundary 8Q is divided into three sets 7~ 7y with
Dirichlet condition

where pD is the trace of a function in also denoted by pl, with pm;n
We assume Neumann conditions

where v is the exterior normal to and overflow conditions

We assume that and 1-’2 c 1 D. As initial condition we pose

with given functions s° satisfying s’ 1 + sl 2 = 
The differential equation (1.1) together with the boundary conditions

(1.4)-(1.6) has the following weak formulation. Let

Then (PI’ P2) is a weak solution, if with 
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and for all (v,, V2) c- X the inequality

is satisfied. This weak formulation may be inaccurate in two points. First

Ôt 8i needs not to be a function, and secondly Vpi may explode near the
set = 0} and therefore it may be well defined in the sense of distribu-
tion. Because of this we did not specify the topology in the above defini-
tion of the set X. On the other hand using vi = pD as test function in (1.8)
and using the fact that si are monotone increasing, we see that

determines the natural topology of the problem.
Therefore let us assume that

with c &#x3E; 0 and some functions 1~~, s* which behave like the functions in
figg. 1-3. We introduce the transformation

Then

so that we expect a solution ui in L2(o, T; J5~(.G)). If in addition
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then both sides of (1.11) are equivalent, so that the above space is the

natural space to consider. The variational inequality (1.8) can be trans-
formed in terms of ui where the elliptic part becomes

In the set ~p1 ~ ~2~ the matrix .g is given by

and in by

Therefore the equation in ui is still degenerate elliptic-parabolic (in the
case that k, and k* are equivalent). One could avoid this by replacing

essentially by kfJ in the definition of ui, but this would be no advantage
for the existence proof, since in any case the quality of the weak solution
ui is related to the natural topology (see Remark 2.5).

To illustrate the behavior of the solution let us consider special travel-
ling solutions, that is, solutions of the form pi(c, t) = pi(x - t). As data
we choose = zl, pmin &#x3E; - oo, and + Z) = Z" for small z &#x3E; 0

with oc, f3 positive. Then for N = 1 in a neighborhood of 0 there is a special
solution with

~2 as a solution of an elliptic equation is Lipschitz continuous. Vui is of
class .L’’ near zero if and only if r  2(1 + 

Another special solution with unbounded pressure is given by P2(X)
- - 2x and



340

The data are

k,(z) = z, and el = 2, e2 = 1. Here ’oul is in L- near zero.

Using the transformation (1.10) we prove in section 2 the existence of
a weak solution u for the transformed system. This solution satisfies pmi.

where and are the transformed values of pmin and 
Therefore the pressure can be recovered using (1.10). If in addition we

know that

then VPI is defined in the sense of distribution in the open set 
and in satisfying the first equality in (1.12). As a con-
sequence weak solutions as defined in 2.3 satisfy the original variational
inequality (1.8) in integrated form. We shall prove (1.13) in sections 3-5
under certain assumptions on the coefficient. For the proof we use a dif-
ferent transformation of the differential equation (see [10J, y [15; Appen-
dix A])

In termes of these new variables the system (1.1) reads

~define v : ---

Using the notation
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the coeffcients in (1.16) and (1.17) are given by

Here denotes the inverse of 8I with respect to the z variable.
Therefore the system is separated in an elliptic equation for u and a

parabolic equation for v. Since in (and in

the quantity u can be considered as a mean pressure. Equa-
tion (1.16) then can be interpreted as equation of continuity with pres-
sure u and velocity v for an " idealized " incompressiblc fluid replacing the
mixture of the two fluids.

In [10] the existence of a classical solution for the system (1.16) is proved
in the case that the equation for the saturation is strictly parabolic, that is,
0  z)  C. Also the overflow condition is not included. Some of the

arguments are restricted to the two dimensional case, for higher dimensions
it is required that k is a small perturbation of a continuous function

depending only on x. In addition this paper contains a uniqueness and a

stability result.
Recently independent to our work in [9] the problem was solved for

the original system with Dirichlet and Neumann data. The main assump-
tion is that the initial and boundary data stay away from one side of the

degeneracy, so that the solution contains only one pure fluid besides the
mixture. Then under certain condition on ki and 8; one of the pressures
is of class Lp( 0, T; for p  2.

In [6], [7] and [15] the problem is treated numerically.
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2. - Existence of a weak solution.

In this section we state the assumptions on the data and introduce the
notion of a weak solution. Using the transformation (1.10) we prove the
existence of such a solution. For this we approximate the equation by
nondegenerate ones, that is, we approximate ki by strictly positive func-
tions. Using the technique of [1] we obtain the convergence of the approxi-
mate solutions. In addition we have to choose the approximations such
that in the limit the solution ni satisfies the inequality U2 

Throughout this paper we denote by C large and by c small positive
constants.

2.1. ASSUMPTIONS ON THE DIFFERENTIAL EQUATION. The water content

z) is measurable in x and continuous in z and

Here - we denote the transformed

values according to (1.10), that is,

Furthermore, for all x and z

with a measurable function so satisfying The conductivity
z) is measurable in x and continuous in z with

Moreover

with
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Here and s* are continuous functions (which are independent of x) with
the same properties as si . Since si is stricly monotone in 
the elements kii of the matrix K defined in (1.12) can be written as

2.2. ASSUMPTION ON THE DATA. The porous medium D c RI is an open
connected bounded set with Lipschitz boundary. For i = 1, 2 the boundary
8Q consists of three measurable sets Tf and Tf with c .T’2 and 1~’2 c Tf.
The boundary data pf are in X 10, T[) with and

for some 7

The initial data s° are nonnegative measurable functions with sx + 8 = so
satisfying E where 1Jf is defined in 2.4. They are in the range
of s i , hence there is a measurable function po with and

2.3. WRAK soLUTIoNS. We consider the following sets of functions

and

and vi on 7~ X ]0, T[ equals the transformation of

some (pi, p2) according to (1.10) with 

We call pl, p2: Dx]0y T[ - R a weak solution of the differential equation
(1.1) with boundary conditions (1.4)-(1.6) and initial condition (1.7), if

the transformed function U2) obtained by (1.10)
belongs to K*, and if for all (v1, v2 ) with E T[ ) and for
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almost all 0  t  T the following inequality holds:

Here is the matrix in (1.12) with the convention that

Note that may be unbounded. The function IF is defined as follows:

2.4. DEFINITIONS. We set

Then

hence formally and therefore the pa-
rabolic part in the variational inequality (2.1) formally equals

If (u,, ~2 ) is obtained by (1.10) we have
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where

Also

2.5. REMARK. The second term on the left in the variational inequality
(2.1) represents the natural topology and gives an estimate for the weak
solution. In the case that J~*(s*(z)) tends to zero faster than ka(x, si(x, z))
as ZtPmin (fipmag) this estimate is stronger than the statement ’Ui E L2(O, T;
.8~1~~(SZ)). If ~pi (in the sense of distribution) is a measurable function we

can replace

Thus we obtain the original variational inequality (1.8) with integrated
parabolic part.

2.6. EXISTENCE THEOREM. Suppose in addition to 2.1 and 2.2 that the

sets -P-2y and are empty and that one of the following conditions
is 8ati8fied:

Then there exists a solution.

REMARK. The last condition in 2) and 3) can always be achieved by
a suitable choice of k*, for example, if ~*(~) is replaced by

PROOF. We approximate the conductivity ki by positive functions
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and define k:i similarly. The water content we approximate by adding
a penalizing term

Here

and similarly for ~3. The approximating system with these coefficients is
(nondegenerate) elliptic-parabolic and the existence of a solution for the

corresponding variational inequality (1.8) can be shown similar to [1; The-
orem 1.7, Theorem 3.2]. The difference is that here the variational ine-

quality is only on the lateral boundary. But since it is convenient, although
not necessary, for our convergence considerations let us include the approxi-
mation of the time derivative by backward difference quotients at h in the
proof here. Thus we start with solutions Phe2) E of the variational

inequality

at all times 0  t  T for every (v1, V2) Here ~,h consists of all func-
tions v2) E L2(0, T; g1~2(S~)) which are time independent in each interval

and satisfy the boundary conditions

The discrete Dirichlet data ph are defined by

and the approximate initial condition is
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which is a condition on - for sEi are strictly monotone. The

existence of a solution of these inductively defined elliptic variational
inequalities is assured since

In order to obtain an a priori estimate set vi = ph in the time interval
JO, T[. Then for the parabolic part

Here we used the fact that

Hence including the elliptic part we obtain

Therefore if Uhsi are the transformed functions defined as in (1.10) with
respect to the coefficients k;i we conclude (see (1.11 ) ) that VUhsi are bounded
in X ]0, T[). Next we have to estimate Uhsi itself.

In case 1) the functions Uhsi have fixed bounded values on n F2’)
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X]0, T[ since p’ are uniformly bounded functions. Therefore uhei are

bounded in f

In case 2) we have . therefore

on

In the part where we conclude

that is, Uhsl are bounded. In the remainder hence

with Thus if max (Uhel-Uhe2’ 0) is bounded in L2(QX]0, T[)
it is bounded in L2(0, T; and therefore also in X ]0, T[).
Consequently uhei are bounded in n 1-’2 ) X ]0, T[) and therefore again
bounded in .L2(o, T; H., 2(S?)) . To prove an estimate for max (uhel - Uh-2 0)
we note that in the set 

Since k2 (s2 (~)) - 0 and ~(~(0)) &#x3E; 0, for amll 8 this is esti-

mated by

which tends to ’Umax in L°°(0, T; ~(~3)) by the above energy estimate. This

proves the desired estimate.

In addition this argument shows that whenever umax  00 we have

max in

Similarly, y whenever u &#x3E; - o0

mini i in .
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We conclude that for a subsequence h &#x3E; 0, c - 0

and

As a consequence we can go back with the transformation (1.10 ) and define
PI and p, pointwise, satisfying the inequality 

The next step is to prove compactness of the functions - PhB2)’
which essentially follows as in [1]. Indeed, if we choose in the equation
for PhBi in the time interval ](j - m) h, jh[ the time independent function

where and we get

Since &#x3E; , and are bounded in

we conclude integrating over t

Since the functions involved are step functions in time the estimate remains
remains valid if we replace mh by any positive number. Since are

in T[) we also have

For small e &#x3E; 0 define values pmag bY

and

Then the truncated functions
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satisfy

which is small in T[) if 8 and e are small.
Therefore it suffices to show that Phe2) are precompact in

L-(S2 X ]0, T[) if o &#x3E; 0 is fixed. For 6 &#x3E; 0 there is a small constant 

and a constant C(b) such that if

then

uniformly in s, where V,. is defined as in (2.2) according to kfJ; . Note that

1jJ s is monotone. This yields

Then the sets

for fixed 6 &#x3E; 0 define a monotone covering of Q and therefore for r¡ E 0:
(Q X ]0, T[) by the estimates (2.3) and (2.4) on the time and space dif-

ferences
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Since the last integral is dominated by the left side of (2.3), and using (2.4)
we get an estimate by

which proves the desired compactness.
Therefore has a strong limit in .L1(,SZ X ]0, T[) and by the

standard monotonicity argument, that is, using the fact that for v E L2
v 

this limit equals Si(Pl- P2).
We also have to prove that the weak limit ui is admissible, that is, of

class K*, which is not obvious since the strong convergence of the functions

Uhsi is not yet known. But since almost everywhere
in Q x ]0, T[, as just proved, also almost every-

where, consequently almost everywhere in
But since uhei are bounded in T; Hl,2(!J») this implies that

almost everywhere Now on

since that is, lies on a curve

with continuous functions y,, converging uniformly to some y. Hence

and for 8 -~ 0 we obtain

that is, (u,, u,) is admissible.

Finally we have to show that ui satisfies the variational inequality in 2.3.
For this approximate any function vi as in 2.3 in the corresponding norms

by functions Vhi E Xh and write the equation for Phei in the form (three
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positive terms on the left side are omitted)

Since - PhS2) converges almost everywhere the first integral on the
left and all terms on the right expect the last one converge to the desired
limit. Next we look at the last terms on both sides. Let e &#x3E; 0 ande2  O.
Then

with

where (ksu)ij is the matrix in (1.12) corresponsing to the functions ksi
and If then by 2.1
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hence if Pmin = -- oo) and therefore

Consequently are bounded functions uni-

formly in h and a and converge almost everywhere as h - 0, E - 0. We
conclude

As we will see in a moment

is bounded in X ]0, T[), hence as this converges to the desired

limit.

For the remainder we have

for any small 6 &#x3E; 0 which finally will tend to zero. The first term on the

right can be absorbed by the second integral on the left in the variational
inequality (2.5), and the second term is small for small p. It remains to

consider

From what has been shown up to now it follows that

Since
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we obtain

and since converges almost everywhere also

which was used above. Moreover for fixed ~o &#x3E; 0 

with

Since the numerator of P:ii is uniformly bounded and the denominator
strictly positive, converges almost everywhere, which yields

and as so - 0 this converges to the desired integral.
The variational inequality (2.1) contains all information about the solu-

tion. In particular we shall show that weak solutions in the sense of 2.3
are weak solutions of the differential equation (1.1).

2.7. LEMMA. Let PI’ P2 be a solution as in (2.3). Then

with initial values that is,
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for every wish I and And

the differential equation

holds in

PROOF. Formally this follows from (2.1) by setting vi = with

~2 as in the statement of the lemma. But since the space and time behavior
of p is not good enough to use it as a test function we have to approximate
these functions.

For this choose sequences and mag I mag as and define

the truncated functions

Then u¡ E L2(0, T; Hi,2(Q)) and also the corresponding pressure values pg
defined by (1.10), that is,

are of this class. Similarly we define p~ starting from the transformed
functions uf of pD. Then the functions

satisfy

and in

where Similarly In particular, Wi are of

class 3(,.
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As test function in (2.1) we use

Here i are as above such = 0 for t near T, and for small h &#x3E; 0

and 0  E  h - -r the function is defined by

with 

and given to near T. In this definition for t  0

and the initial value for t  0 is chosen in such that

and

By construction are of class K and are in T[). Fur-

thermore by (2.10)

Then the ), i terms in (2.1) give the assertion provided we can show that
3for Ci = 0 the right side in (2.1) does not exceed the left in the limit 8 - 0,
h - 0, 0. First let us consider the parabolic terms. For almost
all z almost everywhere in writing s1(t) for 81(0153, (pi - p2)(x, t))
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The second term tends to zero as E - 0, hence summing over j and integ-
rating over SZ we obtain

For the first term on the right of (2.1) we have



358

Subtracting (2.13) from (2.14) we obtain for the last terms on the right

Integrating over 7: from 0 to h and dividing by h this converges to

for almost all to, where (2.12) is used. This is the parabolic term on the left
of (2.1). Thus we have to verify that the remaining terms in (2.13) and
(2.14) are small. Since it was assumed that are in X ]0, T[) for
some r &#x3E; 1 the first term on the right of (2.13) is small for small h after

performing the mean over r. The second term is estimated uniformly in r by

which tends to zero with (2. The first term on the right of (2.14) converges
for almost all to in the mean over r to

which tends to zero as o - 0. The same holds for the second term.

Now let us consider the elliptic term on the right of (2.1). First we note

that for almost all 2 - 0 the functions converge in L2(0, T ; 
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to which is defined as in (2.11 ) with

and

we see that

Therefore as e - 0

Similarly we argue in ~pD - pD ~ 0~. Hence it remains to show that for

e -+0

does not exceed the second integral on the left of (2.1). In 

~ we have = pi and therefore

In we have

and
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hence

Since and we conclude

Finally let us cosider the integral with In ~~1- u2 = we have

7~2 (s2 ) = 0, hence the integral gives no contribution. In 
we compute

where

Since x is unbounded we have to argue more carefully. From (2.1) we
know that

that is,

and therefore also
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We conclude

as e - 0. This completes the proof.

2.8. REMARK. For a weak solution pi, p2 define

in and. .1’ in in 1
Then

and Pi is the limit of gradients in the following sense. If p? are defined as
in the proof of Lemma 2.7 then as shown above

and

Moreover the variational inequality (2.1) reads

for all (v1, v2 ) E ~ with and for almost all t.



362

3. - Continuity of the saturation.

We shall prove that the saturation is continuous in

space and time (see Theorem 3.5). For this we introduce the mean pres-
sure u defined by (1.15) and consider the transformed system (1.16), (1.17),
which consists of a parabolic equation for v and an elliptic equation for u.
Therefore u and v are the natural variables of the problem if one wants

to separate the parabolic and elliptic nature of the system (1.1).
As assumption we need that the diffusion coefficients for v degenerates

ay most at one side, and that the mean pressure u is bounded. Sufficient

conditions for u being bounded are given in 3.9. To performe the estimates
we also need various conditions on the coefficient, in particular they should
be mooth enough as functions of the space variable (see 3.1).

The proof of the Regularity theorem 3.5 consists of two parts, an esti-
mate from above (see 3.7) and from below (see 3.8). The proofs of these
estimates (see section 4 and 5) follow the lines of the De Giorgi techniques,
where the special features here are the degeneracy of the coefficient a in
the parabolic equation for v and the coupling to the elliptic equation for u.

3.1. ASSUMPTION ON THE DATA. Let D an open subset of Q. We assume

that si is continuous differentiable with respect to the second variable in
D X Z  2 and we assume the following qualitative behavior of
the coefficients

For the dependence on x we assume

uniformly for x E D , y

for x E D and,zO (&#x3E;0) if (2),
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3.2. REMARK. The coefficients defined in (1.19) satisfy

From (3.3), (3.7), and (3.9) it follows that

and (3.2) implies that for every 6 &#x3E; 0

that is, the diffusion coefficient a for v is coercive near 0 and degenerate
at 1, but we impose no restriction on the nature of this degeneracy.

By (3.4), (3.8), and (3.6)

Moreover if

then (3.7) and (3.10) imply that

In the proof of the regularity theorem we will use these properties of the
coefficients only (besides (3.6 ) ) .

First let us prove that the transformed functions u and v satisfy the
differential equations (1.16 ) and (1.17 ).

3.3. Assume the data satisfy 2.1, 2.2, and 3.1..I’or any weak
solution PI I P2 define u, v as in (1.14) and (1.15). Then at(sov) E L2(0, T;
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.I~1 ~~(.D)*) 2uith initial values 8~ (in the sense of (2.6)) and in this space the
differential equations

are satisfied with coefficients k, e, a, b, d given by (1.19). The limits in (3.11)
and (3.12) exist in L2(D X ]0, T[), where is defined in (3.14) below (see

3.4). In particular ite and min (v, 1- ~O) belong to .L2(o, T; Hl,2(D»).
PROOF. By (2.7) we have to consider

The sum of both expression in (3.13) equals

Since = o, 1 the only thing to show for u is that
Vue has the desired limit. Here

where uf and pi are defined as in (2.8) and (2.9). Then

In we have and therefore in this region (3.13)
equals

In
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hence in the L2(D X ]0, T[) norm

but also

Now let us look at the equation for, e.g., p2. An easy computation
shows that (writing ki for ki(si(pl-p2)))

In {Ul - U2 = Umin or the first term vanishes. Therefore as p - 0

this term is the limit of

if we define

This shows that

The same is true for

as a - 0 and e --~ 0 independently. It was assumed that 0 in
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Since I ~ and in
we infer that has a limit in

uaau · J

as i Hence

is of class L2(o, T; .711~2(D)). Moreover, a(v) Vue is estimated by a function
in T[), hence for small 6 &#x3E; 0 the function a(v)V min (ve, 1 - 6)
is near a(v) Vue in X ]0, T[) uniformly in e. (Note that needs

not to be defined, since Vve = 0 in ~v = 0}). Since

min I min

for small e and fixed 6 (by (3.5)) we infer that

lim
,-A

= lim a min i

which proves the assertion.

3.4. REMARKS.

1) If uo is bounded in T[) then it has a limit u in L2 (o, T;
HI 2(D)) and (3.11) means

Moreover u is given by (1.15) (see prof. of Lemma 3.9). In the following
theorem we will assume that ue are uniformly bounded functions.

2) It is known that using test functions of the form

in (3.12) for bounded functions

one gets for almost all 0  T
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Here is any Lipschitz function with q’(z) = 0 for z near 1, and zo any
real number.

3) It also is a standard calculation that for test functions (u as in 1))

in (3.11) with 77 E HI,2(D) one gets for almost all t

3.5. REGULARITY THEOREM..Assume the data satisfy 2.1, 2.2 and 3.1,
and suppose p, , P2 is a weak solution with u E LOO(D X ]0, T[) (satisfying
(3.15)). Then

The modulus o f continuity of si can be estimated by the estimates on the coeffi-
cients made in 2.1 und 3.1, the distance to the boundary of D X ]0, T[, and
the supremum of lul.

For the proof we introduce

3.6. NOTATION. Let (0153o, to) E D X ]0, T[. For R &#x3E; 0 the parabolic cyl-
inders are denoted by

Furthermore

and

We define

and similarly for the cylinders o’s). In the following with

QRo cc D X ]0, T[, and p+, p- are any numbers with
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hence

Furthermore cv is any positive number satisfying

By Remark 3.2

is positive.

3.7. PROPOSITION. With the notation of 3.6 there exists a small constant
co &#x3E; 0 independent of (0153o, to), .R, and 00, such that if

then

Here

PROOF. See section 4.

3.8. PROPOSITION. Suppose that

with Co and g~l as in Proposition 3.7. Moreover suppose that .R is small enough,
precisely,

and

Then

where
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Here cl is a small constant independent of (xo, to), R, and w, and q(w) is a

decreasing function o f (o independent of (xo, to) and R (see (5.14)).
PROOF. See section 5.

PROOF of THEOREM 3.5. We apply Proposition 3.7 and Proposition 3.8
inductively in order to prove continuity at T[. First, the
largest oscillation of v is 1, therefore we start with selecting to be so

small that the closure of Q2Ro is contained in D X ]0, T[ and that

Define two sequences of real numbers R. and wn as follows

Here c and q(ro) are the quantities in Proposition 3.8, and co and qi(m) are
as in Proposition 3.7. The function ~o describes the continuity of so, that

is, ao is continuous with ao (0) = 0 and

(By (3.6) we can choose = eb, but this strong condition on so is needed

only to control the coefficient d, see Remark 3.2.) Obviously 0 and

Rn --¿. 0 as n - 00, for provided C1 is small enough.
By construction we have

Let us assume that

which is true for n = 1. Then we can choose pt and p§ such that (3.17)
and (3.18) is satisfied. Obviously we must have either
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or

meas I meas (

If (3.21) occurs, by Proposition 3.7 we have

since If (3.22) holds then either

or

In the second case

and in the first case

meas( mea s (

Therefore by Proposition 3.8 in view of (3.21) we must have

We obtain inductively that (3.20) holds for all n. This proves the con-

tinuity of v and supplies a modulus of continuity implicitely.
Finally let us verify the condition that u is bounded, which was needed

for the proof of the regularity theorem.

3.9. LEMMA. Suppose that in addition to the assumption in the existence
theorem 2.6 the condition (3.9) is satisfied in the entire domain 0. Further-
more assume that i f n &#x3E; 0 then p &#x3E; - oo and

for



371

I f r1 &#x3E; 0 then the corresponding properties are assumed. The

conclusion is that u is locally bounded in Q X ]0, T[.

PROOF. Define ne as in (3.14). Then ue E L2(o, T; Hlt2(Q») as shown

in Lemma 3.3. On 1’2 we have ~

since pf are bounded. Note that C is independent of e. Since

we see that on J

and

Let

Then C L2 (0, T; Hl,2(Q») and 1p(ue) = 0 on (Tf u F2’) X ]0, T[. In the

proof of Lemma 2.7 it suffices to assume that

Therefore setting I, - C where with

and

and
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we obtain almost everywhere in time

where the last identity was proved in Lemma 3.3.
By approximation we see that we can ignore the condition (3.23), hence

we are able to set ~ = 99(uo), which yields

where the last integral integrated over time tends to zero with ~. Since

vanishes on 1’D u F,’, we conclude that

Then multiplying (3.11) by with q E we obtain that also

In particular ue is bounded in L2(0, T ; .Hi ~(S~)), hence it has a weak limit u.
Since

we see that 1 Moreover u satisfies (3.15). Then the

De Giorgi estimate (see e.g. [11]) says that U E LCX&#x3E;(O, T ; L:c(Q»).
Since ul = ui in we conclude that u is given by

(1.15) ~ in If then in
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The first term converges uniformly to By (3.9) also the second

term converges uniformly, y and the limit must be finite since ul1 has a weak
limit (we assume that (ui - ~2 = has positive measure). Thus in

{Ul - U2 = the second formula for u in (1.15) holds. Similarly in
_ the first formula of (1.15) is relevant for u.

The statement of Lemma 3.9 in connection with the assumption in
Theorem 3.5 is not quite satisfactory, since in case condition

(3.2) implies that pmin = - oo. But then Lemma 3.9 does not cover the

case that non-empty. Note also that u is bounded for the second

example following (1.12).

4. - Proof of Proposition 3.7.

Let and let k be any number satisfying

First we will establish the following estimate for (v~, - k)+ = max (vw -1~, 0)
for any numbers 0  a,  1 and 0  d2  1

Then we apply this estimate inductively for a sequence of values 1~ and k
in order to obtain Proposition 3.7.

To prove (4.2) we select the test function

in (3.12) in the time interval ]to - R2, t[ with t  to. Here n is a cut off

function in with 0 c ~ c 1 and

on the parabolic boundary of QR , y

Since
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we obtain using 3.4.2

The first term on the left is

and for the second integral we have

since the integrand vanishes in (v &#x3E;p+- o) /4}. The function To is defined

in 3.6. The first term on the right is

and the following term can be treated in the following way using the prop-
erties of the function A(x, z) in 3.2.

for every 6 &#x3E; 0. The b-term easily can be estimated by the same expres-
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sion. Collecting these estimates we obtain choosing 6 = 

The last term we transform as follows

Using the fact that v is divergence free this equals

By the assumption on the coefficient d this is estimated by

Using the estimate in 3.4.3 and the assumption that u is bounded, the
integral involving is bounded by
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yVe substitute this estimate in (4.4) and obtain for a suitable choice of 6

Since q = 1 in 0"2) this implies (4.2).
Now we will use (4.2) over a sequence of shrinking cylinders and

increasing levels kn given by

Then ko = p+- m/2 and k,,, is increasing in n with

Consequently kn can be used as level in the inequality (4.2) and with

we obtain

But the left side controls meas from above as follows.

By an embedding Lemma for functions in

(see [12; II (3.9)]) we have

For the integral on the left we have
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Since kn = ro/2n+4 We obtain the recursive inequality

meas ( meas (

Dividing by and setting

we have the dimensionless form

It follows (see [11; 2 Lemma 4.7] or [12; II Lemma 5.6]) that y. --&#x3E; 0 as
n - oo if

But this condition for yo is the assumption in Proposition 3.7 for a
suitable choice of co. Consequently

meas I
hence

The proposition is proved.

5. - Proof of Proposition 3.8.

We divide the proof into several steps. First we proof a logarithmic
estimate (Lemma 5.2), which implies that for large p the set + 2-?m)
covers a certain portion of BR at all times (Lemma 5.3). From this we

conclude that for large p the set ~v  ,u- + 2-Pro} is a small portion in QR ,
provided is small enough (Lemma 5.5). Then if we decrease 1~ further

this set has measure zero in QR (Lemma 5.6).

5.1. DEFINITION. Let p, po be positive numbers. Then for z  (2-p
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where is defined provided

We also set

which co and qi as in Proposition 3.7. It is assumed that co is small enough
to provide that 

where 0 is a constant independent of w, k, p, po .

PROOF. Since ?p2 is a function and since

with i - 

we can use

as test function in (3.12) in the time interval ]t,, t[, where n is a cut off

function in C°(BR) with 0  27  1 and

We obtain (using 3.4.2), where y2" means (y2)"

In the second integral on the left we can estimate since

and, Further-
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more, since V 21 (0) = 0 and

hence

the a-term on the right is estimated by

Similarly the b-term is estimated by

Collecting these estimates and choosing 6 = ccpo(w) we find



380

We transform the last integral as follows using the fact that v is diverg-
ence free.

Therefore using (5.3) again

Now observe that

Hence with an appropriate choice of 6 the estimate (5.4) becomes

The Vu term can be estimated as in 3.4.3. Then using the properties of
the function ?7 the assertion follows immediately.

As a consequence we obtain

5.3. LEMMA. There exists a large number p(cU) independent of R, such
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that

implies

for all t with to - rxR2  t  to. Here a is the number defined in (5.2).

PROOF. Consider the logarithmic estimate established in the previous
lemma with

where po has to be chosen. If then

Now the assumption in Proposition 3.8 is

Since the left side can be written as

we find a time with

Hence using (5.5) we obtain for the integral on the right of (5.6)

meas (
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The left hand side of (5.6) is estimated as follows:

Substituting these estimates in (5.6) we get

This inequality holds for almost all t E [tl , to [ , all ~1 E ]0, 1[, and all po &#x3E; 3.

Furthermore it is essential that the first term tends to 1 as oc - 0, Po - C&#x3E;02
and JR -~ oo, and that the remainder is small if (11 - 0 and po - 00 in a

suitable manner. To be precise we choose

and then po large enough such that

and

The lemma is proved.
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Recalling the definition of a and it is readily seen that a suitable
choice of po = would be

for a constant C independent of m.
Next we will show that the relative measure of fv  It- + in QR

is small provided .R is small enough. For this we need

5.4. LEMMA. There is a constant C such that if 0  k  /z- + and

0  ~  1, then

PROOF. As in section 4 we select the test function

in the time intervall ]to - t[ with t  to. Here n is a suitable cut off

function in CO(Qfl) with 17 = 1 in (see (4.3)). From (3.12) and
3.4.2 we get

Since

we have in Iv  k}, which estimates the second term on the
left. The first term on the right is
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and the second term (in contrast to section 4) we are able to estimate by

Similarly for the b-term

Note that the term with the characteristic function has no 1~-2 factor in
front. Combining these estimates and choosing 6 = the identity (5.8)
becomes

. 

The last term we transform as in section 4
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Since d is Lipschitz continuous, y this is

The integral involving can be estimated by 3.4.3. Using the assump-
tion that u is bounded this integral is

We substitutes these estimates in (5.9). Choosing 6 = cqo(w) we obtain

and the lemma is proved.

5.5. LEMMA. Consider the cylinder Q,"- as in (5.2). For every
0 &#x3E; 0 there exists ac number q = q(o), 0) &#x3E; p((o) such that if

then

PROOF. Let and
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Then for to- xR2  t  to by [11; 2 Lemma 3.5]

By virtue of Lemma 5.3 and the assumption we have

meas I

therefore

Now integrate over t, square both sides, and use Hölderqs inequality to
obtain

To estimate the integral on the right side we apply Lemma 5.4 over the
cylinders Q" and Q2R, where = Q2R,(1/2 1- a/4), and to the level 1. We
obtain

Since

and by assumption, inequality (5.10) becomes

Adding this inequality for q = p (co), ..., qo-1 yields

To prove the lemma we have only to choose qo = 0) large enough,
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that is,

5.6. LEMMA. Let 0153 as in (5.2). There is a large number q = q(ro) such
that if

then

PROOF. Consider the cylinders QRn and the levels kn defined by

for n &#x3E; 0 with ~:=~(c~0) from the previous lemma, where 0 &#x3E; 0 has to
be chosen. Then Ro = = p- + 2-Qw and kn is decreasing in n. By
the embedding lemma [12; (3.9)] we have

’ meas I

For the integral on the left side we have

and = 2-q-n-2 w. The norm on the right hand side we estimate

by Lemma 5.4. Since = Cr2) with Ji, (12 as in (4.5) this gives

But
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Therefore we get the recursive estimate

Thus assuming and setting

we obtain

From [12: II Lemma 5.6] it follows that y,, --&#x3E; 0 as if

Thus the assumption follows if (5.12) is satisfied. In fact if we use

then (5.12) is just the statement of Lemma 5.5. Therefore the lemma holds

if q(w):= q(w, 0((o)). In a precise way, combining (5.2), (5.7), (5.11), and
(5.13) we get

5.7. END or THE PROOF OF PROPOSITION 3.8. Lemma 5.6 shows that

v &#x3E;p- + 2~Q~°~~~w almost everywhere in We have to choose R* such

that QR contains QR* . By (5.14)

hence Therefore .1~* = is an appropriate choice.

6. - Some generalizations.

We want to show in this section that the local continuity of v still holds
if a(v) is degenerate also at v = 0, but the degeneracy is mild. In a precise
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way instead of (3.2) we assume

where 0  oc  + 2). Then Theorem 3.5 remains valid under the

stronger assumption that

which was established in the proof of Lemma 3.9. The proof of the regu-
larity theorem follows from Propositions 3.7 and 3.8 which are stated

exactly as before. Some modifications occur in the proof of such propositions,
and we limit ourselves here to indicate such changes.

Since Proposition 3.7 essentially involves only values of v near 1, the proof
remains unchanged. We only have to choose cU c 2 (,u+-,~ ) (see (3.18)).
Then and therefore the estimates are unchanged if

To prove 3.8 we have to note that now Vv is not defined near {v = 0},
that is, (3.12) now reads

where In the proof of Lemma 5.2 we now 

test function. Then in the elliptic term where

The integral involving v is now estimated by
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Therefore using the notation

the statement of Lemma 5.2 becomes

Then in the proof of Lemma 5.3 we use the fact that

We also let

Hence the statement of the lemma remains exactly the same if we choose
so that

which is possible provided a  1. Similarly in the proof of Lemma 5.4 we
as test function (now h is again any sufficient small posi-

tive number). The additional v term now is

Since it was assumed that u is in -L°°(0y T; it follows from elliptic
estimates that locally in D

uniformly in t for some y &#x3E; 0. Therefore Lemma 5.4 is now stated with v
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replaced by vh and replaced by and with the additional term

on the right side of the estimate. Moreover the term
c

is now

replaced by because of assumption (6.1). Proceeding in

the proof with Lemma 5.5 we see that if and l

meas meas I

where

We wish to add (6.2) for q = p (c~ ), ... , q,, - 1, where qo has to be chosen.
Therefore we have to use the value h = hence

Repeating the iteration process described in Lemma 5.6 we see that we
have to choose qo so that

and this is possible if 0 or 1/(N + 2).
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