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On the Elliptic Equation Lu - k + K exp [2u] = 0.

CARLOS E. KENIG (*) - WEI-MING NI (*)

1. - Introduction.

Let (M, g) be a Riemannian manifold of dimension 2 and .g be a given
function on M. One may ask the following question: can we find a new
metric gl on .M such that K is the Gaussian curvature of gl and gl is con f ormaZ
to g (i.e. there exists a positive function on .M such that g, = If

one writes (p = exp [2u], then this is equivalent to the problem of solving
the elliptic equation

on M, where are the Laplace-Beltrami operator and the Gaussian
curvature of M in the metric g. This problem has been considered by many
authors. When M is compact, we refer to Kazdan an Warner [KW] for details
and references (see also a recent survey by Kazdan [K]). When M is ~2,
and g is the usual metric, equation (1.1) reduces to

on R2. For equation (1.2), there have been some non-existence results due
to various authors, e.g. Ahlfors [A], Wittich [W], Osserman [Os], Sattinger [S],
Oleinik [O], Ni [N1], etc. The first existence result for equation (1.2) seems
due to Ni [N1] in the case It complements previous non-existence
results. The approach used in [N1] is via the barrier method, i.e. super-
and sub-solutions. Using an entirely different approach, namely, weighted
Sobolev spaces, McOwen [M1] refined some of Ni’s results by obtaining
more precise asymptotic behaviour of the solutions given by his method.

(*) Both authors are partially supported by NSF. The first author is also par-
tially supported by the Alfred P. Sloan Foundation.

Pervenuto alla Redazione il 10 Febbraio 1984 e in forma definitiva il 14 dicem-
bre 1984.
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More recently, Aviles [Av] and Mcowen [M2] used this weighted Sobolev
space approach to obtain some existence results when .K changes sign and
decays at 00.

Returning to the more general equation (1.1), we observe that, under
some appropriate hypothesis on the metric g, equation (1.1 ) may be reduced
to equation (1.1) via the Uniformization Theorem. However, in order to
apply previous results to this reduced equation (1.2), it is essential to

have asymptotic estimates for this conformal diffeomorphism 99 guaranteed
by the Uniformization Theorem. For example, the following estimates

for soine positive constant C and for [x[ I large, would be sufficient. This

kind of estimates have been established by Ahlfors and Bers [AB] under
the condition that the metric gii = ~,2(x) ~i~ outside a compact set in R2
for some &#x3E; 0. We would also like to point out that, in the above reduction,
it is important that k is the Gaussian curvature of (11~2, g). Therefore, from
a differential equations point of viaw, a natural question arises: can we solve
equation (1.1) if k or is perturbed? i.e. what happens to the solvability
of (1.1) if we replace the curvature k by something similar or if 4 - is replaced
by an elliptic operator of divergence form? The Uniformization Theorem

approach does not seem to give an answer.
The purpose of this present paper is to study the solvability of equa-

tion (1.1) as well as to investigate the above question. We shall free our-
selves from geometry and discuss the equation

on R2, where .L = is uniformly elliptic, k, ..g are given locally
bounded functions with appropriate conditions at oo. It turns out we can

extend the results in [N1] to the equation (1.3). We again adapt the barrier
method used in [N2]. However, in the present case, it is much more involved
to construct barriers. The new ingredient that we need is the construction
of entire solutions to the linear equation Lu = f, with sharp asymptotic
behavior at oo. We accomplish this by adapting a technique of Friedman [F].
Incidentally, a refinement of the argument gives the existence of a global
fundamental solution for L, with estimates depending only on the uniform
ellipticity constants of L. While this fact is not needed in the paper, we sketch
its proof in an appendix, since we have been unable to find a proof of it
in the literature, and it may prove useful in the future.
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Once sharp results for the linear equation Lu = f are obtained, we use
a rearrangement inequality of Talenti [T], to be able to construct solutions
to (1.3) under optimal assumptions on K.

In the case when L is degenerate, i.e. (aii) is uniformly elliptic on compact
sets and its eigenvalues behave like Ixlb at oo with 0, this barrier method
also works. In these cases, we employ the theory of degenerate elliptic
equations developed by Fabes, Jerison, Kenig and Serapioni [FKS], [FJK].

Weaker versions of our present results and methods in the case when L
is uniformly elliptic were announced by us in the AMS Summer Meeting
of 1982 at Toronto (in the special session (Nonlinear partial differential
equations in physics and geometry))) August, 1982, and at the 803rd AMS
meeting at New York City (in the special session «Variational problems
in Riemannian geometry), April, 1983 (see [KN2], The methods

and the flavor of this paper are quite close to our previous work on the corres-

ponding problem for prescribing scalar curvatures [KN1].
The organization of this paper is as follows. In section 2, we treat a model

case of (1.3) when L _--_ L1, the standard Laplacian. In section 3, we extend
these results to the case L is uniformly elliptic. In sections 4 and 5, we treat
equation (1.3) in the case when L is degenerate. Finally, in the appendix
we prove the existence of a global fundamental solution for uniformly elliptic
operators, y with precise asymptotic behavior.

In closing, we should mention that L. Karp [K1)] has some results related
to ours.

ACKNOWLEDGEMENT. Part of this research was carried out while the

first author was visiting the Centre for Mathematical Analysis at the Austra-
lian National University, y Canberra, y Australia. The first author wishes

to thank the Centre for its financial support, and its staff for their warm

hospitality during his stay in Canberra.

2. - The special case L - L1.

To make our approach more transparent, we first study the case
i.e. the equation

are given, and we are only interested in entire solutions on 1~2.
In this section, we shall present some existence results using the barrier
method. We also include a non-existence result and an example which

(together) show that our existence result (Theorem 2.2) is sharp.
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THEOREM 2.2. Suppose

at co for some E &#x3E; 0 on R2. and

at oo for some a &#x3E; then for every
R2

equation (2.1) possesses an entire solution u with

(.611 CXJ.

PROOF. We use the super-and sub-solution method (See, e.g. [KN1],
or [Ng]) which is by now well-known. First, we construct a sub-solution. Let

where 6 = a2. An easy computation shows that

Let v. solve more precisely, let

By dividing R2 into the three regions {y E R2: lyc-R2 2[r[ &#x3E;

&#x3E; Iyl &#x3E; and {y  we may estimate v8. It is not hard

to obtain that, at oo
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For simplicity, we set

and then

at oo.

Now, let u2 = v2 -~- C, where O2 is a constant to be chosen later. We
compute

From the estimate of v, and the hypothesis on the behavior of K at oo,
we have

at oo. Since

we always have 12 -~- IT exp [2v2] &#x3E; 0 at oo. For the finite part, since 12 &#x3E; 0

in is bounded below by a positive constant. It is thus possible to choose
C2 to be a large negative constant so that

on R2 . Therefore, u2 = V2 + O2 where C, is a large negative constant is a
subsolution.

Next, we construct a super-solution U, with on R2. Without loss

of generality, we may assume K(0 ) fl 0. Let Be be a ball of radius C) centered
at 0 and contained in the interior of the support of K, and let fi(z) = 
be a radial function, positive in with

outside Be and

(i.e. fi is large and positive in BQ~~).
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Let

Similarly, dv1 = h and at o0

Let ~c1 = vl + C1 where CI is a large positive constant to be chosen later.
We compute, y

Outside B~ , 7 Thus II - k -E- .K exp [2v,] exp [2 C1] c 0 there

since on ll$2. In B~, fi - 15 is (fixed and therefore) bounded while
k- C  0 on B~, y and so

on B~ , 7 thus, 1 we may choose 01 &#x3E; 0 so large that

on B~ . With this choice of Ci , we have

on R2 and u, is a super-solution. Now, comparing c1 andU2 we see that at
infinity, y

It is therefore possible to choose CI &#x3E; 0 even larger to assure that ~c1 &#x3E; Uz
on R2 (the finite part does not create any difficulties at all).

Now, our assertion follows from, e.g. Theorem 5 in or Theorem 2.10

in [N2] .

REMARK 2.3:

(i) Note that there is no sign condition imposed on k, and the constant a
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could be large negative (it depends only on In this case is actuaily
R2

allowed to have polynomial growth at oo.

(ii) The bound on oc is actually best possible by the nonexistence
result below and the example at the end of this section.

(iii) Let

It is easy to see that by setting w = u - v, equation (2.1) reduces to equa-
tion (1.2) and therefore Theorem 2.2 follows from the previous work in [N1].
We prefer our first proof because it generalizes to the more general equation
(1.3) in its present form and thereby our approach is made transparent.
Furthermore, the idea in our first proof may be applied to handle the situa-
tion where k is not integrable (see the remark below and Theorem 2.4).

(iv) Our method is simple, elementary and yet very flexible. For

k, ~ with other asymptotic behavoirs, it is still possible to use this barrier
method to obtain some results; we shall only include one of those results
here, just to illustrate this point.

THEOREM 2.4. Suppose k, K are both negative on 1~2. If there exist constants
C2 , C4 , ~1, 12, 13 all positive, such that

,and

at oo, then, equaction (2.1) possesses act least one entire solution on R2.

PROOF. The proof goes along the same line as that of Theorem 2.2.

First, let 11 be a function positive in the unit ball B1, identically zero outside
Bi and with

where a is an arbitrary number which is bigger than -! max (I + l2, 2 + Z2.
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Let

then 4wi = f 1 and at oo,

Set ul = V, -~-- C5, where 05&#x3E; 0 will be chosen later. Now, compute

At infinity, we have

Thus, at oo,

since 2a - Z2 &#x3E; i . For the finite region, since f 1- k is fixed, and K  0,
we can choose 0 so large that the above inequality

also holds on, say, With this choice of C~, we see that 0,
is a super-solution.

Now, we are ready to construct a sub-solution ~2 with on R2. Let

~2(x) c 0 on l~~ and

for every with

(Note that this is possible since k(x) c- at 00). Set U2 = v2 - 06,
where 06  0 will be chosen later and
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Then, similarly, Llv2 = f 2 and at co,

Therefore, at o0

since 06  0 and 2a - 1:, &#x3E; 2. For the finite region, say ~x~ we can choose

C6 large negative so that

since k  0. Thus, u, is a subsolution if Cg is large negative. Since a &#x3E; 0,
U2 at oo. Thus on R2 (by varying 06 again if necessary) and

our result follows.

The argument we use in proving the following non-existence result goes
back to Wittich [W] and has been used by various authors (see, e.g. [S],
[Ni]). We present here a variant of this technique.

THEOREM 2.5. I f k &#x3E; 0 on R2 

for where 00, e are positive constants, then eq2cation (2.1) possesses
no entire solution on l~2 for .K c 0 on ~2 with

at oo, f or some a  

REMARK 2.6. Following the pointwise conditions on k and K
may be replaced by some appropriate integral conditions. To this end,
we define, as in [N,],

where Sr is the sphere of radius r centered at the origin, and dS denotes
the volume element of Note that k - .K if ~ is radially symmetric
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and use the convention that .9(r) = 0 if

Now, the conclusion of Theorem 2.5 still holds if we replace k by k and
K by k.

PROOF OF THEOREM 2.5. Suppose u is a solution of (2.1) on R2. Set
v = - ~, equation (2.1) becomes

Using Green’s identity, Jensen’s and Schwarz’s inequalities we arrive at
(see p. 350 [Ni] for details)

Relabel this, writing v, k, .g instead of V, k, IK. We have

Making the change of variables r = exp [t], m(t) = v(egp [t]), we get

(2.7) m + exp [2t] k(exp [t] ) exp [2t] K(exp [t] ) exp [- 2m],

where the dot ~ means differentiation with respect to t. Observe that 0,
(since K 0).

Let to = log Ro. Then 
--

ofr t ~ to. From (2.7), we conclude, for t ~ to

Integrating,
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for Integrating again, we obtain

for Denote the constants by

(2.8) reduces to

for all By (2.7) and our assumptions on k,

where ð&#x3E; 0 is a small constant to be chosen later. By (2.9) and our hypo-
thesis on K, we derive the following estimate for t &#x3E; to

if we choose 6 = 2 - oc/JL (Note that ð&#x3E; 0 by the assumption on a). Thus
(2.10) becomes, for t&#x3E;to,

We now proceed to get a contradiction. Multiplying (2.11) by m (which
reverses the inequality) and integrating,

with D = (2 C16) exp [- Notice that exp [- + D
is nondecreasing and is m2(to) (which may be taken to be positive) at t = to .

Integrating (2.12) from to to t, we obtain

for all t ~ to . Letting t we obtain a contradiction.
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EXAMPLE 2.13. Define

where 8 &#x3E; 0 is an arbitrary constant. Then the constant in Theorem 2.2 is

which is precisely the constant that appeared in Theorem 2.5. Thus we learn
that the exponent

is the dividing point for existence and non-existence. We should also remark
that although the function k in (2.14) is not continuous, it is clear that we
can smooth out the discontinuity of k and yet maintain its integral as close
as we want to the original one.

3. - The uniformly elliptic case.

The main goal of this section is to extend the result in § 2 to the equation

on R2, where (we use the summation convention), and the
matrix is symmetric, bounded, measurable, and uniformly elliptic
on R2 . The first difficulty one encounters in trying to generalize the proofs
in section 2 is the existence of global solutions to Lu = f in R2, with precise
asymptotic behavior at oo. In order to do so we adapt a technique due to
Friedman [F]. A refinement of the argument also yields the existence of
a global fundamental solution for L, with estimates which depend only
on the ellipticity constants, for L. This is not actually needed in our paper, y
but, since we have not been able to find a proof of this statement in the litera-
ture, we will include it in an appendix, for future reference.

Using our results on the linear equation Lu = f, we then proceed to solve
(3.1), obtaining a generalization of Theorem 2.2. When L = LJ, our theorem
reduces to the sharp result in Theorem 2.2.
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We assume throughout that

and that, if = then Sometimes we will refer

to I and !~. as the ellipticity constants of Z.

DEFINITION 3.2. Consider the reflection (Kelvin transformation) given
by Solutions u to .Lu(x) = f (x) in Ixl &#x3E; 1 correspond, under
this reflection to solutions to Lv(y) = in 0  jyj  1, where

= = ôz, and

(see [KN1], Lemma 2). Since the matrix (bi,- is unitary, (akZ)
satisfies the same ellipticity estimates as Let g be the Green’s function
for L, with pole at 0, in the ball ~y~  1. Let g(x) = - g(x/lxI2). g(x) will
be called the Green’s function for .L in Ixl &#x3E; 1, with pole at oo. It satisfies

the following properties:

Moreover, there exist constants 01 and O2, which depend only on A and A
(and which can be estimated explicitly in terms of A and A), such that

for For this last property, see [LSW].

THEOREM 3.3. Suppose that f (x) is locally bounded on R2, f is integrable
on R2, II(X) IV  oo, for some p &#x3E; 1. Then, there exists a solu-

1.1&#x3E;1
tion u to Lu = f on R2..M’oreover, the solution u has the asymptotic behavior
u(x) = = 0(l), as 0153 -+ oo, where g(x) is the function for L
in &#x3E; 1, with pole at oo.

PROOF. As mentioned before, we adapt a technique due to Friedman ( [F~ ).
We proceed by steps.

Step 1. Solve
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In order to do so, we solve

Since = for some p &#x3E; 1, by our assump-
tion on f the existence and boundedness of follows from [LSW]. We
then set wi(z) = 

Step 2. Solve

This step is clear by [LSW].

Step 3. Let 81 = {0153 E ll~2 : Ixl = 1 ~. Define an operator W in R)
by the following procedure.

Fix an hEO(81;R),

(To do so, it is enough to solve

(This step is clear by [LSW]).
(iii) Define W (h) = z yx~ =1. Since W(h) is a Holder continuous func-

tion, it is easy to see that W is a compact linear operator. Also 

and W(1) = 1. Thus, 11 W ~~ - 1. Olearly I = 1 is an eigenvalue. Suppose
that h is a corresponding eigenfunction, i.e. W (h) = h, and suppose that h
is non-constant. Then w and z are both non-constant, and = h, while

zlx =1 - f fiax x ax Ih(x)f. This clearly violates the strong
maximum principle. Thus, h must be a constant, and the eigenspace is
1-dimensional. By the Fredholm theory, the corange of I-W has dimension 1,
the kernel of I-W* also has dimension 1, and if E ker(I-W*), C is in
the range of I-W if and only if = 0.
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Step 4. ft(Z2) ~ 0. If not, Z2 is in the range of I-W. Thus we can find h
so that z, + W(h) = h. Define now u(x) on R2 by

Then, u is well defined, since z, + z = w + g for 1  Ixi  2. Moreover,
Lu = 0 in R2. But, w is bounded, and g(x) behaves like loglxl at oo-which
contradicts the minimum principle.

Step 5. Let A _ - Then, there exists h so that Zl +
+ ~W (h) = h. Let w, z be the corresponding solutions in (i), (ii) of step 3.
Define

Then, it is easy to check that u is an entire solution of Lu = f in R2.

Step 6. ~, = If. If we show this equality, since wi and ware bounded
in Ixl &#x3E; 1, the theorem will follow. Let

Then,

Let §5(z) = and change variables. Then,

Set now = q3(x) - 1, so that 1J’(x) E Then

Thus,

and our assertion follows.
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Before we proceed to apply Theorem 3.3 to equation (3.1), we need a shapr
estimate on the function g(x) defined in 3.2.

Assume that Then, we have

LEMMA 3.4. For with 0  ~  4n, we have that

PROOF. We first note that the result is sharp, since when (aii(x») = I,
g(x) = 1/2n log Ixl. By reflection, we have to show that

and L is given by a matrix akl, with Pick 

radial, and = 1. Let = Let Ve solve

The results of [LSW] show that vE converges to (- g) as E -&#x3E; 0 uniformly
on compact subsets {0}. Therefore, we have, by Fatou’s lemma

We are therefore reduced to studying f exp as s- 0. We will
pi

appeal to the results and notations of [T]. Note that, by the minimum
principle, Let now v~ (y) be the spherically symmetric decreasing
rearrangement of vE, i.e. the function from into [0, + oo), whose
level sets y ~  1, va ( y) &#x3E; t~ are concentric discs with the same measure
as the level sets ~y : v~( y) &#x3E; t~, and such that v~ (y) = 0 for = 1.
Clearly, we have

The main result in [T] shows that v:(y)  pointwise, where solves
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Therefore,

since # &#x3E; 0. We claim that

In fact,

and qg is radial. Therefore, by the superharmonicity of (l/2jr) log zi)
as a function of z, this is smaller than log The lemma now

since follows

COROLLARY 3.5. If ~, ~~ ~ 2 c ai j (x) ~i ~; , then for every fl, with 0  A4n, r

PROOF. Let LA = 8;, and g~ the Green’s function for L).
with pole at oo then g(x) = The corollary now follows from 3.4.

We now proceed to apply the results in Theorem 3.3 and Corollary 3.5
to study equation (3.1).

THEOREM 3.6. If

at 00, for some positive constants s, C, and K  0 on R2, with

at 00 for some A &#x3E; 0 and



208

then for every a, 0 C a  ~4y~ ~ C 2 [4~~, - 2 f 1~ - a], equation (3.1 ) possesses
an entire solution u, with

PROOF. We follow the outline of the proof of Theorem 2.2. First we

construct a subsolution. Set

By Corollary 3.5, dz  oo. Moreover, y there exists p &#x3E; 1 such that

Choose now 6 = 6(a) &#x3E; 0 so a/2. Let now f 2(x) = 
Let v2(x) be the solution given in Theorem 3.3 to LV2 = k + /~. By Theo-
rem 3.3, and our choice of f~ , we have v2(x) = (f k + a/2 ) g(x) + ~(1) at o.
For simplicity, y set k = f k. Let ~c2(x) = v2(x) + A2, where the constant
A2  0 is to be chosen later. We compute, y at oo,

Since g(x) - oo as -&#x3E; oo, this last expression will be &#x3E; 0 at oo, provided
4nh - a - 2k - 2ac &#x3E; 0, or ac C 2 [4n2 - 2k - a]. This holds by our assump-
tions on a and a. For the finite part, f 2 is bounded from below by a positive
constant. It is thus possible to choose A2 to be a large negative constant
so that

on R2 . Therefore, u, is a subsolution.
Next, we construct a super-solution ui with on ll~2. Without loss

of generality, we may assume (otherwise (3.1) reduces to a linear
equation, which can be solved using Theorem 3.3), and that .K(o) ~ p. Sup-



209

pose that Let = be a radial

function, positive in B (!/2’ with

outside 9 and

Let v1(x) be the solution to LVI = f 1 on R2, given by Theorem 3.3. At oo
= (k + + 0(1 ). Let ui = wi + where A1 is a large positive

constant to be chosen later. We compute, y

Outside Be, fi - Thus, f, - k -~- .K exp [2v,] exp [2A,]  0 there,
since .K c 0 on R2. In Be, tl - k is bounded, while .K c - C  0 on B~, I
and so

Thus, we may choose A, &#x3E; 0 so large that

With this choice of we have

and ui is a supersolution. Now, comparing u, and u2, we see that at infinity, y

It is therefore possible to choose A, &#x3E; 0 even larger to assure that ul &#x3E; U2

on R2 (the finite part does not create any difficulties at all). The Theorem
now follows from Theorem 5 in [KNI].

REMARK 3.9. When

Let f3 == 2 - (aj2n) , if and only if a  4n - Thus, in this



210

case, (3.8) reduces to the condition in Theorem 2.2. Hence, Theorem 3.6
is sharp.

REMARK 3.10. Recall that I for where

Ci and O2 depend only on A, and can be explicitly estimated in terms
of A, A. Then, if 4~~, - 2 f k ~ 0, a sufficient condition for (3.7) to hold is
that at 00, for some On the other

hand, if 4nh - 2 f k  0, a sufficient condition for (3.7) to hold is that I
at oo, for some 

REMARK 3.11. Remark 2.3 and Theorem 2.4 can be carried out in this

more general setting in an almost word by word fashion. The details are

omitted.

REMARK 3.12. It is easy to apply Theorem 3.6 to the geometric equation
(1.1) to obtain existence results. The details are left to the interested readers.

4. - The degenierate case b  0.

We now consider operators L = aj) where is a uniformly
elliptic matrix on compact sets, and whose eigenvalues behave like at o0

for some b  0.

We shall follow the approach used in § 3. The only real modification
is the appeal to the results in [FKS], [FJK] on degenerate elliptic equations.
Because of the similarity of the arguments with those used in § 3, we shall
be sketchy, concentrating on the main differences.

Following the approach in § 3, we first consider the problem of finding
solutions to

where

We start out constructing a Green’s function g(x), with pole at o.

LEMMA 4.1. There exists a Green’s function gtx) for L on [x [ &#x3E; 1, with
pole at 00. g satisfies

and for lxl &#x3E; 2, where C,, O2 depend only on the eigen-
values of the uniformty elliptic matrix for &#x3E; 2.



211

PROOF. g will be constructed by reflection. Let L be the operator with
matrix

where

The size of the eigenvalues is lyl-b, with - b &#x3E; 0, as y - 0. There-
fore, the results in [FKS], [FJK] apply to L. Let g(y) be the Green’s function
for L in Iyl C 1, with pole at the origin. The existence of g is guaranteed
by the results in [FJK]. Also, by [FJK], for Iyl  ~

where w(B(o, s)) = f Izl-bdz ~ S2-b. Hence, - g(y) ~ Iylb for Iyl I  -1. Set
Izls

now g(x) _ - g(x/~x~2). Then, g(x) satisfies all the required properties

THEOREM 4.2. Suppose that i is locally bounded on R2, and that If(x) I
 a = 2 + e, 8 &#x3E; 0 at 00. Then, there exists a solution u to .Lu = f
on R2. Moreover, the solution u has the asymptotic behavior = ( f f ) g(x)
+ o(g(x) ~ as x -~ c&#x3E;o, where g(x) is the function constructed in Lemma 4.1.

PROOF. We proceed by steps, paralleling Theorem 3.3.

Step 1. Solve

with at 00.

We do this once more by reflection. Let l1h solve

Since
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Lemma 2.7 in [FJK] implies that WI(Y) exists and is given by

where h(y) = As in the proof of Theorem 1 in we

estimate as follows. Write

the second term is bounded, and we only have to bound the first one for
°

We first give pointwise estimates for g(z, y) for Iyl  2, Izl  i. Let

~(~) == s)) === f It is easy to check that

Moreover, by Theorem 3.3 of [FJK],

whenever  d/2, d = I1 - We then see that

We can now estimate the first term in (4.3). Write

In the region where [y]  ~/2, ~z- y~ ~ so we get
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In the region where ]z] ~ Iyl I and iz - thus.

In the region where ly I &#x3E; 2 z , ly 1, and hence

provided E C - b. We now set Zul(x) = 

Step 2. Solve

Step 3. Define an operator W on R) by the following procedure:
Fix an h E R)

(i) Solve

(This can be done by reflection, using the results in [FJK]).
(ii) Solve

(iii) Define -W(h) = 

W is compact, 1, W(I) = 1, 1 is the only eigenvalue of W, the
corresponding eigenspace is one dimensional and consists only of constants.
If E ker(I - W*), ~ is in the range of I - W if and only if h(C) = 0.

Step 4. A(z,) ~ 0. The proof is the same as step 4 in Theorem 3.3, since
g(x) - 00 at 00.
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Step 5. Let Pick h so that

w, z be the corresponding solutions in (i), (ii) of step 3. Define

Then, Lit = f. 
’ ’ ’

Step 6. A = If. If we show this equality, since w, = 0(g(x) ) by Lemma 4.1,
and step 1, and w is bounded, the theorem will follow. The equality 2 = f f
is proved in the same way as in Step 6 of Theorem 3.3.

We can now solve the nonlinear equation

where E = and is uniformly elliptic on compact sets, and its
eigenvalues behave like at oo, b  0.

THEOREM 4.5. If

KO on R2 and

then, for every a &#x3E; 0, with a C min ~- b, s~, a C (lj4n) (0153 - 2 f k), equation (4.4)
possesses an entire solution u on R2, with

PROOF. We follow the proof of Theorem 3.6. First we construct a sub-

solution. Let

where a  min {- b, ~~. Since = 2na, if v,, is the solution of Lv2 = k + f2
constructed in Theorem 4.2, then at oo, v2(x) = + + 
Set U2 = V2 + A.2, y where the constant A2  0 is to be chosen later. We

see that
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At oo, we have

Since a  (rt- 2 f k ), the number - a + 2fk + 4na + o (1 ) remains
smaller than a fixed negative constant for x large. Thus, as g(x) ,. 
for x large, f2(x) + K exp [2v2] exp [2A2] 0 for x large. On the finite part,
since C &#x3E; 0, we just have to choose A2  0, with IA21large, to guarantee
this inequality. We have thus constructed a subsolution u2, with

Next we shall construct a super-solution U.1 &#x3E; U2 - Without loss of generality,
we can assume (Otherwise we are done by Theorem 4.2). As before,
let int (supp K), and let f1(X) satisfy

Let now v, be the solution to Ev, = fi given by Theorem 4.2. At oo, vl(x)
= ( f k + 4na) g(x) + o(g(x) ). Set u:, = VI + Au A.1 &#x3E; 0, a constant to be
chosen later.

In so In Be , 7
is bounded, .K c- C  0. It is therefore possible to choose 0

so large that + g exp [2wi] exp [2A,l  0. Thus, ul is a supersolution.
Furthermore, at oo, vl(x) = ( f k + + o(g(x) ), while = ( f k
+ + o(g(x) ), thus at 00. It is thus possible to choose

0, even larger so that on R 2. Now, standard results (see
Theorem 5 in [KN1]) imply the existence of a solution u of equation (4.4),
with 

REMARK 4.7. We have actually shown that (4.4) has infinitely many
solutions.
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REMARK 4.8. Since f or Ix &#x3E; 2, if a suff i-

cient condition for (4.6) to hold is that

for some a &#x3E; 2 f k, while if  0, a sufficient condition for (4.6) to hold
is that

for some 

5. - The degenerate case b &#x3E; 0.

In this section, we consider operators L = a~) with the opposite
asymptotic behavior as that in the previous section, namely, (au) is uniformly
elliptic on compact sets and its eigenvalues behave like at oo for some

b &#x3E; 0. This case turns out to be similar to our previous paper although
it actually has a mixed flavour of two dimensional and higher dimensional
results.

We shall follow closely the treatment in 

LEMMA 5.1. There exists a f unction with EG = 0

in G(x) ,. at 00.

PROOF. Extend aii(x) to all of R2 in such a way that the eigenvalues
of are - in all of R2. Let the results of [FJK] and [FKS]
apply. Let Gk(x) be the Green function for Lon Ixl C k with pole at the origin,
an easy rescaling argument shows thet Gk(ky) = where Gk(y) is the

Green function, with pole at 0 in  1, of

Let = The eigenvalues of Lk are -- By Theorem 3.3

in [FJK],

for C 2 , where
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and hence

for I  -1. But then,

for 0  Ixl C k/2, independently of k. The lemma follows as in Lemma 1

in [KN1].

LEMMA 5.2. If w is a positive solution of = 0 on Ixi &#x3E; 1, then u solves

iff v(y) = u(x(y))/w(x(y)) solves

where y = y(x) = XIBXB2, X = x(y) = YllyB2, J(x) = IXJ-4 and

The proof is a simple change of variables.

THEOREM 5.6. Assume that

at c&#x3E;o, then there exists a unique bounded solution of (5.3) with

PROOF. Let = G(x), where is given by Lemma 5.1. Set

then Let L = the eigenvalues of (akz(Y») are
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of the order

Let g(z, y) be the Green function for Z in |y|  1 and

then v(z) solves (5.4) by [FJK], and the last equality defines V1(Z) and v2(z).
As in step 1 of the previous section, we can estimate vl v2 since the behavior
of g(z, y) is similar to g there, y

Imitating the proof in Step 1 in § 4, we obtain that V2 is bounded and

thus

THEOREM 5.9. Given a continuous function h on lxl = 1, there exists a

unique bounded solution u of

with

at 00.

PROOF. The proof is almost identical with that of Theorem 5.6, thus
we omit it here.

THEOREM 5.12. Assume that f satisfies (5.7) at oo with b &#x3E; 8 &#x3E; 0. Then

there exists a bounded solution of .Lu = f with the asymptotic behavior (5.8)
at oo.

PROOF. The proof is almost identical with that of Theorem 3 in 
the condition b &#x3E; 8 &#x3E; 0 implies that (5.11) decays faster than (5.8).
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We now can use Theorem 5.12 to show that the nonlinear equation

has infinitely many solutions on R2. Our main result is the following

THEOREM 5.14. I f there exist an 8 such that b &#x3E; 8 &#x3E; 0 and such that,
f or Ixl large

for sorrae constant C &#x3E; 0, and K c 0 on R2, equations (5.13) possesses in f initety
many bounded solutions on R 2.

PROOF. Let

By Theorem 5.12, there exist VI’ v, solving = 1~ - f, Lv2 = k + f respecti-
vely and with

at oo. Set ul = v, + Cl ; then

on R2, for any constant Ci . Set U2 = V2 + C2, then

Since k satisfies (5.15) and v, is bounded (and fixed), we can choose O2  0

with C2 ( large to ensure

Thus, with this choice of C2, u2 is a subsolutions. Set now Ci = 0 and choose
O2  0, [ C2 I large so that U2 = V2 + C2 is a subsolution and (since
both vl, v. are bounded). We then obtain a solution of (5.13) with 
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For our second solution, we choose Ci  0, with so large that Vi
+ Ci + C2 , and C2  0 with O2 [ so large that u2 = v2 -~- C2 
Then there exists u’ such that and u’ is a solution of (5.13) on
R2. It is clear that u &#x3E; u’, they are thus distinct. In this way, we obtain
infinitely many bounded solutions of (5.13).

Appendix. - On the existence of global fundamental solutions for uniformly
elliptic operators.

In this appendix we indicate how to modify the arguments in Section 3,
to obtain the existence of a global fundamental solution in R2 for uniformly
elliptic operators .L = aj), where

and such that A (x) = satisfies 

DEFINITION A-I. A f unction F(x) is called a fundamental solution for
L, with pole at the origin if

(i) E FE for allp  2, and, for every g E C~(R2),

(ii) log Ixl I as 0153 ~ o, for some C &#x3E; 0 .

It is easy to see that if and .F2(x) are two fundamental solutions for .L
then .F’’1(x) - .F’2(x) i C. Let g(x) be the function defined in 3.2. We then
have :

THEOREM A-2. There exists a unique fundamental solution .I’ for L, 
pole at the origin, with the property that F(x) - g(x) = xl-+ 00
there exist constants C,, O2, C3, 04, 7 RI  19 .R2 &#x3E; 1, which depend only on
27 A (and which can be explicitly estimated in terms of A and A), such that

PROOF. The uniqueness of F follows from the remark after A.l. For

the existence, we follow the proof of Theorem 3.3.



221

Step 1. With I~o large, to be chosen later depending only on 2, A, let
Zl solve

and let z2 solve

Step 2. Define a linear operator W on C(S’, R) as in Step 3 of Theorem 3.3,
but replacing Ixi = 2 by lxl = Ro . W satisfies all the properties mentioned
in Step 3 of 3.3.

Step 3. h(Z2) ~ 0. This follows as in Step 4 of 3.3.

Step 4. Let A = - Then, there exists h so that z, -+- ÀZ2
+ W (h) = h. Define now

It is easy to see that F1 is a fundamental solution. Note that the function h
that we found above is only unique modulo constants.

Step 5. 2 = 1. This is the same as step 6 in 3.3.

Step 6. We now show that if h in Step 4 is chosen so that w(x) -~ 0 at oo,
and .Ro is large, then the unique F(x) thus obtained satisfies al the required
properties.

In order to do so, we define a new linear operator V on R), in the
following way: let h E R), and let w be as in i) of step 2. Let v(y)
= iv(y) - f h d,u, where is the unique probability measure on S’ with the
property that 16(0) = Thus, Lv = 0, and v(o) = 0. By the DeGiorgi-
Nash-Moser estimates, C where C, 6 depend only on Â, A.
Now, let B,, be chosen so that sup [v(y) [ c ( 2 ) ~~ h ~~ ~. Let now 
so that 

2

Note that sup Let now ~ solve
1111 = Ro 

2



222

and define Clearly, and The

equation in h, 0 + Vh = h has a unique solution for each 0, and 11 h ~~ ~ ~ 2 110 
We are now in a position to show that, if A is as in Step 2, 0. Suppose
not. Then, we can find hx so that 1 -f- W (h1) = h1. Let now 0 be an arbitrary
element in C(S1). Pick h such that 0 + V(h) = h, or 0 -~- -VV(h) - = h.

Now, = (fh du) (hi - = hl) . Thus, 8

+ W(h) - h, + = h or 0 + W(h + = h

which is a contradiction for 8 ~ range (I - W). With A as

in step 4, i.e. ~, = 1 by step 5, let 0 be the unique solution of zi -~- ÀZ2
-~- Y(8) = 0. Note that ~~2~i+~L’ We claim that f 8d,u = 0.
In fact, zi + ÀZ2 + W(O) - j0 dp = 0, or z1 -f- ÀZ2 - = 0 - W(O). Oper-
ator on both sides of this equality with 1’b. By our choice of A, lli(zi -~- Àz2) = 0.
By the definition of W(0)) = 0. Thus, = = 0.

Since 0, our claim follows. Thus, 0 in fact is a solution to ZI -~- ÀZ2
+ W(O) = 0. This solution has the following additional properties: if w is
as in ii) of step 2, w(x) -+ 0 oo. Let now

Then clearly .F(.r) is the fundamental solution with lim.F(.r)2013y(.r)=0.
We now prove that it satisfies all the required bounds. We recall that A = 1.

For Ixl  Ro, = z,(x) + z,(x) + -(x);

It is known (see [LSW]) that z, is negative, and B log 
log f or Ixl  ~1, where A, B, depend only on ellipticity. Similar

bounds hold for g, and so c C, for lxl  Ro, where C depends only
on ellipticity. From these estimates, the required bounds near the origin
for follow. At oo, note that max Iw(x)1 c C, where C dependsmx &#x3E; i z = i

only on ellipticity, y and that I for |x | &#x3E; 2, where
D, E depend only on ellipticity. The Theorem follows.

We are now ready to define the fundamental solution for L, with an arbi-
trary pole.

DEFINITION A.3. For z E R2, the function z) = z) is called

the fundamental solution for L, with pole at z. Here, Fx(y) is the fundamental
solution with pole at the origin, given by Theorem A.2 for the operator Zx,
with coefficient matrix + z)).
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THEOREM A.4. F(x, z) is continuous in z, for z =I=- 

PROOF. The estimates are an immediate consequence of the definition
and Theorem A.2. The continuity is a tedious exercise in elliptic equations.

REMARK A.5. If at o, and = fF(x, z) (z) dz, it is

easy to see that Zu = f in R2.

Note added in proof.

The sharp asymptotic behavior of the conformal diffeomorphism in the classical
Uniformization Theorem is recently obtained in the following paper (for uniformly
elliptic metrics) :

LIN, FANG-HUA and Ni, WEI-MING, On the least growth of harmonic functions
and the boundary behavior of Riemann mappings, Comm. PDE, 10 ( 1985), pp. 767-786.

Using results there, we observe that the Uniformization Theorem approach to
solving equation (1.1) (mentioned in the Introduction of our present paper) does
not seem to give the optimal results for the nonlinear equation (1.1) while our
present paper does.
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