
ANNALI DELLA

SCUOLA NORMALE SUPERIORE DI PISA
Classe di Scienze

JONG UHN KIM
Global existence of solutions of the equations of one-dimensional
thermoviscoelasticity with initial data in BV and L1

Annali della Scuola Normale Superiore di Pisa, Classe di Scienze 4e série, tome 10,
no 3 (1983), p. 357-427
<http://www.numdam.org/item?id=ASNSP_1983_4_10_3_357_0>

© Scuola Normale Superiore, Pisa, 1983, tous droits réservés.

L’accès aux archives de la revue « Annali della Scuola Normale Superiore di Pisa, Classe
di Scienze » (http://www.sns.it/it/edizioni/riviste/annaliscienze/) implique l’accord avec
les conditions générales d’utilisation (http://www.numdam.org/conditions). Toute utilisa-
tion commerciale ou impression systématique est constitutive d’une infraction pénale.
Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=ASNSP_1983_4_10_3_357_0
http://www.sns.it/it/edizioni/riviste/annaliscienze/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


Global Existence of Solutions of the Equations
of One-Dimensional Thermoviscoelasticity

with Initial Data in BV and L1 (*).

JONG UHN KIM

0. - Introduction.

The purpose of this paper is to establish existence of global solutions
in B Y for the Cauchy problem associated with the equations of one-dimen-
sional nonlinear thermoviscoelasticity:

with initial conditions

where u, v, 0, p and i denote deformation gradient, velocity, temperature,
stress and internal energy, respectively, and the conventional notations
for partial derivatives are employed. Equations (0.1) are the conservation
laws in Lagrangian form of mass, linear momentum and energy. From

(*) Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.
This material is based upon work supported by the National Science Foundation
under Grant No. MCS-7927062, Mod. 1.

Pervenuto alla Redazione il 10 Luglio 1982.



358

physical considerations, y we should require the following conditions:

For a detailed account of the physical meaning of (0.1), (0.3), the reader
is referred to [3], [4].

Now let us discuss briefly the significance of our problem. Equations (0.1)
have both mechanical and thermal dissipations which preserve the smooth-
ness of initial data. This fact was shown in [3], [4], which treated equations
more general than (0.1). Slemrod [7] proved that the thermal dissipation
alone is enough to establish the existence of global smooth solutions for
initial-boundary value problem with small, smooth initial data. Without

dissipation terms (0.1) reduces to the hyperbolic conservation laws:

which are certainly incapable of smoothing out rough initial data. Never-

theless, the Cauchy problem for (0.4) has global solutions of class BV when
the initial data have small variation [5]. We are naturally led to believe
that the same is true of any new system of equations obtained from (0.4)
by adding dissipation terms [2]. This conjecture has not been verified.

In this note, we shall give an affirmative answer with some reasonable
assumptions. The main result is Theorem 2.1.

Next we shall give a sketch of our method. For convenience, we intro-
duce new variables u(t, x) 2013 ~ 0(t, x) - Õ, which we shall still call by u(t, x)
and 0(t, x), where u and 0 are positive constants and (u, 0, Õ) is regarded
as the given equilibrium state. At the same time, we define

Then (0.1), (0.2) are equivalent to
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with initial conditions

while (0.3) is equivalent to

In addition to these physical assumptions, we assume

(0.10) p(u, 0), e,(u, 0) are analytic functions of (u, 0) in a neighborhood
of (0, 0) with p(0, 0) = 0 and pe(0, 0) ~ 0 .

Assuming u, v and 0 are sufficiently smooth, (0.6) combined with (0.9) is
equivalent to

The linearized equations associated with (0.11) are

where a, b, c, d are constants. Now we are in a position to summarize our
strategy. First, by the method of Fourier transform, we analyze solutions
to (0.12), (0.7), assuming (uo, vo, (0) E (LI r1 BV)3. Then we collect all

information on the regularity and the asymptotic behavior of solutions to
this linear problem. Based on this information, we construct a suitable
function space and also a contraction mapping via variation of constants
formula so that the fixed point may be solution to (0.11), (0.7). Finally,
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we verify that this solution is also a solution to (0.6), (0.7), (0.8) in the
same function space. In fact, this approach was used in [6].

As a final remark, our method does not seem to work in the case
(uo, vo, 00) E (B V) 3 only, rather than (uo, vo, 00) E (Ll r1 BV)3.

Notation. We use the following notations throughout this paper.

For

(2) For we write We adopt the conven-
tional notation for other EP-norms.

(3) Co(R) is the space of continuous functions tending to zero at infinity
and its dual is denoted by

JC: the Banach space of all finite measures .

(4) For f e fl, = total variation of f as a measure. Since Ll is

isometrically embedded into there is no ambiguity in notation.

(5) stands for the Friedrichs mollifier.

(6) Convolution is taken with respect to x variable alone unless spe-
cified otherwise, and we write

(7) Yx means the Fourier transform with respect to x and
means the inverse Fourier transform with respect to ~. We write,
and

(8) D*(Q) stands for the space of all distributions in Q, where Q
is an open subset of R~. When X is a Banach space, 0*((0, oo); X) denotes
the space of .X-valued distributions in (0, oo).
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is the space of all function f in for which the norm

is finite, y wherE (see [8]).

For f we write

(11) The same latter M will be used for different constants which

are independent of t. Its independence of other constants will be indicated
whenever necessary.

(12) is the space of all function f in such that df /dx e 

1. - Linearized equations.

As stated in the introduction, we shall use the method of Fourier trans-
form to estimate the fundamental solution of the linear equations:

where

and

Applying the Fourier transform with respect to x, (1.1) yields

where

and
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Denote exp by and , by We call each

entry of the matrix by Our principal objective
in this section is to analyze x). Since it is not easy to obtain the explicit
formula for G(t, ~), we shall use the Dunford integral to express G(t, ~) :

where r is a contour encircling all the spectrum of ui(8) in the complex
plane. This is useful because we know the explicit formula for the integrand.
Let us define

Then is the matrix:

where

(1.3) implies

for i
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It is interesting to see that

which are obvious from the expressions for Ci;’s, and that

holds in

Before estimating Ll-norm or total variation of each Gi~ and its deriva-
tives, we shall explain the general strategy of estimation. First, u e analyze
the roots of the polynomial equation p(~, A) = 0, which are the poles of Co.
Second, noting that the value of integral in (1.5) is simply the sum of residues
of Ca3 exp at each pole, we obtain the residues in the form of infinite
series in ~. Finally, we use the following, fact to obtain an estimate of
LI-norm of a function.

LEMMA 1.1. Suppose Then for

and

hold for all

PROOF. The result follows from the inequality

and Holder’s inequality.
According to the theory of algebraic functions [1], the roots of algebraic

equations are expressed by the Puiseux series in the parameter in a neigh-
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borhood of the multiple root. But for the equation p(~, Â) = 0, it is easy
to see that the Puiseux series reduce to the Laurent series in $ for 1$1 large
and to the Taylor series in $ for l~ I small.

LEMMA 1.2. There exist positive such that the roots of
zre given by

if and

i f where the standard symbol 0(.) denotes the remainder of the Taylor
or Laurent series.

We omit the proof which can be given by direct computation.

REMARK 1.3. In stating above lemma, it was implicitly assumed that
c =1= 1. The analysis for the case c = 1 may be a little different from the
technical viewpoint. But the estimates for Gij(t, x) are the same and we
assume c ~ 1 throughout this paper.

LEMMA 1.4. are analytic f unct2ons o f ~ for each
and they can be expressed in the following forms : If
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and if
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where e is taken so small and ’Y) so large that

and the size of each 0(.) is only ac small fraction of its preceding term.

PROOF. Using Lemma 1.2, we can directly compute the residues of

Cijexp[2t] to obtain the result.
Now we fix e and ’YJ such that the statement in Lemma 1.4 holds true.

Then we have

LEMMA 1.5. The roots of P(~, Â) = 0 belong to a compact subset of
f or all ~ E R with

PROOF. Suppose this were not true. From the expressions for Ails and
l,’s in Lemma 1.2, it follows that there should exist [e, 1]] such that
P(~o, ifl) = 0 for a E R. But this is impossible, since

cannot be zero for and

From this lemma, it is easily seen that and its derivatives are

uniformly bounded analytic functions of (t, ~) in (0, oo) X (e, r¡). Further-

more, they decay to zero exponentially fast as time tends to infinity.
Now we begin to analyze each x) in the Li-setting. Let us define

LEMMA 1.6.

and the following estimates hold:

tor all

tor all

for all

where M is ac constant independent of t.
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PROOF. First we shall obtain estimates for the case Define

Then, using Lemmas 1.4, 1.5 ,we obtain

for all

f or all

By (1.9) with and (1.8) with

hold for all t ~ 1. By the dominated convergence theorem,

as for Therefore and

Next we define

Then it is easily seen that

for all

Hence, by (1.9) with we obtain

for all
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By the same argument as above, y In the mean

time, it is known that

for

for all integer
and

for all integer

where depends only on m and r. Thus

and (1.17), (1.18), (1.19)
hold for all t &#x3E; 1 by taking large .lVl if necessary. Next we analyze H1(t, x)
for 0 c t c 1. From the estimates

for

for

we obtain

for all

and

for all

by (1.8), (1.9) with It is easy to see that

and

by the dominated convergence theorem. Since 0(t, ~) is the principal matrix
s olution of (1.2), 1 I for each ~. Hence,. for each ~,
from which it follows that Finally, we
define

Then we find that

for



370

from which it follows that

for all

by (1.9) with L’) follows from the same
argument as before. Therefore, and (1.19) holds
for all 0  (with larger If if necessary).

Let us define

where 6(x) is the Dirac delta measure. Then, we have

LEMMA 1. 7 .

and

f or all

f or all

f or all

PROOF. First, we define

and

Then, we can easily derive the following estimates:

for all

for all

for all
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With these estimates, we can prove (1.39), (1.40) and (1.41), for 

analogously to the proof of Lemma 1.6. Next the following estimates

for all

for all

for all

will yield (1.39), for 0 c t ~ 1, and (1.40), (1.41), for 0 C t c 1 (with larger M
if necessary) . The continuity in t can be proved by the dominated conver-
gence theorem and ?i2(0y x) = 0 in .L1 follows from the property of 0(t, ~)
as before.

We define

Then we have

LEMMA 1.8.

and

f or all

for all

for all

for all

PROOF. We start by defining

and
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We obtain the following estimates:

for all

for all

for all

for all v

Combining these inequalities with (1.8), (1.9), we obtain (1.51) to (1.54),
for To consider the case 1, we list:

for all

f or all

for all

for all

From these inequalities, we derive (1.51), (1.52), for and (1.53),
(1.54), for 0  t 1. The remaining assertions can be verified by the same
method as in the proof of previous lemmas.

We define

and state

LEMMA 1.9.

and

f or all

for all

for all

Moreover, for each in as
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PROOF. To consider the case we define

and

Then, we have

for all

for all

for all

Combining these inequalities with (1.8), (1.9), (1.30), we derive (1.66), (1.67),
(1.68) for For the case we define

and

Then the following estimates

for all

for all

for all

are combined with (1.8), (1.9), (1.30) to yield (1.66), (1.67), (1.68) for

0 C t c 1. In particular, H14(t, x) - 0 in Ll(R) as t - 0, from which the
last assertion of the lemma follows.
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LEMMA 1.10.

and

f or all

tor all

for all

for all

PROOF. We define

for all

for

for

for

Then, proceeding as in previous lemmas, we can derive (1.79) to (1.82)
from the following inequalities:

for all

for all

for all
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for all

for all

for all

for all

for all

LEMMA 1.11. and

for all

f or all

Moreover, for each in as and if
it holds that with

and

f or all t &#x3E; O.

PROOF. We define
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Then, we obtain the estimates:

for all

for all

for all

for all t

for all (

for all

for all

f or all

Using these inequalities and (1.8), (1.9) with suitable T &#x3E; 0, we arrive at
(1.95). Combining (1.8), (1.9) with

for all

for all

where r &#x3E; 0, 0  ~  1, and Mpri. depend only on ~8, r, A, we get (1.97)
and (1.98). The continuity in t can be verified in the same way as before
and (1.96) is an immediate consequence of the first statement of the lemma.

With the aid of Lemmas 1.6 to 1.11, we can discuss the properties of
solutions to (1.1), (0.7). First of all, we need to observe:
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LEMMA 1.12. I f I then there is a solution to (1.1),
(0.7) in the form

which is the unique solution within the function class of for
any

PROOF. On account of the properties of G(t, x) stated in Lemmas 1.6
to 1.11, the right-hand side of (1.111) belongs to [0([0,00); Li)]3 and
satisfies (0.7). By taking the Fourier transform of (1.111), it is easily seen
that (1.111) is a solution to (1.1) in the sense of distribution. The unique-
ness can be verified by the standard argument which proceeds as follows:
suppose is a solution of (1.1)
with the zero initial condition. Since the Fourier transformation is a con-

tinuous mapping from to C,,(R),

and satisfies (1.2) in D*((0, T) X R) . Hence, for each s &#x3E; 0 and each E R,
it holds that

for all q E 0;’((0, T)), from wihch it follows that, by passing to the limit,

holds for each figed E R in 0*((0, T)), hence in the classical sense. There-

fore, for all and

Now we state the regularity and the asymptotic behaviour of solutions
to (1.1), (0.7):

THEOREM 1.13. Let

be the unique solution to (1.1), (0.7) in Lemma 1.12..Let
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and fix any integer m &#x3E; 2 and any real number
Then, we have :

and

f or all

for all

for all

for all

for all

for all

for all

and

f or all

for all

for all

for all

and

f or all

for all

for all
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f or all

for all

for all

All the acbove .lVl’s are constants independent of ¡.t and t.

PROOF. By defining

we can easily verify the properties (i) with the aid of Lemmas 1.6 to

1.8. Also, by virtue of (1.1), (1.111) and Lemmas 1.7 to 1.11, it is easy 
to

derive all the other properties except (1.129) and the continuity of a,,,,O(t, x)
in A’,’. Similarly we can prove

for all

and a sharp version of (1.127):

for all

Now the proof is completed by combining (1.131), (1.132) with the following

lemma.

LEMMA 1.14. 

and f or all i

Then, and

holds for all t &#x3E; 0, where 0 C  1 and the congtants M are independent of t.

PROOF. We need the following fact: for each cp E L1 n B V,
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holds for 0. Indeed, if q BV, there is a sequence
such that in Ll and for all n ~ 1, from

which it follows that

Now, if

and if

Considering the case 0  t c 1 and the case I  t, separately, (1.133) is easily
obtained from (1.134), (1.135). Next we observe that, (1.134), (1.135) also
imply that

holds for all 99 E Ll r1 B V, from which we deduce that

REMARK 1,1~. In fact, some of the estimates stated in Theorem 1.13
are not sharp ( e. g. , compare (1.127) and (1.132)). They are, however, in
such weak form as to be applied directly to the nonlinear problem.

2. - Nonlinear problem.

In this section we will establish our main result:

THEOREM 2.1. Assume ~(0.9) and (0.10). Then, there exists a positive
number 6 such that if and

there is a global solution

to (0.6), (0.7), satisfying the properties ( i ) to ( iv) (with different
constants if stated in Theorem 1.13.
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The proof of this theorem will be split into three steps. First, we con-
struct a suitable function space x with the properties which were found
for the linear problem. Second, we define a mapping T from X into itself
so that the fixed point of T may be a solution of (0.11). Finally, we prove
that the mapping T is a contraction and that the solution to (0.11), (0.7)
is also the solution to (0.6), (0.7).

(Step I).

We construct X as follows: Let X be the set of all quadruplet (,w(t, x),
z(t, x), v(t, x), 0(t, x)) satisfying the properties (A) to (E):

with

for all

for all

for all

for all

where m, a are the numbers fixed in Theorem 1.13, K is a constant inde-
pendent of t and will be determined after we can collect all the conditions
on K.

with

for all

for all

for all

with

for all

for all

for all

for all
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with

for all

for all

for all

for all

for all

for all

Since the solution to (1.1), (0.7) satisfies the properties (A) to (E) if

(see Theorem 1.13), the set X is not empty. Now x shall be endowed
with the metric ~(’, ’): for (w, z, v, 0), (w, z, v, 6 ) E x, we define
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It is not difficult to see that X becomes a complete metric space with the
metric d( ~, ~ ). The proof of this fact is left to the reader.

Before proceeding to Step (II), we shall make some preliminary remarks.
We recall that p(u, 0) and 6) are analytic functions of u, 0 in a neigh-
borhood of (0, 0). So the first condition we should impose on K is

where v is a positive number such that can be expanded
as Taylor series in u, 0 if Hence, recalling that
we see that

is valid if , 101 c 2..F~. Next we observe that if (w, z, v, 0) E X, it follows
that z, 0 E C( (o, oo) ; Uo). Hence, for nonnegative integers q, r, s, 
is well-defined and belongs to 0((0,00); A). Now we define for given
(w7 Z7 IV7 0) c- X9

and

Then we have

LEMMA 2.2. and in J~

uniformly in t as In addition, it holds that

f or all

where M is independent of K and t.

PROOF. Let us set and define

Then using (2.20), (2.22) and the properties of x, it is obvious that Ss(t, x)
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for each 8 &#x3E; 0 and that

holds. Moreover, we can easily see that for each fixed t &#x3E; 0,

in

in

in

when e - 0. Therefore, for each fixed in

Combining this with the estimate

for all,

where the constant .lVl is independent of .K and t, we conclude that for each
0, act, x) E and Se(t, x) - a(t, x) in the weak * topology of fl,

from which (2.23) follows. On the other hand, it is easy to see that for
each fixed t &#x3E; 0 and, n, X) - X) in the weak * topology of fl
as 8 - 0. Hence it holds that

for all g e Co(R) and t &#x3E; 0, where ( . , . ) denotes the duality pairing between Co
and A. Now the remaining assertion of the lemma follows from (2.25).

(Step II).

We shall construct a mapping T from X into itself. For
is defined by
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where x) is given by (2.22),
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Since (~y z, v, 0) E X, it is easily seen that iv, z, v and 0 are well-defined as
distributions in ((0, (X)) xR) and satisfy the equations:

in Ð*((O, oo) XR) (see Appendix).
Now we shall prove that (rv, z, if, 6 ) E ,. Throughout the remainder of

this paper, the constants if will be independent of .K and t.

LEMMA 2.3. d7: satisfies the properties (A)

o f (Step I), exeept with MK2 in place of K in (2.1) to (2.4)
and it holds that

PROOF. ~Estimates for and follow immediately
from (2.23) and Lemma 1.7. In order to estimate

and

we define
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where is given by (2.21). Then on account of (2.25), it is clear

that uniformly on [0, cxJ) as n --~ 00, from which

it follows that

in

in

Now the proof is completed by the following lemma.

LEMMA 2.4. For each n,
and it holds that

for all

f or all

where M is independent of K, n and t..I’urthermore, as n, k ~ o0

uniformly on
and

uniformly on each compact subset of (0, 00) .

PROOF. Since Sn is a finite sum, we may estimate each term of gn(t, x).
By integrating by parts, we see that
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Here we have used (1.38) and the fact that Ot G12(t, x) = da; G22(t, x) in

Ð*((O, oo) xR) which follows from (1.7) (see Appendix). Applying Lem-
mas 1.7, 1.9 and the properties of X, we can derive that

for all

where is a constant independent of t, K, q, r and s. Therefore, we conclude
that

and, by recalling (2.19),

for all and

where .M denotes different constants independent of K, t and all the dummy
indices. From the estimate

for all t &#x3E; 0 and --~- 1, we get (2.34). Next, we define

where Then using (2.36), we have
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In order to estimate the last integral, we need to observe that (1.41) implies

for all

Combining this with (2.19), the properties of X and Lemmas 1.7, 1.9, we
obtain

for all

for all

where M is a constant independent of t, q, r, s, e, K, and t2) is a

function of tl, t2 &#x3E; 0, independent of q, r, s, e, which tends to zero as

t2 -~. t1 &#x3E; 0. Comparing (2.36) with its analog for and using the
fact that for each t &#x3E; 0,

in

in

in

weak * in L°°(R) for all positive integer q , y

it is easily seen that converges to Mqr,(t, x) in 5)*(R) for each

t &#x3E; 0, which implies that Ox M:rs(t, x) converges to ax x) in 5)*(R) for
each t &#x3E; 0. Combining this with (2.43), (2.44), (2.45), we derive that
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are x) is the weak * limit of 81 M:rs(t, x) in 3l for each t &#x3E; 0, and
that

for all

for all

from which it follows that

Now it is obvious that

and (2.33), (2.35) hold.

LEMMA 2.5.

has the same properties as were stated in Lemma 2.3.

PROOf. Proceeding as in Lemma 2.2, it is easy to observe that

for all

and

for all

which yield the result.
Before proceeding to get other estimates, we note the following fact:

LEMMA 2.6. Suppose and is

bounded by the constant L. Let and belong to
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Then, it holds that

and

f or all

PROOF. Regularizing h1, h2 , h3 with respect to x and using the conver-
gence argument in Lemma 2.2, we can obtain the result.

LEMMA 2.7.

satisfies the properties (B) of (Step I) with MK2 in place of K in (2.5) to (2.7).

PROOF. The proof follows immediately from the properties of X and
Lemmas 1.7, 2.6.

LEMMA 2.8.

satisfies the sacme properties as were stated in Lemma 2.7.

PROOF. It suffices to combine Lemma 1.7 with (2.50), (2.51).

LEMMA 2.9.

satisfies the same properties as were stated in Lemma 2.7.

PROOF. Since pe( -, - )lee( -, - ) is an analytic function in a neighborhood
of (0, 0) and we can write
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if (recall the condition (2.19)). Break J, into
where

Using the property (C) of (Step I), we see that, for each t &#x3E; 0,

But in and hence, by virtue of

Lemmas 1.8, 1.10, we obtain

and, assuming (which will be fulfilled by (2.200)),

for all
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Next we have

The L1-norm of the first integral on the right hand side can be estimated

by integration by parts as in the derivation of (2.58), (2.59), and the LI-norm

of the second integral can be estimated directly with the aid of (2.17);
we obtain

and, assuming (which will also be fulfilled by (2.200)),

for all

Noticing that

for all

we derive that

and, by (2.19),

for all

Hence, we conclude that
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and

for all

Next we can directly obtain

and

for all

from

for all

Thus, (2.5) has been proved with K replaced by MK2. In order to estimate
the L 1-norm of it suffices to replace by

for both oaeJ5,1 and oaeJ5,2. However, we note that for the
case can be estimated directly without going through the
lengthy procedure as was done for Finally, we will estimate
By virtue of (2.19) and Lemma 2.6, we have

and

for all

from which it follows that
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and

for all

LEMMA 2.10.

has the same properties as were stated in .Lemma 2.7.

PROOF. Using the properties of X, we see that

for all

and, applying Lemma 2.6 with some modification,

for all

From (2.78), (2.79), we can easily get (2.5) with .~ replaced by lVl.K2. Let

us define

Then, using the properties of G13(t, x), it is easily seen that

and

for all
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Observing that

we can derive that

and

for all

LEMMA 2.11.

satisfies the same properties as were stated in Lemma 2.7.

PROOF. First, observe that

and

for all

Proceeding similarly to the proof of Lemma 2.10, we can easily verifv that
satisfy the required properties. Next, recalling the fact

that

where with the estimate (1.53), we can write
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and estimate these two integrals separately. Using

for all (which follows from (1.53)) , 1

for the first integral and

for all

for the second integral, y we obtain

and

for all

LEMMA 2.12.

satisfies the properties (D) of (Step I) with K replaced by MK2, except v(O, x) = vo
and (2.11). In addition, J8(o, x) = 0.

PROOF. Breaking J8(t, x) into two parts by

we can easily find (2.8), (2.9) with .K replaced by with the aid of (2.50)
and (2.51), which, combined with the dominated convergence theorem,
also yield

Since is not integrable over (0, t), it is rather complicated
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to estimate First, recalling (0.10) and (2.19), we write

and define

Then, converges to in 

uniformly on ( Therefore, converges to I

in I Since - -’ is a finite series, we can estimate
term by term. Set

Assuming Lemma 2.13 which will be proved subsequently, y we see that

holds in Considering each term of the right-hand side,
we deduce that, for q ~ 1,
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and

for all

where M is independent of q, r, s, ~ and t. For the case
we note that

for all

where M is independent of r, s, .g and t, and use the formula

to find that

for all

Next, set

Recalling that

for all

we get, for the case

for all

From the properties of Q qrs, 1 and the fact that
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is an absolutely convergent series, it follows that

uniformly on each compact subset of (0, oo) as
Hence, y we conclude that

for all

To complete our argument, we shall present:

LEMMA 2.13. Let

and set

Then, it holds that

in

PROOF. Define
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Then, it is easily seen that in and hence,
in In the mean time, we have, for

which follows from the identity

in

But we see that

and

which follows from Lemma 1.9. Using the fact that

as

and that for each fixed

as

in tempered distribution as
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we can easily obtain (2.118) by letting 8 tend to zero.
We proceed to estimate the remaining integrals. Let us define

Then, proceeding analogously to the proof of Lemmas 2.9 to 2.11, we
can obtain the following result:

LEMMA 2.14. satisfy the same properties as
were stated in Lemma 2.12.

LEMMA 2.15.

satisfies the properties (E) o f (Step I) with K replaced by MK2, except 0(0, x)
- 00, (2.16) and (2.17). In addition, J12(0, x) = 0 holds.

PROOF. The assertion concerning J12(t, x), x) and x) can
be verified by the method of proof of Lemma 2.12. But G32(t, x) behaves
better than G22(t, x) and hence, we can estimate x) II more directly.
Note that (1.81) yields

for all

Combining this with (2.51), we can easily derive that

for all

It remains to estimate Using (1.81), (1.82) and (1.133), we
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conclude that

Therefore, we have by (1.6)

(Here we have used again the fact that

LEMMA 2.16.

satisfies the same properties as were stated in Lemma 2.15.

PROOF. Using Lemma 1.11 and the identity

in

we can proceed similarly to the proof of Lemma 2.9 to arrive at

for all

for all

for all
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Next we will estimate Writing

and using

for all

for all

which follows immediately from (1.95) and a modification of Lemma 1.14,
it can be easily deduced that

for all

LEMMA 2.17.

satisfies the same properties as were stated in Lemma 2.15.

PROOF. The assertion concerning J14(t, x) and x) can be verified
analogously to the proof of Lemma 2.10. By the same argument as in
Lemma 2.16, we can estimate x) and The technical
details are left to the reader.

Next we shall present some lemmas which will be used later on.

LEMMA 2.18. I f g E L1(.R), then for any hER,

holds for all
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PROOF. Let such that in Ll. Then,
we have

It is obvious that

for each

and

for each

from which it follows that

for all

LEMMA 2.19. Let where and

Then and

PROOF. Set and Then, we
have

and, using Lemma 2.18,
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for all h E R. Combining these two inequalities, we get

Since in L1, there is a subsequence such that

almost everywhere. Moreover,

for all

and

Hence, weakly in which implies
weakly in Ll for each h e 1~, from which it follows that

Now we proceed to analyze the remaining integrals.

LEMMA 2.20.

the same properties as were stated in Lemma 2.15.

PROOF. Using Lemma 1.11 and the method of proof of Lemma 2.11,
we can easily estimate IIJ15(t, x) II and For we

should employ a different method since G33(t - T, x) II is not integrable
over (0, t). For convenience, let us set

Since

and
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we can apply Lemma 2.19 to B(t, x) to obtain

for all

Next define

Then, obviously in 1, as which implies
in Noticing that, for each

holds for all 0  t,  ti , we conclude that

In the mean time, for

is valid from Lemma 1.11. Now fix any closed interval

Then, using (2.157 ), we find that
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by (2.153) and (1.97),

holds for all and all Hence, con-

verges in Ll uniformly on each compact subset of (0, as s - 0, which
implies

and

for each t &#x3E; 0. Using this formula and the fact that we can
estimate in parallel with (2.158):

Next we shall estimate for each and prove that
Fix any If then
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Now suppose can be written in the form

for any

Let us denote the first double integral on the right-hand side by 11(t, x)
and the second one by 12(t, x). Then,

By tanking ? i we have

By virtue of the identity

which follows from Lemma 1.11, we find that
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Substituting q = y, r = x - y and using the inequality

(2.167) becomes

Taking as before and breaking each integral of the last two

terms into two parts by we can obtain the estimate:

for all

Combining (2.162), (2.165) and (2.170), we conclude that

for all

Finally, y we shall prove the continuity in t &#x3E; 0. Fix any t1, t2 such that

. 

and By (2.160), (1.96), we can write,



411

provided I

Denote the integrals on the right-hand side by
and according to their orders. Analogously to (2.165),

(2.169), it holds that

provided
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For we need to use the expression:

Denote the integrals on the right-hand side by and

according to their orders. Then, imitating the development
of (2.169), we have



413

Repeating the previous argument, we obtain

provided &#x3E;

By (2.173), (2.174). (2.176) to (2.179), we conclude that

On the other hand
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Since 8, L were chosen arbitrarily, (2.180) and (2.181) yield

Now let us summarize what we have obtained in Theorem 1.13 and
Lemmas 2.3 to 2.20.

PROPOSITION 2.21. suppose I and are defined
by (2.26) to (2.29). Then we have: -

f or all

for all

for all ~ v

for all i

where f-l is the bound for the size of initial data (see Theorem 1.13; and M1, M2
are constants independent of f-l, K and t.

f or all

for all

for all

f or all

for all

for all

f or all
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f or all

for all

for all

From this proposition and Equations (2.30), we derive

PROPOSITION 2.22. It holds that

in

for all

f or all

f or all

where .~V13 is a constant independent o f p, .M1, ..M2, K and t.

These two propositions complete our proof that
provided that

(Step III).

We shall prove that T is a contraction. Let

for Then, we need the following expressions:



416

where
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For convenience, let Oi denote (Wi’ zi, vi, Oi), i = 1, 2, and recall that the
metric ~(’, ’) was defined by (2.18). For technical details of proofs of the
following lemmas, the reader should go back to the proofs in (Step II)-

LEMMA 2.23. It holds that

f or all

f or all
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f or all i

f or all

where constant independent of K, ~2 and t.

PROOF. Denote by J1(t, x), J2(t, x) the first and second integral on the
right-hand side of (2.202), respectively. yve can prove above inequalities
by the same procedure as in Lemmas 2.3, 2.5, and hence, it sufficies to

provide estimates for essential objects which occur in the process of proof.
For J1(t, x), we need:

for all

where

for all

for all

where

For , I I we need:

for all

f or all
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LEMMA 2.24. It holds that

f or all

f or all

PROOF. Let us denote the five integrals of (2.203) by
in sequence. To get the above estimates, we

go through the same process as in Lemmas 2.7 to 2.11 with the following
estimates. For J3(t, x), we need: .

for all

for all

For J~4(t, x), we use (2.213) and (2.214). For .7,,(t, x), we need:

for all which can be obtained like the proof of (2.59).
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which follows from

for all

for all

for all

For and we need:

for all

for all

for all

LEMMA 2.25. It holds that

for all

f or all



421

PROOF. Define

and

Then, we have

for all

for all

for all

These inequalities combined with (2.213), (2.214), (2.222) to (2.227) and the

inequalities analogous to (2.220), (2.221) will yield (2.228), (2.229) and (2.230)
by the same procedure as in Lemmas 2.12, 2.14.

LEMMA 2.26. It holds that

f or all

for all

f or all

tor all

PROOF. In addition to the inequalities used in the proof of Lemma 2.25,
we need only the following inequality:

for all
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which is easily seen from Lemma 2.19. Repetition of the arguments in
the proof of Lemmas 2.15 to 2.20 gives (2.236) to (2.239).

LEMMA 2.27. It holds that

tor all

for all

for all

f or all

PROOF. The assertions follow immediately from the above lemmas and
the equations:

From Lemmas 2.23 to 2.27, we deduce:

PROPOSITION 2.28. T is a contraction if

where M4 is the sum of all M which appear in Lemmas 2.23 to 2.27 plus
three times M in (2.209).



423

Now we are in position to conclude the proof of our main theorem.
First choose K, such that (2.19), (2.201), (2.246) and

hold. Then T is a contraction from X into itself if p &#x3E; 0 is so small that

(2.200) holds, and the unique fixed point of T is a solution of (0.11), (0.7)
by setting u = w -f- z, which is easily seen from (2.30). Our proof is com-
pleted by the following lemma which implies that this solution is also a
solution to (0.6).

LEMMA 2.29. Let (u, v, 0) be the solution mentioned above. Then,

hold in

PROOF. First of all, we note that

and which follow from

the properties of X and the fact that -Wl,l c Co. Suppose s is any given
positive number and define

where Then, we see that
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and

in weak * in fl , y

in in

weak * in ~ ,

in in

for each as Hence, it holds that

in

in weak * in Jt ,

in .L1 , 9

weak * in A, in El ~

in Ll , 7 weak * in I

for each t E [2ê, oo), from which (2.248), (2.250), (2.251) and the first part
of (2.249) follow, since s was arbitrarily chosen. Using the fact that

the second part of (2.249) follows from the equation:

in

Finally, (2.252) is an immediate consequence of (0.9).

REMARK 2.30. It has not been proved that the solution we obtained
above is unique, which is still open. However, the solution has an interesting
feature: if the initial data have jump discontinuities, then the discontinuities
of v, 6 vanish instantaneously while the strength of jump discontinuity
of u vanishes at least as fast as the inverse of a polynomial.

3. - Appendix. 
’

[Al] We shall prove that the expression (2.36) is valid. First note that
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from which we have

and

Next we define

Then are well-defined and as

Since

in

in

At the same time, we see that with

and

with for all t ~ 0. Now we can compute
by integration by parts which is valid from

the properties stated above. Then, letting s - 0, we obtain the result.

[A2] We shall prove that (w, z, ii, 6) defined by (2.26) to (2.29) satisfies
(2.30) in ~* ((0, oo) (2.30) can be written in the form with different
notations,

where

for all

for all
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Applying the Fourier transform, (3.1) with given initial data yields

where and are given by (1.2). From (3.2),

(3.3), y it follows that

for all

for all

Since we have Now for each

the unique solution to (3.4), (3.5) is given by

We recall that I and for all

Hence, it is obvious that f(t, $) given by (3.6) satisfies

for all and y of the Schwartz space in .R. Therefore

satisfies (3.1) in But is precisely
given by (2.26) to (2.29).
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