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Microlocal Analysis for Spatially Inhomogeneous
Pseudo Differential Operators.

LUIGI RODINO

Introduction.

A spatially inhomogeneous pseudo differential operator in the class

E’a 0, 9,(.Q), Q eRn, is a properly supported operator of the form

with standard vectorial notations; O(x, $) = (0,(x, $), ..., 0.(x, $)) , cp(x, 8) =
= (CPl(X, $), ..., cpn(x, $)) is a pair of local weight vectors in Q and Â(x, $) E
E O(Ø, 92), according to the definitions in Beals [2], for example (see also
the recent works [9], where Hormander has given for similar classes of oper-
ators an equivalent definition which is invariant under linear symplectic
transformations, and Nagel-Stein [11], [12], Beals [4], where the LP-bounded-
ness of A is proved under suitable conditions on 0, cp).

In this paper we set up a new approach to the study of the action of
d E L(SZ) on the singularities of a distribution f e 6’(Q) and we outline
some applications; the analysis will be microlocal, that is we shall not only
be concerned with the location of the singularities in Q, but also with
their local harmonic analysis in T*Q, following a well known idea of H6r-
mander [7], [8]. Actually, the action of A E C,qJ(Q) on the wave front set
(WF) of Hormander was already studied in Parenti-Rodino [13], [14] where
it was observed that A c- 0 is always pseudolocal but it may dispace

Pervenuto alla Redazione il 21 Marzo 1981.
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the WF inside the fibers of T*S?, if the components of the vector do not
satisfy suitable estimates.

The negative results of [13], [14] suggest here a microlocal analysis of a
more general type. Let P(8) = (Wi(8), ..., Wn($)) be a basic weight vector,
i.e. let O(X, $) = W($), gg(x, $) = 1 be a pair of local weight vectors, and
write simply S" (S2) for the related class of symbols S" (.Q), A = /,Z log P
(the properties of the operators in Ell(S2) are reviewed in the next Section l).
We shall say that f E &#x26;’(,Q) is P-smooth in A c T*Q if there exists an elliptic
symbol in A, a(x, $) E S’ (S2), such that a(x, D) f E OOO(Q). In the following
Section 2 the singularities of f are then located by means of the collec-

tion of subsets of T*D

which we shall call the P-filter of the singularities of f ; localizing (0.3) at
a point xo E Q we shall consider in particular

Choosing Vfj(E) = 1 + 1$1, j = 1, ..., n, one recovers essentially in (0.3) the
filter of the neighborhoods of the WF of Hormander. Another important
example is given by the anisotropic wave front set in Lascar [10], y Grushin-
Sananin [6], Parenti-Rodino [16], Parenti-Segala [17], corresponding to the
pseudo differential operators of quasi-homogeneous type.

In Section 3 we study the action of an arbitrary A E C"9,(D) on the
!P-filter; it is proved that if the condition

is satisfied for some c &#x3E; 0, then A f is !P-smooth in every subset !1 c T*S2
where f is 97-smooth. In particular, if

then we have WF Af c WF f for every A E C" ,(D).
At the end of Section 3 we present some applications to the microlocal

analysis of linear partial differential operators. We shall say that a dif-

ferential operator P is tIf-hypoettiptic in SZ if the P-filters of the singulari-
ties of f and Pf coincide for every f c- Suppose P has a left para-
metrix .E E L,tp(Q), with suitable 0, cp, A; then P, which is certainly hypo-
elliptic, is P-hypoelliptic for all tp which satisfy the condition (0.4). In

particular, if (0.5) is valid, taking W,(e) = 1 + 1$1, j = 1, ..., n, one obtains
that WF P f = WF f for every f E 6’(Q). We shall also introduce a related
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notion of Vf-solvability; this will allow us to solve, in a suitable microlocal
sense, certain operators which are not locally solvable in standard sense,
as for example Dxl + ixl Dx$ in a neighborhood of the origin in R2. Micro-

solvability and micro-hypoellipticity with respect to anisotropic wave front
sets were already discussed in Parenti-Rodino [16] for a class of degenerate
quasi-elliptic equations.

Section 4 is devoted to the study of the Fourier integral operators

where the amplitude b(x, q) is in S$(Rn) and the phase ro(0153, q) satisfies in

a neighborhood of supp b conditions of the type

We shall give a formula for the composition of .F’ with a pseudo differential
operator and we shall study the action of .F’ on the tlf-filter ; it will follow
in particular that the !P-iilter is invariant under the changes of variables
which satisfy suitable conditions of compatibility with the basic weight
vector P.

Fourier integral operators of the form (0.6) are the natural tool for the
analysis of the singularities, y when one deals with spatially inhomogeneous
evolution equations. Here we shall limit ourselves to a simple application,
concerning a translation invariant model. General results on propagation
and reflection of anisotropic wave front sets can be found in Parenti-

Segala [17], where a calculus is developed for operators .F’ with phase cv(x, 77)
of quasi-homogeneous type.

Further applications of our machinery to the theory of the linear par-
tial differential operators will be discussed in future papers.

1. - Classes S;(!J).

We say that the n-tuple of positive continuous functions P($) = (Vf
..., ll£n($)) in Rn is a basic weight vector if there are positive constants c, C
such that
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Let Q be an open subset of R". For p = (PI, ..., Pn) E Rn we define
S" (D) to be the set of all a(x, $) E Ooo(Q X Rn) which satisfy in every K cco
the estimates

with standard vectorial notations. Let

with a(x, $) E SP (,Q). The rules of the calculus of the pseudo differential
operators hold for operators of the form (1.4); in fact, if Yl($) is a basic

weight vector, the pair O(x, $) == Yf($), gg(x, $) = 1 is a pair of local weight
vectors in the sense of [2], for example. Let us review shortly the prop-
erties which we shall use in the following.

Recall first that for every given basic weight vector P°($) we may
find a smooth basic weight vector Vf($), which is equivalent to VfO($) (i.e.
ll§($) ll§°($)-i and ll%($)P#($) are bounded in R-n), such that

Equivalent basic weight vectors define the same class of symbols; there-
fore we may assume in the following that Pi($), ..., Pn($) satisfy (1.5).

The operator A in (1.4) maps continuously 00’(D) into C°°(S2) and it
extends to a linear continuous operator from 6’(Q) to 0’(D). We shall
denote by C" (S2) the set of all properly supported maps d = a(x, D), with
a(x, $) E SO,(S2); for every given a(x, $) E S" (12) one can find a’(x, $) E $I’
such that a’(x, D) is properly supported and a(x, $) - a’(x, $), i.e. a(x, $) -

- a’ (x, $) E n S$(Q) ." 

I

Write Hl,’, for the Hilbert space of the distributions f E 8’(M") which
satisfy

The properties of the spaces H$ are similar to those of the usual Sobolev
spaces; we have in particular U H$ = 8’(Rn), n H$ = 8(Rn), also in the

&#x3E; p,

topological sense. Let H,comp(.Q), H,IOC(.Q) be defined in the standard

way; if A is in £$(Q), then for every v G Rn :
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A map A : 6§°(Q) - DI(Q) is said to be smoothing if it has a continuous
extension mapping 6’(Q) into C’(,Q); for given operators A1, A2: 6’(Q) -
- D’(Q) we shall write A, - A2 if the difference A1 - Â2 is smoothing.
If a(x, $) is inn syof(,Q), then a(x, D) is smoothing.

p.

in the sense that f or any f inite set J of mutti-indiees

THEOREM 1.2. If a(z, D) G £$(Q), then the restriction to C§°(Q) of the

L2-adjoint, a(x, D)*, is also in £$(Q), with symbol

If P($) is a basic weight vector, then tP($) = Yf(- E) is still a basic

weight vector; we have the following:

THEOREM 1.3. If a(x, D) E E" (S2), then the formal adjoint ta(x, D) is in

Crw(Q) with symbol

We shall say that ao(z, $) G S$(Q) is a principal symbol for a(x, D) E
E £$(Q) if a(x, $) - ao(z, $) G S]"(Q), for some v = (vl, ..., Vn) ERn, Vj&#x3E;O for

all j and Ivl =1= o. Observe that a(z, $) in (1.9), a’(z, $) in (l.ll)y t (z, $)
in (1.12) have principal part al(0153, $) a2(z, $), a(x, $), a(z, - $), respectively.

DEFINITION 1.4. The symbol a(z, $) E S$(Q) is said to be elliptic (with
respect to tp) in {J if for every Kcc o there are positive constants CK, OK
such that

If a(x, $) has principal part ao(x, $), a(x, $) is elliptic if and only if

ao(x, E) is elliptic; it is then clear that products and adjoints of operators
with elliptic symbols have elliptic symbols.
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THEOREM 1.5..Let a(x, D) be in £.G,(Q) with elliptic symbol in Q; there
exists b(x, D) E £§’(Q) such that

We want to study now operators in £$(Q) which are « microlocally »
elliptic in a subset of Q X R". First of all, let us introduce some new nota-
tions. Take A c Q X Rn and assume that its projection

has compact closure in Q. We define for s &#x3E; 0

Aei’ will be called the Yf-neighborhood of ray s of A in Q X R". In (1.16) we
understand that the ray s is so small that a(A"7) too has compact closure
in Q.

Then let .X be a subset of Rn; we define for s &#x3E; 0 (cf. (1.13) in [11]):

Setting

DEFINITION 1.6. Let A be a subset of Q xRn, and assume n(A) has com-
pact Closure in Q; let a(x, 03BE) be in S$(Q). We say that a(x, 03BE) is elliptic (with
respect to P) in A if there are positive constants 0, C such that
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If a(z, $) is elliptic in A then it is elliptic in ASYT, for a sufficiently small
s &#x3E; 0 ; this follows easily from the estimates (1.3 ) for Joe + fl[ = 1.

DEFINITION 1.7. We say that a(z, $) E SP(D) is rapidly decreasing in
e c S2 x R,, i f there exists ao(z, 8) E S" (D) s2ceh that a(x, - ao(z, 8) and

supp ao c (0 xR")",Ø.

THEOREM 1.8. Let a(x, D) be in CO (D) with elliptic symbol in A cOx an
( as in De f inition 1.4 n(A) has compact closure in Q) . There exists b (x, D) E
E C,,0(92) such that

where c(x, $) E S’ (S2) is rapidly decreasing in At’V’, for some r &#x3E; 0.

This microlocal version of Theorem 1.5 is new, with respect to the
references; we shall prove it by means of the following lemmas.

LEMMA 1.9. Let E be a subset of Q X Rn, and assume 1(E) has compact
closure in Q. Let a(x, D) be in E’(S2) with elliptic symbol in E; let T(0153, D)
be in CO(S2) with rapidly deereasing symbol in (Q X Rn)BE% Then there exists
b(x, D) E CO (.Q) such that b(x, D) a(x, D) - -r(x, D).

Since a(z, 8) is elliptic in E, bo(z, $) is well defined in S)(Q) for large [$[ .
Then, arguing by recurrence, we introduce

For large ]$], b_;(z, $) is well defined in U s;tX(Q), with supp b_; c E.
j«j&#x3E;; , ’1

Using a standard argument we can construct b(x, E) E S$(Q) such that
00

b(x, $) f’J 2 b_;(z, $); we may also assume that b(x, D) is properly sup-
;=0

ported. Noting by c(x, $) the symbol of the product b(x, D) a(x, D) E £)(Q),
we have easily from Theorem 1.1 that c(x, E) - ro(z; E). Lemma 1.9 is there-
fore proved.
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LEMMA 1.10. Let s &#x3E; 0 and X c Rn be fixed. There exists u(8) E SO (W)
such that supp, a c Xsw and a(I) = 1 if I E X,.,, , , for a suitable 8’, 0  8’  8,
which depends only on s and TI.

In the proof we shall use the following result, which is a straight
consequence of the property (1.2) :

LEMMA 1.11..F’or every fixed 8&#x3E; 0, we can f ind 8*, 0  s*  s, such that

for every X c Rn.

PROOF OF LEMMA 1.10. Applying (1.25) in Lemma 1.11, we begin by
taking 80 &#x3E; 0 such that

the constant s’ in the statement of Lemma 1.10 will be chosen in such a

way that

according to (1.24) in Lemma 1.11. From (1.26), (1.27) it follows

for every Xc R". Let u denote the characteristic function of the subset

(y)c ll8n. Take q G O;’(Rn) such that jq(t) dt = 1, q;(t) &#x3E; 0 and q;(t) = 0
for It»!. We define :

It is easy to check that u($) E S" (W). Fixiiag $ c- W, then we consider the
function of q

and we observe that
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If E E XS’’P’ then supp g/;c (Xs’’P)s’’P and thus

On the other hand, if $ w X(S/2)V’ then supp g, c (Rn"X(S/2)V’)S’W and it follows
from (1.28) that supp g, n supp u = 0. Therefore we have u($) = 0 for

I W X(S/2)W and SUPP, a c XSV’.

LEMMA 1.12. Let s&#x3E;0 and A C D X Rn be f ixed; assume n(A) has com-
pact closure in D. There exists r0(z, $) e(S)(Q) such that supp 7:0 c ASV’ and
7:o(x, $) = 1 if (z, $) e AS’V’, for some 8’, 0 C E’  B.

PROOF. The constant 8’ will be chosen in such a way that the conclu-

sions of Lemma 1.10 hold, for the same 8, 8’, and moreover 8s’  s and
n(A8s’V’) has compact closure in D. Take note of the obvious inclusions :

Let 81, ..., S$ be balls in Q with centres z§, ..., zj e n(A) and radius
2s’, such that

Since 8E‘ C $, we have

Denote by S( the ball with centre zg and radius 4s’ ; observe that (1.33 ),
(1.34) are still satisfied if we replace Sit with 8,’. Keeping in mind the
definition ofAxo in (1.18), we set for h = 1, ..., .g:

and moreover

Observe that We define also:

We shall prove:
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The central inclusion is obvious, since Sh c S( and (Xh)s’!l’ C (Xh)S!l’. Assume
(x, E) E AS’!l’; this means that there exists (xo’ $°) GA with Ix- xol  e’ and
[$; - $) [  s’ Ufi ($°) , j =1, ..., n. Since xEn(As’!l’), we have XESho’ for some
index ho; therefore it is Xo E So. Writing o E Aho’ we have from (1.35)
EO E Xho and thus E E (Xh)8’!l’. Summing up we obtain (x, $) E A(ho) and the
first inclusion in (1.37) is so proved, in view of (1.36).

Assume now (x, E) E A:; this means that, for some index ho, z G S[
and E (Xh)s!l’, i.e. E E (A)sw for some X E So n n(A). We have Ix- xl 
 8s’  s and moreover ]$; - $; [  sP;($) , j = 1, ... , n, for some I G Az ; this

implies (x, $) E AS!l’ and completes the proof of (1.38). Let u($) G S)(Q) be
defined as in Lemma 1.10, with supp/; Gh C (Xh)s!l’, (]h() = 1 for $ G (Xh)s’!l’.
Then take xh E O;’(Q) such that supp xh c Sh and Xh(0153) = 1 for x e She The
product 7:h(X, I) = Xh(X) (1h(03BE) is in S$(Q), with supp ih C A(h&#x3E; and zh(x, I) = 1
for (x, $) e A(h) . Define

We have zo(x, ) = 0 if (x, $) 0 A’ and -c,,(x, $) = 1 if (z, $) E A.. There-

fore Lemma 1.12 is proved, in view of (1.38).

PROOF oF THEOREM 1.8. Multiplying a(x, D) by an operator a’(x, D) E
E £§’(Q) with elliptic symbol in Sz (take for example a’ (x, $) - P($)"), we
are reduced to prove the theorem in the case ,u = 0. Then let a(x, D) be
in El (D), and choose E &#x3E; 0 such that a(x, $) is still elliptic in A"F. Take

To(0153, $) as in Lemma 1.12, with supp -r, c A’w and ío(0153, $) = 1 if (x, $) E Ae’,
for some s’, 0 C E’ C E. Let í(X, D) be in EO(92), w with -c(x, -c o(x, $);
z(x, $) is rapidly decreasing in (Q X W)BA’w and we may apply Lemma 1.9
with E =A03B503C8. So we get b(x, D) E £)(Q) , such that b(x, D) a(x, D) - T(.r, D).
The symbol of the operator c(x, D) = b(x, D) a(x, D) - identity is rapidly
decreasing in A"F for 0  r  8’ and Theorem 1.8 is therefore proved.

Finally let us discuss some important examples of basic weight vectors.

EXAMPLE 1.13. We shall say that the n-tuple P($) = ..., Pn($))
is a basic weight vector of rational type if it satisfies (1.1 ), (1.2) and more-
over

(1.40) there exists a polynomial
for all j and ]p°] =i= 0, such that
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That is, Q($) is elliptic with respect to tp in Rn; it follows in particular
that the operator with constant coefficients Q(D) is hypoelliptic.

For example, let M = (.Ml, ..., Mn) be a n-tuple of positive integers,
n

define [lm = 1 + 2 1$,I’Iml and consider the basic weight vector (see [6J,
[10], [1.6], [17]) : 1=1

P(E) in (1.41) is of rational type, since (1.40) is satisfied by the quasi-
M

elliptic polynomial Q(E) = 1 + ]E ,2T’mJ where r is the least common mul-
tiple of the Xjls. i=l

EXAMPLE 1.14. Let P($) = (Pi($), ..., Pn($)) be a basic weight vector
whose components coincide; we shall identify W($) with the function Pl(E) =
= ... = Wn($) and we shall call it a basic weight f unction (cf. [1], [3], [5]).
A positive continuous function P(E) in R,- is a basic weight function if and
only if there are positive constants c, C such that (see (1.18) in [2]):

For example, P($) = (1 + 1$1)e is a basic weight function of rational type
for 0  el.

2. - tIf-filter of the singularities of a distribution.

Here as in the preceding section ’P is a fixed basic weight vector in Rn
and Q an open subset of R".

DEFINITION 2.1. Let f be in D’(Q) ; let A be a subset of Q x Rn and assume
n(A) has compact closure in Q. We shall say that f is ’P-smooth in A if there
exists a(x, D) E C’(S2) with elliptic symbol in A such that a(x, D) f E 0’(.Q).
We shall call P-filter of the singularities of f the collection of subsets of Q X Rn

(2.1) :F’P(f) = (T c Q xRn; the projection n(A), A = (Q x Rft)"r, has com-
pact closure in Q and f is 1Jf-smooth in A} .

Observe that if f is 1Jf-smooth in A, then it is P-smooth in Ae", for a
sufficiently small e &#x3E; 0.
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Let us check that Yw(f) is actually a filter. Arguing on the collection
of the complements, we have to prove:

The first point is obvious. As for (ii), we assume there Pxist ah(x D) E
E £)(Q) , h = 1, ..., H, with elliptic symbol in Ah, such that ach(x, D) t EOoo(Q).

JET

Consider the operator a(x, D) == 2 ah(x, D)* ah(x, D). We have a(x, D) f E
h=l

E C°°(D) and moreover it follows from Theorems I,I, 1.2 that a(x, D) has
H H

principal symbol 2 lah(x, )12, which is elliptic in U Ah. Therefore f is
H h=l h=l

P-smooth in U Ah and it is proved that :Ftp(f) is a filter.
h=l

THEOREM 2.2. Let A = a(x, D) be in £$(Q). Then

LEMMA 2.3. Let A be a subset of Q X Rn and assume n(A) has compact
closure in Q. If f E Ð’ (Q) is P-smooth in A, then there exists c(x, D) E £$(4ii)
with rapidly decreasing symbol in AS’P, f or a suitable 8 &#x3E; 0, such that f -
- c(x, D) f E OOO(Q).

PROOF. We assume the existence of a(x, D) E £$(Q) with elliptic symbol
in A such that a(x, D) f E C°°(SZ). Let us apply Theorem 1.8 to the operator
a(x, D) : there exists b(x, D) E £$(Q) such that b(x, D) a(x, D) = identity +
+ c(x, D), where c(z, $) is rapidly decreasing in AS’P for some 8 &#x3E; 0. To

obtain the lemma then it will be sufficient to observe that f - c(x, D) f =
= b(x, D) a(x, D) is in Ooo(Q).

PROOF OF THEOREM 2.2. Arguing on the collection of the complements,
we have to prove that if f is P-smooth in A then At is tlf-smooth in A.
Let c(z, D) G £)(Q) satisfy the conclusions of Lemma 2.3, i.e. assume f -
- c(x, D) fE Ooo(Q) and c(x, $) is rapidly decreasing in AS’P, 8&#x3E; O. Then take

7:o(0153, $) e S)(Q) as in Lemma 1.12, with supp To c AS’P and ’l’o(x, $) =1 for

(x, $) e AS’’P, 0  s’  s. Let 7:(x, D) be in £)(Q), i(z, $) ^’ 7:o(x, $). To

prove that A f is P-smooth in A we shall check that 7:(x, D)Af E OCO(Q).
Write
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The second term in the right-hand side is in C’(92). On the other hand

it is C(X, 03BE) - c,,(x, 03BE), with supp co r1 supp To = 0; then it follows from

Theorem 1.1 that z(x, D) Ac(x, D) - 0, and therefore we have also -r(x, D)
Ac(x, D) f E C(.Q). Theorem 2.2 is proved.
Let be a subset of Q X Rn and assume n(E) has compact closure in Q;

we define the filter

From Theorem 2.2 we have for all A E v

PROPOSITION 2.4. Let A = a(x, D) be in £$(Q) with elliptic symbol in E;
then

PROOF. It remains to prove the inclusion Y,(I) Is:) Y,(Al) 1,. Since we

may also define !F tp(f) IE == {r’ c E, f is Yf-smooth in A’ == EET’), we are
reduced to prove that if A f is P-smooth in Il’ c -P then also f is tlf-smooth
in A’. Let a,(x, D) be in E’(,Q) with elliptic symbol in A’, such that

al(x, D) A f E C°°(SZ). If we take a2(x, D) E Yf with elliptic symbol in Q,
we have

on the other hand the operator a2(x, D) al(x, D) A has principal symbol
a2(x, $) ai(z, $) a(z, $), which is elliptic in A’. It is therefore proved that f
is P-smooth in 11’ .

PROPOSITION 2.5. Assume r E :Ftp(f) and let A == a(x, D) be in £$(.Q)
with rapidly decreasing symbol in I-’. Then Af E C°°(SZ).

PROOF. Note A = (QxRn’"r. Applying Lemma 2.3 we find c(x, D) E
G ) with rapidly decreasing symbol in Aetp, E &#x3E; 0, such that f -
- c(x, D) f E Ooo(Q). Write

The second term in the right-hand side is in 0’(S2). On the other hand

the operator A.c(x, D) is smoothing, as it follows from Theorem 1.1; there-
fore we have also Ac(x, D) f E C(Q) and Proposition 2.5 is proved.
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Now we want to study in detail the filter :F tp(f) Is in the case

DEFINITION 2.6. We shall note :F tp(f, xo) and we shall call tp-filter of the
singularities of f E D’(Q) at Xo E Q the collection of all the subsets Y c Rn

such that f is tp-smooth in (zo) x-(Rn,,",Y).
The following theorem gives for :Ftp(f, xo) an equivalent definition where

pseudo differential operators do not appear explicitly.

THEOREM 2.7. YE:Ftp(f, xo) if and only if there exists X EOc;(Q), X(x) = 1
in a neighborhood of x,,, such that for every integer N&#x3E; 0

where s is a suitable positive constant independent of N.

PROOF. Let (2.8) be satisfied for suitable X and 8. Note X = RnEY.
Applying Lemma 1.10, we find u($) E S’(W) with supp, or cXsgF and u($) = 1
for EXs’gF, 0  s’ 8. The function u($)( zfl’ ($) is rapidly decreasing in Rn.
Regarding a(03BE) as a symbol in S’ (.Q), with a(D): B’(Q)-+Ð’(Q), we have
ar(D)(xf ) E aoo(Q). Let a’(x, D) be in E’ (,Q) with or(x, $) -u($) in Q. Define

z(x, D) f = a’(x, D) (x f ) ; the operator 7:(x, D) is in Eo (S2) and its principal
symbol x(x) u($) is elliptic in {x,,} X X. On the other hand we have -r(x, D) f E
E C°°(S2) and it is therefore proved that Y E Yw(f, xo).

In the opposite direction, let f be P-smooth in {xol X X, i.e. assume the
existence of a(x, D) E E’ (D) with elliptic symbol in {x,,l X X such that

a(x, D) f G Ooo(Q). The symbol a(x, $) is still elliptic in the P-neighborhood

for a sufficiently small s &#x3E; 0. Take x E Co (S2) with X(x) = 1 in a neigh-
borhood of zo and supp X c {x E S2, Ix - zo[  e}. Let 03C3(03BE) E S’ (D) be fixed
again according to Lemma 1.10 and define T(x, D) E £)(Q) as in the first
part of the proof. From Theorem 1.1 we have

hence we can construct 7:o(X’) GS)(Q) such that i(z, $)-io(z, $) and

supp To c {x E Q, Ix - Xol  e} X-Z. Then, applying Lemma 1.9, we find

b(z, D) G £$(Q) such that b(z, D) a(z, D) - i(r, D) . We obtain z(x, D) f E
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E CI(S2) and therefore a(D)(xf) E OOO(Q). On the other hand, regarding a(D)
as pseudolocal map from 8’(Rn) to S’(Rn), we have also a(D)(xf) E 6°’(RnE
Bsupp,X) and, summing up, ar(D) (x f ) E C’(Rn) r1 8’(R"). Thus u($)(zf)" ($)
is rapidly decreasing in Rn and the estimates (2.8) are satisfied in the subset
Xe’q-F where it is a($) = 1. Theorem 2.7 is proved.

PROPOSITION 2.8. The following conditions are equivalent:

In fact, it follows easily from Theorem 2.7 that (I) H (II), and (III)
is equivalent to (I) since [F tp(f, xo) is a filter.

3. - Action of A G £§ (Q) on the P-filter.

From Proposition 2.8 it follows immediately:

PROPOSITION 3.2. If A is P-local in Q, then it is pseudolocal in Q, i.e.

sing supp Af c sing supp f for every f E B’(Q).

From (2.5) we have that every A E £$(Q) is !If-local in Q. We want

now to discuss the action on the zIl-filter of an operator A in the classes

£.,q&#x3E;(Q) of the Introduction. For the sake of definiteness we shall suppose
that ø, q are a pair of local weight vectors and Â E O(Ø, q) in the sense

of Beals (see the definitions of Section 8 in [2]) ; however, as it will be

clear from the proof of the subsequent Theorem 3.3, we could argue on

generic ø, cp, Â assuming only the validity of (0.1), (0.2), an algebraic upper
bound for Â and the pseudolocal property for A (which actually follows
from the hypotheses on ø, cp in [2]).

THEOREM 3.3..Let P($) be a f ixed basic weight vector..Let Ø(x, $) , cp(x, $)
be a pair of local weight vectors in Q and let A(z, $) be in O(Ø, q). Suppose
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for each K cc SZ there exists a positive constant oR such that

Then every A E L,qJ(Q) is tIf-tocaZ in Q.

EXAMPLE 3.4. Every A E £§,(Q) is (1 + [8))°-local, 0  e :1, if for all

K cc Q there exists CK &#x3E; 0 such that

In particular if (3.3) is satisfied with e = 1 then

in fact (x", o) 0 WF /I 1;°1 =A 0, means that f is (1 + 1$1)-smooth in {xo} X
X {e; e = t;O, t E R+} and therefore (3.4) follows from the inclusion

If gg(x, == 1 the conditions (3.3) is satisfied for every (2, 0  e  1;
actually, in this case (3.2) holds for any basic weight vector Tf, in view of
the assumption (1.1).

EXAMPLE 3.5. Let the vector W($) = [$] §§ be defined as in (1.41). The

anisotropic wave front set WFM of a distribution is defined in the following
way: (x., $0) 0 WFm f, [$o ) I =1:= 0, if and only if f is [$]m-smooth in (zo) X
x {$; $i = tmJ $,0, t E R+}. Therefore if A is [I] #-local then in particular

For example, y every operator

EXAMPLE 3.6. Let fb, q be a fixed pair of local weight vectors; assume
0, 99 are independent of x in Q. We may always choose the basic weight
vector P($) in such a way that (3.2) is valid. Define for example

If 8 &#x3E; 0 is sufficiently small, P($) is a basic weight vector, as it follows
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from (2.5) in [2]. Moreover from (2.8), (2.13) in [2] we have

for suitable positive constants °1’ c2, c3, and therefore (3.2) is satisfied.

PROOF OF THEOREM 3.3. For arbitrary xo c- f2, X C Rn, f E B’(,Q) we
want to prove that if f is P-smooth in {0153o} X X then also At is P-smooth
in (zo) XX. In view of Theorem 2.7, if f is tIf-smooth in {x,,l x X we can
find xE 6§°(Q), y(x) = 1 in a neighborhood of xo, such that (,Tf) ^ ($) is rap-

idly decreasing in XeW for some 8 &#x3E; 0. Take u($) E S’(W) as in Lemma

1.10, with s-upp, or c XeW’ u($) = 1 if $ E Xe,w, 0  E’ C 8; clearly we have

Then, applying again Lemma 1.10, we construct To()e(R") with
supp4 uoc X+, u($) = 1 for E Xr’gI, 0  r’  r, where we may choose r
in such a way that

arguing as in the first part of the proof of Lemma 1.10. Finally we take
u E Co (SZ) with supp u c {x E Q, x(x) = 1) , u(x) = 1 in a neighborhood of Xo.
We want to prove that

In fact, if (3.9) is satisfied then uo($)(uAfl’($) is rapidly decreasing in R"
and (uAfl’($) is rapidly decreasing in X,,,; in view of Theorem 2.7 this
will imply the lf smoothness of A f in {x,,} X X. We begin by splitting

Since every A E L,qJ(Q) is pseudolocal in Q we have uA((1 - x) f) E 6§°(Q) ;
then to prove (3.9) it will be sufficient to prove that C1o(D)[uA(xl)] is in

OOO(Rn) (’B S’(Rn), or else that its restriction to Q is smooth. Split again

where now uo(D), cr(D), (1 - cr)(D) are regarded as maps from &#x26;(D) into
. The first term in the right-hand side of (3.11) is in 0-(S2) and we
may limit ourselves to check that
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is smoothing in D. The operator B can be easily written in the pseudo
differential form, B = b(x, D), with

where a is the symbol of A. From the hypothesis (3.2) and from condition
(1.1) we deduce that for suitable positive constants i, c

Set ’ 
I

where T is the constant in (3.14), y and take note of the identity

Using (3.16) and integrating by parts repeatedly in (3.13) we obtain

with

where N may be taken arbitrarily large; observe that il - $ 0 0 for

From (3.14) we get

where we can estimate
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for a suitable T, in view of (3.15) in [2]. On the other hand, keeping in
mind (3.8), we have in supp (1- a(E)) ’yo(n)

for some indeg j o , and therefore from (1.1)

with c’ &#x3E; 0 ; from (3.21), (3.22) it follows

Thus we can estimate in the right-hand side of (3.18)

Summing up, from (3.18), (3.19), (3.20), (3.24) we have for large N

Since HtXN has compact support with respect to the variable y, from (3.17),
(3.25) it follows

for every integer M&#x3E;O. Using (3.26) we check readily that b(x, D) has
smooth kernel in Q; therefore B in (3.12) is smoothing and Theorem 3.3
is proved.

Adding a technical hypothesis in Theorem 3.3, we may obtain easily
the more general inclusion

which we have already proved in Theorem 2.2 for an operator .A E £$(Q).

THEOREM 3.7. Under the hypotheses of Theorem 3.3, set
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and assume

The proof proceeds as in Theorem 2.2, with the only difference that,
to prove -r(x, D) A.c(x, D) - 0 in (2.3), we shall use the following

LEMMA 3.8. Let the hypotheses of Theorem 3.7 be satisfied. Assume

A E 0 Let 7:(x, D), c(x, D) be in So v (12) with rapidly decreasing symbol
in F, A, respectively; suppose Fu A = QxRn. Then -r(x, D) Ac(x, D) f E
E C°° ( SZ ) for every f E D’(Q).

Essentially: regarding 7:(x, D), c(x, D) and A as operators in L.’fP(Q)
and L.’fP(Q), one can apply Theorem 1.1 to their product and conclude
that it is smoothing. For a detailed proof of Lemma 3.8 see [14], Lemma 2.4.

Translating into the language of the P-filters the second part of Pro-
position 1.8 in [14] we may also obtain a partial converse of Theorem 3.3.

THEOREM 3.9. Let W($) = (Wi($), ..., Wn($)), q($) = (qi($), ... , qn($)) be

a pair of x-independent local weight vectors, and assumed

Then there exists A E C,q&#x3E;(Rn) which is not P-local in Rn.

PROOF. It will be sufficient actually to assume

(in the following we shall understand n&#x3E;2; the case n = 1 could be dis-
cussed separately in a lightly different way). Making use of the hypotheses
of Beals on 0, 99 and recalling in particular (2.3), (2.8), (2.14) in [2], we
may suppose for the same constant C of (3.30) and for suitable e &#x3E; 0, E &#x3E; 0 :
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In view of (1.1 ), (1.2), taking a multiple of 1JI as a new basic weight vector,
we may also assume without loss of generality:

for the same constants c, e of (3.33).
The operator A is constructed in the following way. First choose

IS G 6§°(R) such that lS(t) = 0 for It I &#x3E;-i, {}(t) = 1 for It I 1. Write w8 ==
- (2’, 0, ..., 0) and define for 8 = 1, 2, ...:

03B68(E) is in 00’(W) and

Since  2 8 in view of (3.32), all supp C. are disjoint; moreover (/),(0)8)-1
 CW;($)-i for $ G supp F , j = 1, ..., n, in virtue of (3.31), and therefore

with constants which do not depend on s. Observe also that in view of (3.33)
we have C,,($) = 1 for every $ in the subset Is ,

Let M., be the least integer such that

in view of (2.1) in [2] we have for a suitable 7: &#x3E; 0 independent of s :

Fix Xo E Rn and let u be in O;’(Rfl), u(x) = 1 in a neighborhood of xo; we
define
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with

It follows easily from (3.31), (3.37), (3.38), (3.41) that a(x, $) E S",,(W) and
hence A E 0 We claim that A is not P’-local. This will be tested on

where x E Co (Rn), X(x) == 1 in a neighborhood of xo and supp x c {0153ERn,
o

u(x) = 1}. Note Z, the ball with centre ros and radius 2"l’, and set Z = U Z.;
s==i

observing that the series in the right-hand side of (3.44) is lacunary one gets
the estimates (cf. [14], Lemma 2.2 and subsequent proof):

Write .E = {rol, (02’ ...}and observe that in view of (3.35) we have for
every r &#x3E; 0 Z c E,, r) F,, where F,. is a suitable bounded set depending
on r; it follows easily from (3.45), (1.25) and Theorem 2.7 that all the

Tf-neighborhoods E,tp, r &#x3E; 0, are in Tw(f, xo).
Let us prove that the assumption Etp E Yy,(Al, xo) leads to a contradic-

tion. First introduce

with z as before. Write m§ = (28,0, ..., 0, M8), let Ts be the ball with
o

centre w; and radius 268/2, and set T = u T8; for any Xl E O(Rn) we have
in this case estimates of the type: 8=1

On the other hand, inserting (3.44) in (3.42) and using (3.39), (3.43), one
obtains that A f - g is C°° in a neighborhood of the origin (the argument
is similar to those in [13], [14] and we omit the details). Hence Etp E [Ftp

(A f , xo) implies Etp E [Ftp(g, xo) and for some xl E C-(R"), zi(z) = 1 in a

neighborhood of xo, we have
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00

Writing E. = U {co.,}w, observing that all the sets fco,}w are disjoint in
s=1

view of (3.34) and applying (3.30), (3.40), (3.35), one obtains that T r) Em,
is a bounded set. Therefore (zigl’($) is of rapid decrease in all R" and

zo w sing supp g. So we get the contradiction, since the series in (3.46) is

lacunary and sing supp g = supp g. Theorem 3.9 is proved.
Let now P be a linear partial differential operator with smooth coeffi-

cients in Q ; obviously P is tIf-local in Q for every choice of 1Jf.

DEFINITION 3.10. P is said to be Yf-hypoelliptic in Q if for all Xo E lii

From Proposition 2.8 it follows immediately:

PROPOSITION 3.11. If P is tlr-hypoetliptic in Q, then it is hypoelliptic
in Q, i.e. sing supp f = sing supp Pf for every f E 6’(Q).

Let Vf’($), V"($) be two basic weight vectors such that for some C &#x3E; 0

Since XC-IW" c XW" for every X eRn, it follows from Theorem 2.7 that

:F w"(f, xo) c :F w,(f, xo) for every f E 6’(Q) .

PROPOSITION 3.12. Under the assumption (3.50), if P is Vf’-hypoelliptic
in Q then it is also Yf’-hypoelliptic in Q.

PROOF. We have to prove Yw,,(PI, xo) cTw,,(/, xo) for every x, c-.Q and
all f E f;’(,Q). Assume Pf is P"-smooth in {xo} X X, X c Rn; then Pf is also
1p"-smooth in {xo} X XeW"’ for some 8 &#x3E; 0. Since :F w"(Pf, xo ) c Yw,(PI, xo),
Pf is P’-smooth in the same set {xo} xXeW". Therefore, if P is 1pl-hypoel-
liptic, f is P’-smooth in {xo} x X,Y,, and then it is clear from Theorem 2.7
that f is 1p"-smooth in {xo} XX.

PROPOSITION 3.13. Assume there exists a left parametrix of P, E E El 0 ,(IQ)
for certain local weight vectors ø, 99 in ,Q and A E O(fl&#x3E;, cp); then P is P-ipo-
elliptic for all the basic weight vectors P which satisfy (3.2).

In fact from Theorem 3.3 we have :F’F(Pf, xo) c :F’F(EPj, xo) and on the
other hand :F’F(EPf, xo) = :F’F(f, xo) since the difference .EPf - f is smooth.

DEFINITION 3.14. P is said to be 1p-solvable at {xo} X X, xo E D7 X c Rn,
if for every g E f;’(,Q) there exists f E &#x26;’(0) such that P f - g is tp-smooth in

{xo} x X.
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The following obvious statement can be regarded as dual of Proposi-
tions 3.11, 3.12.

PROPOSITION 3.15. Assume P is solvable in some neighborhood V c Q of
Xo E Q in the following sense: for every g E E’(Q) there exists f E E’(Q) such
that Pt - g is C°° in V; then P is P-solvable at {xo} X X for every choice of
the basic weight vector P and all X c Rn.

PROPOSITION 3.16. Under the assumption (3.50), if P is P"-solvable at

(zo) X X, Xo E Q, X c Rn, then it is also P’-solvable at {xo} x X.

REMARK 3.17. Note that the (1 + l03BEl) -solvability of P at (zo) X (I G Rn,
$ = t$O, t E R+}, X, E S2, $0 # 0, is equivalent to the solvability of P at

(x,, $°) in the sense of H6rmander (see [8], Definition 3.3.3), whereas the
(1 + [$[)-hypoellipticity of P in 92 implies the identity

(strict hypoellipticity, according to the terminology of [8]).

EXAMPLE 3.18. Let us apply the preceding arguments to the model
in R2

From the results in [15], [16], for example, we have:

(3.53) Ph,k is hypoelliptic in R2 if and only if one at least of the positive
integers h, k is even .

In the hypoelliptic case using the methods of [2] one can construct for Ph,k
a left parametrix Eh,k E E’O, I ,(W), where noting
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First let us define the basic weight vector P($) as in (1.41), fixing
M = (k, 1) in R2. In view of (3.56), (3.57), (3.58) and of the first inequality
in (3.59), Eh,k can be regarded as an element of the class ,(k,l),11(h+l),Il(h+l) (R
in the Example 3.5; hence, applying Proposition 3.12 and referring to the
anisotropic wave front set in Example 3.5 we may conclude (cf. [16]) :

We shall now investigate the (1 + lI)II-hypoellipticity,
we claim:

In fact, I if one at least of the integers h, k is even and kl(h + 1)  (o , we
may apply Proposition 3.13 using the second inequality in (3.59). On the
other hand if Ph,k is not hypoelliptic certainly it is not (1 + 1E1)(!.hypoel-
liptic either, in view of Proposition 3.11; moreover in the case e  kl(h + 1)
one can construct f E 8’(R2) which is not (1 + [$[)°-smooth in the ray

and such that Ph,kf is (1 + [$))°-smooth there. To define f consider a solu-
tion u(t) of

Extend .g to fj E 8’(R2 ) quasi-homogeneous with respect to the weight
(k, h + 1), take 7: E Ooo(R2), 1($) = 0 for ]$]  §, 1($) = 1 for [$[ &#x3E;I, and
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define

where !F-1 denotes the inverse Fourier transform in R2 . The distribution

.F e 8’(R2) is quasi-homogeneous with respect to the same weight (k, h + 1)
and sing supp .F’ = sing supp f = {(O, O)l - Fix an arbitrary x E Go- (R2) with
x(x) = 1 in a neighborhood of the origin; it is easy to check that

and, in view of Theorem 2.7, this implies that f is not V-smooth in r in
(3.62) for any basic weight vector Vf. On the other hand, if ekl(h + 1),
in the region

we have

and using Theorem 2.7 we conclude that Ph,k f is (1 + 1$1)11-smooth in h.

In particular we may discuss the validity for Ph,k of (3.51); looking again
at f in (3.65) and applying Remark 3.17 we obtain:

Incidentally, note that (3.61), (3.69) give a new proof of Theorem 3.9 for

0, 9? in (3.56), (3.57) and P($) = (1 + [$[)°. Let us refer to [15] for results
on the propagation of WF f when k/(h + 1»1. Fixing in (3.52) k = 1

we get

which is hypoelliptic if and only if h is even; for h even Qh satisfies always
(3.51) whereas it is (1 + 1)0-hypoelliptic if and only if 11(h + 1)  e.
As for the solvability, y say in a neighborhood of the origin, we recall that

Qh is solvable if h is even; if h is odd Qh is (1 + [$))-solvable at every ray
{(Ol 0)} X 1($11 2) c- R; E1 = A$O, 1 f $2=Ao, 2 AcR+, 000 1 0 or $£  0) , but it
is not (1 + )-solvable at the ray F in (3.62) (see for example [8]). How-
ever :
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In view of Proposition 3.16 it will be sufficient to prove (1 + IEI)(?-sol-
vability for e = 11(h + 1). Trying to solve QJ = g E &#x26;’(R2) by means of
f E 8’(R2) we are reduced to consider

By regarding (3.72) as an ordinary differential equation depending on the
parameter 03BE2’ one proves easily that there exists H E 8’(R 2) solution in the
region (3.67) for an arbitrary fixed L, and the difference Qh f - g, f = Y-1 (H),
is indeed (1 + )$))°-smooth in T.

4. - A class of Fourier integral operators.

Let A be a fixed subset of W x W, and assume the projection a(A) is

bounded in IV. We define S03A8,loc(AegI), 8 &#x3E; 0, to be the class of all a(x, $) E
E C-(A’w), A’w as in (1.16), which satisfy for every E’  E

whereas we write S" for the class of all a(x, $) E S" (W) such that
supp a c A.

In this section we shall refer to basic weight vectors of rational type,
according to the definition in Example 1-13 ; we shall also assume that for
suitable positive constants c, C

Note that this new property holds for W($) = [$]m in (1.41), since

[$ + tD]M [$Im -f- It [lS] M if t E [- 1, l] . For a basic weight function condi-
tion (4.2) reads

and joined with (1.42) implies (1.43); for example (4.3) is valid for P($) =

=(1+)01.
We want to study the Fourier integral operator
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where the amplitude b and the phase ro satisfy the following properties.
Fix two basic weight vectors of rational type:

let (4.2) be valid at least for Yl*($). As for the amplitude, we suppose
b(x, ’1}) E S{Ý,comp(A), where ll. c R] X R" has bounded projection n(A) c R]
(to guarantee the existence of non-trivial amplitude-functions, it will be

convenient, though unnecessary in the following, to assume A = Flw, for
some 6 &#x3E; 0 and F c W,, X W,). The phase w(0153, ’1}) is a real-valued C°° func-

tion in A-sv’, for some E &#x3E; 0, and it satisfies the three conditions:

In (4.7) we mean: the quotients of the functions P:(dxw(x, n)) and Pi(n)
are bounded in A"w, for every 8’  8. The product exp [i(t)(x,,q)] b(x,,q) in
(4.4) (as well as similar products later on) is understood to be defined = 0
for (x, q) 0 As". It will be useful to observe that the conditions in the

Introduction

imply trivially the weaker conditions (4.5), (4.6). Condition (4.7) is the

spatially inhomogeneous version of the standard ellipticity condition on

id. co 1. ·

THEOREM 4.1. Under the preceding assumptions we have

(II) Let A = a(x, D) be in Ev.(W). Then the product AF: 8’(Rn) -
- 8’(Rn) is the sum of a smoothing operator and an operator of the f orm (4.4),
with the same phase co(x,,q) and with amplitude h(x, 27) E SI"v .,,(A), h(x, 77) -
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with

PROOF. Noting a#(x, q) = a(x, dxw(x, q)), we want to prove that for
every a, P we can write

where I is a suitable finite set of multi-indices and g,,,p,(x,,q) are suitable

symbols in Sb’-,6(A-*"). Since we have from (4.7)

for every E’ C E, it is clear that (4.12) will imply a#(x, n)ES;",IOC(Aeq-F). Observe

that (4.12) is trivial for I(X + PI = 0. Then assume formula (4.12) has been
proved for every a, P with [a + PI = k; differentiation with respect to X;
gives

Applying the second assumption in (4.6) we recognize that (4.14) is still an
expression of the type (4.12). Developing in the same way D,D/§D§a’(z, q) ,
I(X + fl[ = k, and applying the first assumption in (4.6) we easily conclude
that formula (4.12) is valid for Ie( + fJl = k -p 1 and therefore, by induc-
tion, for every a, fl. Lemma 4.2 is proved.

LEMMA 4.3. Let a(x, D) be a linear partial differential operactor in the

class £;".(Rn). Then ,
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is a symbol in the class Sf:,;-;omv(A) with principal part ho(x, 27) = a(x, dxw
(x, n)) b(x, n).

Letting a(x, D) act under the integral sign ip (4.4), Lemma 4.3 essen-
tially proves the second part of Theorem 4.1 for a partial differential oper-
ator in vf

PROOF. A standard computation shows that h(x, ?1) in (4.15) is given by

where h,,,(x, q) is exactly as in (4.10), (4.11), but the sum in a is obviously
finite. Hence, to obtain Lemma 4.3 it will be sufficient to prove that

ha (x, q) is actually a symbol in VI, COMD
Observe first that the term 8ga(z, dxcv(x, 1])) in the right-hand side of

(4.10) is in vl,lo in view of Lemma 4.2. On the other hand we may
develop

where D’--8b(x, 77) c- S" From (4.6) and from the fact that w(z, x, q)
vanishes of order two at z = x we deduce easily

Therefore the function in (4.17) is a symbol in 81"’l’ (A) and it is proved
that ha(x, q) CSP+V-,X12 (A).

LE&#x3E;rMA 4.4. W e can find

(i) a linear partial differential operator with constant coefficients P(D) E

I

such that the identity
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PROOF. Since P* is of rational type, we can find in S$*(R") a polynomial
P($) which is elliptic with respect to P*. Applying Lemma 4.3 we obtain
easily that

is a symbol in S"vfo,lo,(A8""), 0  s’ 8, whose principal part P( d!lJw(x, n))
satisfies for suitable positive constants c, C:

in view of (4.7). Let ío(X, 71) be defined as in Lemma 1.12, with supp r,, c A" "
and -r,,(x,,q) = 1 in a 03A8-neighborhood of A ; set

It follows from (4.20) that q(x, q) is well defined in S;P,";omD(AB’’P) for

large [q[ . Therefore, if we fix a smooth extension of q(x, ’fj) and define

the identity (4.18) is trivially satisfied for (x, 17) E ll.

PROOF OF THEOREM 4.1 (I). Using (4.7) and applying the condition (1.1)
to P*, we obtain in every .liB’’?, 8’  8, the estimates

where the positive constants c, C depend only on E’ ; applying (1.1 ) to Y,
from (4.23) we have for some other constants c’, C’

Differentiating under the integral sign in (4.1) and using the second ine-

quality in (4.24) we obtain easily that F: C§°(R") -&#x3E; Co-(IV). To prove

F: &#x26;’(RII) - 6’(R") we shall argue on the adjoint tF:
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where for the moment the integral is purely formal. We want to show that
tF: Ooo(Rn) - Ooo(Rn) continuously. We begin by assuming in (4.25) b(y, q) E

e S$comp(A) with

for some positive constant C. In this case the integral with respect to 77
in (4.25) is absolutely convergent; moreover, if we fix an arbitrary x E 6§°(R")
and if we take Xo E Co- (IV), xo(y) = 1 for y E n(A), we have

with cx independent of f.
In the general case, we shall first apply Lemma 4.4 under the integral

sign in (4.25). Actually, y from (4.18) we have the identity

1’8

Inserting (4.28) in (4.25) and integrating by parts we obtain easily that

where is a smoothing operator. Now, applying the generalized Leibnitz
formula, we have

with

Then, inserting (4.30) in (4.29) we may write the integral as a sum of
integrals of the type (4.25) where the amplitude-functions are in S:o:n1&#x3E;(A)
and f is replaced by the functions Za(D) f, where LtX(D) E ct.)(Rn) for

every a. Iterating the preceding argument, , say .lVl times, y the condition
(4.26) will be finally satisfied, so that in view of (4.27)

Since !F is also of rational type, there exists a polynomial Q(n) E S";(W),
/-t 0 :::::: (go 1 I... 7 go) n , ",7&#x3E; 0 for all j, 1",°1 10 0, which is elliptic with respect
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to 03A8; consider the function

Observing that Q(n)N b(y,,q) E SNA’+" (A) we may argue as before in (4.33),
and reach the following conclusion: for every #1 E Rn there exists p2 C W
such that tF: H.),loc(Rn) - Tm- I..(W) continuously. This is sufficient to

obtain tF: 0’(W) -&#x3E; C°°(R"), and the first part of Theorem 4.1 is there-

fore proved.

PROOF OF THEOREM 4.1 (II). Letting A = a(x, D) act under the integral
sign in (4.4), , we are easily reduced to prove

where zv(x, q) G nS" (W) and h(x, 77) -1 h,,(x, q), with h,,(x, q) as in (4.10),
«

(4.11). Note that we have already seen in the proof of Lemma 4.3 that
ho,(x,,q) is actually in Sly’ in fact, the arguments there rely only
on the assumption a(x, D) E £..(Rn).

We can write:

Take u E Co-(W), u(z) = 1 for lzl  or/2, u(t) = 0 for Izi &#x3E; (J, where the con-
stant (y&#x3E;0 will be chosen later. Define

and denote by g’(x, 17), gl(x,,q) the functions which we get from the integral
in the right-hand side of (4.35) by replacing there b(z, q) with b’(z, x, q),
b"(z, x,,q), respectively. Using the obvious identity

and applying repeatedly formula (4.18) of Lemma 4.4, we obtain by means
of integrations by parts



244

where the operator A, = A,(z, Dz) is defined by

r

ma 4.4. Taking large N and M, we deduce easily from (4.38), (4.39) that
g"(x, n) E n $I" (W). Thus we are reduced to consider the remainder

A standard computation gives the following expression f or .R (see [18], , for
example) :

where B, is defined by the oscillatory integral

with

Note that b,, (z, x, ?1) = 0 for (z, 77) 0 A, or (x, q) w A’7, where, a is the con-
stant in the definition of the function u in (4.36); suppose (J  c/2, for

example. It will be sufficient to prove that R(X(x, 1)) E S-(X12(Rn), for a fixed
j1 e R". As a matter of fact, we shall content ourselves with proving

since the argument for the estimates of DxD.Ra(x, 1}) is almost exactly the
same.

Define for 7: &#x3E; 0

and consider the complement
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Arguing as in the proof of Lemma 1.10, we can easily construct a function
Â({), q) E 6°’(R" xR"), with Â({), q) = 1 if lS E W2 n, Â({), q) = 0 if lS E W;’,1J’
for some 7:’, 0  7:’  7:, and such that

where the constants c. do not depend on 0. Set

and denote B,,,(x;,q), .Ra,2(x, 77) the functions which we get from the integral
in the right-hand side of (4.42) by replacing there r(¥(x, n; 1}) with r:(x, n, 1}),
r. ff (x,,q, 1}), respectively.

First let us estimate R(XJ1(X q). Applying the identity

and integrating by parts, , we may write

with 
’

If the constant 7: in (4.46) is chosen sufficiently small, for {} E W;,fJ and
(x, ’Y}) e AS1J’/2 we have

since min PZ({)) P:(da;w(x, q) ) -1  C min W£(lS) Yf7,(,q)-l in view of (4.7), and
k k

one may apply (4.2) to p* (here and in the following C, Ca, ... are suitable

positive constants). Using (4.48), (4.53) and (4.7) from (4.43), (4.49), (4.52)
we get
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On the other hand we have

for suitable integers L,,, as one obtains easily from the arguments in the
proof of Lemma 4.3 and from the estimates

which are consequences of (4.6). Applying (4.54), (4.55) in the integral (4.51)
we obtain

where V(q) is the volume of -W,",, in (4.46) and

If N is fixed sufficiently large, y we have

On the other hand, it follows from (1.1) that ’W.,’,,, is included in the ball
with centre the origin and radius H(i + I?JOB, for a suitable H &#x3E; 0, and
therefore

for a suitable /2 c- R-. Applying (4.59), (4.60) in (4.57), we conclude that
an estimate of the type (4.45) is valid for RtX,l (0153, n).

To handle RtX,2(X, 77) it will be convenient to develop (4.44) :

where the sum in fl is finite and the functions bxp satisfy
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with suitable ,£taD ERn; moreover :

We are reduced to consider

where rff 0 #) is defined in (4.49) and

with

Observe that r§(z, q, (}) = 0 for {} fI W;’,17’ where 7:’ &#x3E; 0 is the constant in

the definition of the function Â in (4.49) ; therefore we may limit ourselves
to estimate F(X{3(x,r,{}) in W;’,17’ where tp:({}»7:’Pk(n), k= 1, ..., n, in view
of (4.47). Applying (1.2) to t]I*, we have that in this subregion

where c, C are suitable positive constants which do not depend on {}, C, ?7.
Consider now

If d is sufficiently small, for iz - x I  y we have

as we obtain from (4.6); then from (4.67) it follows that

for (z, x, q) E supp bap and lS E W;’,1J. Let P(D) E L.(Rn) be as in Lemma 4.4
and consider 

’
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Observing that n: e(z, x, 1), ()) = D: w(z, 1)) for I(XI &#x3E;2, arguing as in the
proofs of Lemmas 4.3, 4.4, using (4.70) and keeping in mind that P£(l$) &#x3E;
&#x3E;7:’Pk(n), we see easily that

is well defined for (z, 0153, 1)) E supp b,,,, 7 0 E W;’,1]’ In I large, and it satisfies

there

for constants ey, 1 ey which do not depend on z, x, 7y, . Applying in (4.65)
the identity exp [ie] = qP(Dz) exp [ie] and integrating by parts repeatedly,
we obtain from (4.62), (4.73) that in supp ra (x, 7y, 0)

for arbitrary p,1, p,2 ERn. Hence, observing that r§(z, q, #)  C P*(lS)" for
some 9 G R" and fixing a suitable p,2 in (4.74), we conclude :

This ends the proof of the second part of Theorem 4.1.
We can now study the action of F in (4.4) on the P-filter of a distribu-

tion. Let us associate to the phase ro(0153, 7y) the transformations

and assume "p is a diffeomorphism with inverse

suppose moreover 1p(Af’w* c V(A-*7) for a sufficiently small 6 &#x3E; 0 and

THEOREM 4.5. Under the hypotheses of Theorem 4.1 and the additional

assumptions (4.79), let f E B’(Rn) be tIf-smooth in e c X(A); then Ff is Tf*-

smooth in E = 1p(X-l(e}).
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PROOF. In view of Lemma 2.3 there exists c(x, D) E £)(R") with rapidly
decreasing symbol in eðl1JF, for a suitable 61 &#x3E; 0, such that f - c(x, J9) f E
E C§°(R’n). Recalling (1.19) and Lemma 1.11, we can find ð2 &#x3E; 0 such that

Moreover, y using (4.5) and (4.79), y we see easily that there exist 63 &#x3E; 0,
6, &#x3E; 0 such that

Then, applying Lemma 1.12, we take io(X, $) E SOW.(IV) with supp 7:0 c E"-7*
and 7:o(x, $) = 1 if (x, $) E Sð1jf*, for a suitable constant ð5 &#x3E; 0. Let 7:(x, D)
be in (R")y with 7:(x, $) - -c,,(x, E) ; to get the conclusion in Theorem 4.5
it will be sufficient to prove i(z, D) Ff EOr;(Rn). Split ,

The first term in the right-hand side is in 00’(W); therefore we may limit
ourselves to prove that the operator 7:(x, D)Fc(x, D) is smoothing. We shall
begin by applying Theorem 4.1 (II) to the product F, = -r(x, D) F; it fol-

lows that, modulo the addition of a function in Co’(W),

In view of (4.84) and of the second inclusion in (4.81) we may assume in

(4.83) supp bl c X-l(e)ðaW. To prove that Fle(x, D) maps &#x26;(Ril) into C,-(R’),
we shall argue on the adjoint tc(x, D) tfi. From Theorem 1.3 we have that

tc(x, D) is in Co (W) with symbol

Then, arguing on the oscillatory integral in (4.25), we may write
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Observe that c"(z, - q) is in S)(R’n) ; in view of (4.85) it will be not restric-
tive to assume supp c-(x, - n) c Rn’,/?Jðl1JF, if (4.86) is understood to be valid
modulo the addition of functions in Ooo(Rn). In (4.86) we may apply the
identity

and we integrate by parts. From (4.80) and from the first inclusion in (4.81)
we have

hence the function

satisfies the estimates

in view of (4.5). Since N may be taken arbitrarily large, it follows easily
that tc(x, D) t.Fl : D’(Rn) - C°°(Rn) continuously and this concludes the proof
of Theorem 4.5.

EXAMPLE 4.6 ( Changes of variables) . Let y = J(z) be a diffeomorphism
from a neighborhood U of xo E Rn into a neighborhood V = a( U) of yo =
- G(xo) E R" and let x = a-’(y) be its inverse. Fix a small neighborhood Ul
of XO, U, cc U, and write V. = a(U,); the map

can be expressed in the form (4.4), with w(x, 7y) = 1(x), q) and bE Co ( U),
b(x) = 1 for x E U1.

Fix P(q) of rational type; assume for simplicity P(q) is a basic weight
function, and let (4.3) be valid. Conditions (4.5), (4.6) are satisfied for F
in (4.91) if and only if

Consider the linear transformation
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and define

it is easy to check that P*($) is a basic weight function of rational type
satisfying (4.3). Moreover, possibly after a shrinking of U, from (4.92)
we have that the property (4.7) is valid for Yr*(E):

Let us introduce the new condition

We shall say that a (germ of) diffeomorphism a is Yf-consistent at xo if (4.92),
(4.96) are both satisfied. Observe that every diffeomorphism a is (1 + E 1) -
consistent ; a linear a is Vf-consistent for all ’If, whereas all Tf-consistent a
are linear if P($)  C(1 + ]$])Q for some C &#x3E; 0 and Lo  1.

For a given collection 9 of subsets of Rn let us write

with a* as in (4.93); we claim:

(4.98) if a is tp-consistent at x, then [Ftp.(foa, xo ) = a*([Ftp(f, xo ) ) for every
distribution f de f ined in a neighborhood of yo = a(xo) .

In fact, if or is tp-consistent we can apply Theorem 4.5 to both .F’ in (4.91)
and its inverse F-1; we have in particular that f is Vf-smooth in {X(,} X X
if and only if foa is W*-smooth in (yo) xa*(X) and therefore Y E Yw.(Ioa, xo )
if and only if Y c a* (yy,(/7 x.)) -

EXAMPLE 4.7 (Propagation for evolution equations). We shall refer to
the following translation invariant model. Let A($) be a real x-independent
symbol in SII(W), where the basic weight vector tp is of rational type and
satisfies (4.2); assume also that for some constant C &#x3E; 0

The unique solution ’U E Ooo(Rt; 8’(R£)) of the problem
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is expressed formally in R,xE, KccW by
/ 

by

where b E Co’(RII), b(x) = 1 in a neighborhood of K. For every fixed t E R

we recognize in (4.101) a Fourier integral operator of the form (4.4); in
fact, for rot(x, q) = xq + tA(q) the condition (4.7) is trivially satisfied with
Yft" = Vf and (4.5), (4.6) follow from (4.99). Define for 0(, c R’ x R",

Applying Theorem 4.5 in (4.101) and keeping in mind the reversibility of
the problem (4.100) we obtain for f t(x) = u(t, x), t E R:

For example, fix P($) = [E]M as in (1.41) and consider the quasi-elliptic
n

polynomial Q($) = 1 + 1$,"Iml, where r is the least common multiple of
1=’

the M3’s ; from the resolution into pseudo differential factors of the oper-
ator D;’T: - Q(Dx) one obtains the first order terms at ± iQ’I"(D.,), to which
proposition (4.103) applies in an obvious way (cf. [10], [17] and Theorem 1.6.5
in [8]). A more exotic example is given by A($) = 1;1(1 sin 1;11-(1, where

0  Lo  1 and we argue on large 1$ 1; for the corresponding equation a, u -
- iA(D)u = 0 the preceding arguments apply with Tf($) == (1 + )$])°.
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