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Microlocal Analysis for Spatially Inhomogeneous
Pseudo Differential Operators.

LUIGI RODINO

Introduction.

A spatially inhomogeneous pseudo differential operator 4 in the class
flﬁ},ﬂ,(!)), £cRn, is a properly supported operator of the form

(0.1) Af(w) = a(w, D)f(x) = (27)|exp [i€] a(e, &) f(&) d&
where a(z, E)ES$,¢(.Q), i.e. for every Kccf
(02)  |DiDia(®, &)< 0upx exp[A(a, &)l p(a, £)~* B(w, £~", weK, EeRn,

with standard vectorial notations; @(x, &) = (Dy(x, &), ..., Pu(w, &), @@, &) =
= (@u(®, &), ..., @al@, £)) is a pair of local weight vectors in 2 and Az, £) €
€ 0(®, ¢), according to the definitions in Beals [2], for example (see also
the recent works [9], where Hormander has given for similar classes of oper-
ators an equivalent definition which is invariant under linear symplectic
transformations, and Nagel-Stein [11], [12], Beals [4], where the L?-bounded-
ness of A is proved under suitable conditions on D, ¢).

In this paper we set up a new approach to the study of the action of
Ae %,q,(!?) on the singularities of a distribution fe §(2) and we outline
some applications; the analysis will be microlocal, that is we shall not only
be concerned with the location of the singularities in £, but also with
their local harmonie analysis in 7*(Q, following a well known idea of Hoér-
mander [7], [8]. Actually, the action of 4 € %’(I,(Q) on the wave front set
(WF) of Hormander was already studied in Parenti-Rodino [13], [14] where
it was observed that 4 e Qé,w(!)) is always pseudolocal but it may dispace
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the WF inside the fibers of T*(, if the components of the vector ¢ do not
satisfy suitable estimates.

The negative results of [13], [14] suggest here a microlocal analysis of a
more general type. Let ¥(&) = (¥i(£), ..., Palf)) be a basic weight vector,
ie. let Dz, &) = P(&), ¢(x, &) =1 be a pair of local weight vectors, and
write simply S4(2) for the related class of symbols S@,I(Q), A=u log¥
(the properties of the operators in ££(£) are reviewed in the next Section 1).
We shall say that f€8/(Q2) is ¥-smooth in Ac T*Q if there exists an elliptic
symbol in A, a(z, &) € 8%(2), such that a(z, D)f e C°(2). In the following
Section 2 the singularities of f are then located by means of the collec-
tion of subsets of T*Q

(0.3) Fe(f)={I'cT*Q, [ is P-smooth in A= T*Q\TIY},

which we shall call the Y-filter of the singularities of f; localizing (0.3) at
a point z,€ 2 we shall consider in particular

(0.3)' Folf, @) ={T R, f is P-smooth in {wo}x(R"\Y)}.

Choosing ¥;(§) =1 + |§], j = 1, ..., n, one recovers essentially in (0.3) the
filter of the neighborhoods of the WF of Hormander. Another important
example is given by the anisotropic wave front set in Lascar [10], Grushin-
Sananin [6], Parenti-Rodino [16], Parenti-Segala [17], corresponding to the
pseudo differential operators of quasi-homogeneous type.

In Section 3 we study the action of an arbitrary 4 e Slf,,q,(Q) on the
Y-filter; it is proved that if the condition

(0.4) Y’;(E)%(w, §)>c]5|c ) i=1.,n,

is satisfied for some ¢ > 0, then Af is ¥-smooth in every subset A c T*Q
where f is ¥-smooth. In particular, if

(0.5) Ps(@, 5)>0(1 + IEI)G_I ’ i=1.,n,

then we have WF Afc WFf for every Aef} (Q).

At the end of Section 3 we present some applications to the microlocal
analysis of linear partial differential operators. We shall say that a dif-
ferential operator P is W-hypoelliptic in Q2 if the Y-filters of the singulari-
ties of f and Pf coincide for every fe §(Q2). Suppose P has a left para-
metrix F e E;’W(Q), with suitable @, ¢, 1; then P, which is certainly hypo-
elliptic, is P-hypoelliptic for all ¥ which satisfy the condition (0.4). In
particular, if (0.5) is valid, taking ¥;(¢) =1 + £, j =1, ..., n, one obtains
that WF Pf = WF f for every f e §(2). We shall also introduce a related
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notion of ¥-solvability; this will allow us to solve, in a suitable microlocal
sense, certain operators which are not locally solvable in standard sense,
as for example D, -- i, D, in a neighborhood of the origin in R* Micro-
solvability and micro-hypoellipticity with respect to anisotropic wave front
sets were already discussed in Parenti-Rodino [16] for a class of degenerate
quasi-elliptic equations.

Section 4 is devoted to the study of the Fourier integral operators

(0.6) Ff(@) = (27)* [exp [iw(, n)] b(w, 1) fin) da

where the amplitude b(z,#) is in S§(R") and the phase w(x, ) satisfies in
a neighborhood of supp b conditions of the type

(0.7) ow(w, 1)/on; € 8y, i=1,.,n,
(0.8) Y;(n)~* 0w (2, n)[0x; € 8% , j=1,..,n.

We shall give a formula for the composition of F with a pseudo differential
operator and we shall study the action of F' on the Y-filter; it will follow
in particular that the Y-filter is invariant under the changes of variables
which satisfy suitable conditions of compatibility with the basic weight
vector 7.

Fourier integral operators of the form (0.6) are the natural tool for the
analysis of the singularities, when one deals with spatially inhomogeneous
evolution equations. Here we shall limit ourselves to a simple application,
concerning a translation invariant model. General results on propagation
and reflection of anisotropic wave front sets can be found in Parenti-
Segala [17], where a calculus is developed for operators F with phase w(x, %)
of quasi-homogeneous type.

Further applications of our machinery to the theory of the linear par-
tial differential operators will be discussed in future papers.

1. — Classes S4(Q).

We say that the n-tuple of positive continuous functions ¥(&) = (¥,(£),
ey Pa(&)) in R® is a basic weight vector if there are positive constants ¢, C
such that

(1.1) (14 ) <Pi&<O1+ [E)°, d=1.,m;

(1.2) <P+ NTH<C, j=1,..,n, if 3P <

k=1
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Let 2 be an open subset of R*. For g = (4, ..., 4ts) ER" we define
S4(82) to be the set of all a(z, &) € 0°(2 xR") which satisfy in every KccQ
the estimates

(1.3) |DiDia(w, &)<z P ()P, wecK, EcRn,
with standard vectorial notations. Let
(1.4) Af(») = a(@, D)f(x) = (2m)™" f exp [iwf] a(z, £) (&) d&, fe0P(Q),

with a(z, &) € 8§(2). The rules of the calculus of the pseudo differential
operators hold for operators of the form (1.4); in fact, if ¥(£) is a basic
weight vector, the pair D(xz, &) = W(&), ¢(x, §) = 1 is a pair of local weight
vectors in the sense of [2], for example. Let us review shortly the prop-
erties which we shall use in the following.

Recall first that for every given basic weight vector ¥°(£) we may
find a smooth basic weight vector ¥(£), which is equivalent to ¥°(&) (i.e.
Y (&) P&t and Wy(&)~WPP(£) are bounded in Rn), such that

(1.5) IDIF )| <o FO)PE)F,  EeR, j=1,..,m.

Equivalent basic weight vectors define the same class of symbols; there-
fore we may assume in the following that ¥y(&), ..., ¥.(§) satisty (1.5).

The operator 4 in (1.4) maps continuously Cp(f2) into C*(£2) and it
extends to a linear continuous operator from &(Q) to D'(L2). We shall
denote by £4(£2) the set of all properly supported maps 4 = a(x, D), with
a(z, &) € 84(Q); for every given a(z, &) € S§(L2) one can find a'(x, &) € SH(Q)
such that a'(z, D) is properly supported and a(z, &) ~ a'(x, &), i.e. a(z, &) —
—a'(x, &) ED 84(Q).

Write Hf for the Hilbert space of the distributions fe 8'(R*) which
satisfy

(1.6) 11 = [P@™ 1@ & < oo
The properties of the spaces Hf are similar to those of the usual Sobolev
spaces; we have in particular |JHf = §'(R*), [\ Hf = S(R"), also in the

u »
topological sense. Let Hy ,.,(2), H (£2) be defined in the standard
way; if 4 is in £4(Q), then for every » € R™:

1.7) A: HE Q) = Hy ooy (2) continuously ,
(1.8) A HE(2) —Hy(2)  continuously .
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A map 4: 03(2) - D'(Q) is said to be smoothing if it has a continuous
extension mapping &'(£) into C°(Q); for given operators 4,, A,: &§(Q) —
— D'(2) we shall write 4, ~ A, if the difference 4, — 4, is smoothing.
If a(x, &) is in [ 84%(R2), then a(x, D) is smoothing.

»w

THEOREM 1.1. Let a\(®, D) be in £5(Q), let ay(x, D) be in Li5(2). Then
the product a,(x, D)ay(@, D) is in L&+*(Q) with symbol

(1.9) a(@, &)~ 3 (a!)~* 0Fay(w, §) D3ay(, §)

o

in the sense that for any finite set J of multi-indices

(1.10) a— > («!)"10ta, Diae | S+ —%(Q) .

aed a¢J

THEOREM 1.2. If a(w, D)efLf(RQ), then the restriction to Oy (L2) of the
L2-adjoint, a(z, D)*, is also in L£4(02), with symbol

(1.11) (@, &)~ («!)"0;Dia(x, &) .

o

If P(&) is a basic weight vector, then W(&) = P(— &) is still a basic
weight vector; we have the following:

THEOREM 1.3. If a(z, D) € £4(R2), then the formal adjoint *a(x, D) is in
£o(82) with symbol
(1.12) @ (@, &) ~ 3 () "1 0; Dya(w, — &) .

o

We shall say that a,(z, &) € 84(L2) is a principal symbol for a(z, D)e
€ £4(Q) if a(z, &) — ay(w, &) € 8§ (Q), for some » = (vy, ..., v,) ER? »,>0 for
all j and |»| 0. Observe that a(z, £) in (1.9), a*(z, &) in (1.11), &~ (, &)
in (1.12) have principal part a,(z, §)a.(2, &), a(z, &), a(x, — &), respectively.

DEFINITION 1.4. The symbol a(z, &) € S8&(82) is said to be elliptic (with
respect to ) in Q if for every Kcc Q2 there are positive constants cx, Cx
such that

(1.13) la(z, &)|> e (&))" for ve K, [§|>Ck.
If a(x, &) has principal part a.(z, &), a(z, &) is elliptic if and only if

ao(, &) is elliptic; it is then clear that products and adjoints of operators
with elliptic symbols have elliptic symbols.



216 LUIGI RODINO

THEOREM 1.5. Let a(x, D) be in L£4(Q) with elliptic symbol in Q; there
exists b(x, D) € Lz#(2) such that

(1.14) b(x, D) a(x, D) = identity 4 ¢(x, D)

where oz, D) € [ L(RQ).
u

We want to study now operators in £4(£2) which are « microlocally »
elliptic in a subset of 2 xXR». First of all, let us introduce some new nota-
tions. Take Ac 2 XxR" and assume that its projection

(1.15) a(d) = {we R, (v,§)eA for some £cR7}
has compact closure in 2. We define for ¢ >0

(1.16) A¥=

= U {(.’t‘, §)E~QXR”7 lw'—w0|<8 and Iéa_ E.?I<5Yja(§0) for j=1, -"’n}§
(0, 8%)e4

A%¥ will be called the ¥Y-neighborhood of ray & of A in 2xRn. In (1.16) we
understand that the ray ¢ is so small that m(A°¥) too has compact closure
in Q.

Then let X be a subset of R»; we define for ¢ >0 (cf. (1.13) in [11]):

1.17) X,p= U {EcR, [&— &) < eP(&) for j=1,...,n}.
&%eX
Setting
(1.18) A, =" wy) N A= {£cR, (), &) e A} R,
we have A= |J 4, and
@oen(4)
(1.19) A% = | {2, |v— oy <&} X(4, ) -

zoen(A)
DEFINITION 1.6. Let A be a subset of 2 XRe, and assume 5(A) has com-

pact closure in Q; let a(x, &) be in S4H(Q). We say that a(x, &) is elliptic (with
respect to V) in A if there are positive constants ¢, C such that

(1.20) la(@, §)|> @ for (@, Eed, [E>C.
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Wad

If a(z, &) is elliptic in A then it is elliptic in A°%, for a sufficiently small
&> 0; this follows easily from the estimates (1.3) for |x 4 f| = 1.

DEFINITION 1.7. We say that a(x, &) € 84(2) is rapidly decreasing in
Oc QxR if there exists a,(x, &) € SG(2) such that a(x, §) ~ ay(w, &) and
SUPP @, C (2 XR"N\ 0.

THEOREM 1.8. Let a(x, D) be in £4(Q) with elliptic symbol in Ac Q2 XR"
(as in Definition 1.4 n(A) has compact closure in Q). There exists b(w, D) €
€ Lz"(£2) such that

(1.21) b(z, D)a(x, D) = identity + c(x, D),

where c(x, &) € 8Y(2) is rapidly decreasing in A, for some r > 0.

This microlocal version of Theorem 1.5 is new, with respect to the
references; we shall prove it by means of the following lemmas.

LemMmA 1.9. Let E be a subset of 2XRn, and assume 7(E) has compact
closure in Q. Let a(x, D) be in L%Q) with elliptic symbol in Z; let z(x, D)
be in £Y(R) with rapidly decreasing symbol in (2 XR®)N\E. Then there ewists
b(x, D) e £(RQ) such that b(z, D)a(w, D)~ t(z, D).

PrOOF. We may take 7,(z, &) € S%(Q) such that z(z, §) ~ 7,(x, &) and
supp 7,C Z. Set

To(®, 5)/“’(% 3] for (, §e Er

(1.22) bo(z, &) =
for (x, &) ¢ 5.

Since a(w, &) is elliptic in &, by(», £) is well defined in S%(L2) for large |£|.
Then, arguing by recurrence, we introduce

—_ z (“!)—1 a?”,-qq(% E)D:a’(wv ‘f)/a(w’ &) for (“"7 &) EE,

(1.23)  b_y=, &) =] o<l
0 for (x,&) ¢ 5,
j=1,2,...
For large |§|, b_;(x, &) is well defined in |J Sz*(R), with suppb_,C Z.

lol>5 -
Using a standard argument we can construct b(z, &) € 8%(2) such that
b(®, &) ~ > b_,(x, £); we may also assume that b(x, D) is properly sup-
i=0

ported. Noting by e(x, &) the symbol of the product b(z, D)a(z, D) € Lo Q),
we have easily from Theorem 1.1 that e¢(x, &) ~ 7o(x, &). Lemma 1.9 is there-
fore proved.
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LeMmA 1.10. Let ¢ >0 and X c R» be fized. There exists o(&) € S%(R™)
such that supp, o0 C Xy and o(§) = 1 if § € Xy, for a suitable ¢/, 0 <&’ <e,
which depends only on ¢ and ¥.

In the proof we shall use the following result, which is a straight
consequence of the property (1.2):

LeMwmA 1.11. For every fized ¢ >0, we can find ¢*, 0 <<e&*<<e, such that

(1.24) (Xyow)erwC Xow
(1.25) (RN X ew)grw C RN\ X,
for every X c R,

ProoF oF LEMMA 1.10. Applying (1.25) in Lemma 1.11, we begin by
taking & > 0 such that

(1.26) (R"\X(slz)w)e‘,-yc R”\Xs,,%

the constant & in the statement of Lemma 1.10 will be chosen in such a
way that

(1.27) (Xow)ewC X, w,

according to (1.24) in Lemma 1.11. From (1.26), (1.27) it follows

(1.28) RNX e2yp)ee N (Xpw)ow =0,

for every X c R». Let u denote the characteristic function of the subset

(Xew)ewC R Take pe C°(R") such that [g(f) di =1, ¢(t)>0 and @) = 0
for [{|>%. We define:

o 171 én_n"
(1.29)  o(§) =) ... Wal§)™ f ( "’s'lp,,(s))d’"

It is easy to check that o(£) € 8%(R"). Fixing £ € R", then we consider the
function of

(1.30) ge(m) = o (f‘ 7 (2;, s i”gz (Z-))

and we observe that

(1.31) supp geC {neR’, |n,— &| <& W;(&) for j=1,...,n} .
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If {e X,y, then supp g,C (X, ) and thus

(132) o) =& O B g dn = [y @t =1.

On the other hand, if & ¢ X,/ then supp g, C (R™\X,/pyp)sw and it follows
from (1.28) that supp g, N supp w = @. Therefore we have o(§) = 0 for
& ¢ X oyw and suppe o C X,y

LEMMA 1.12. Let ¢ >0 and AcC QxR be fized; assume m(A) has com-
pact closure in 2. There exists z,(x, &) ezS‘,’,(.Q) such that supp 7,C A*Y and
7@, &) =1 if (x, &) € A”'Y, for some &', 0 < & <e.

Proor. The constant &’ will be chosen in such a way that the conclu-
sions of Lemma 1.10 hold, for the same ¢, ¢, and moreover 8¢’ <<e and
7(A%¥) has compact closure in 2. Take note of the obvious inclusions:
a(A) c 7(A*F) C m(AF).

Let 8,, ..., 85 be balls in Q with centres @}, ..., % € n(4) and radius
2¢', such that

H
(1.33) (A cU 8, -
h=1
Since 8¢’ <&, we have
H
(1.34) 8, C m(A%¥) .
h=1

Denote by 8, the ball with centre #* and radius 4¢'; observe that (1.33),
(1.34) are still satisfied if we replace 8, with 8,. Keeping in mind the
definition of 4, in (1.18), we set for h =1, ..., H:

(1.35) X,= U 4,
28" nm(A)
and moreover
H

(1.36) A-(h) = 8, X (Xp)sw 4,=U A(h) :

h=1
Observe that (X,),e= U (4, )sw. We define also:

7S’ na(d)
! ! ! B ’
(1.37) A(h) =8 X(Xpewy, Ae=U A(h) .
h=1

We shall prove:
(1.38) A ¥cA,cA,ca”.
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The central inclusion is obvious, since §, C S; and (X,),wC (X,)ep. Assume
(®, &) € A°'¥; this means that there exists (z,, &) €4 with |[v— zy| <&’ and
|&— &1 < &P, j =1, ...,n. Since zen(A”¥), we have €8, , for some
index bh,; therefore it is xoeS,:o. Writing &, € 4, , we have from (1.35)
& e X, and thus § € (X, ),». Summing up we obtain (#, &) € 4, , and the
first inclusion in (1.37) is so proved, in view of (1.36).

Assume now (z, ) € A,; this means that, for some index h,, xS,
and £ e (X, ).p, i.e. £€(4;),p for some zes, Nn(d). We have lx—x|<
<8'<e and moreover |£,— &;| < e¥,(&), j _1 ..ym, for some EeA-; this
implies (x, &) € A°Y and completes the proof of (1.38). Let 0,(£) € 8%(2) be
defined as in Lemma 1.10, with supp, o, C (X,).p, 03(§) =1 for £ € (X,),w
Then take y, € C5°(£2) such that supp g, C 8, and y,(@) =1 for x€ §,. The
product v,(«, &) = x,(«)0,(&) is in 8(), with supp 7, C Ay, and 7,(x, §) =1
for (x, £) € A;y. Define

H

(1.39) To(®, §) =1— 1‘[ (1= 72, &) € SH(Q) .

We have 7,(x,£) = 0 if (2, &) ¢ A, and vo(w, &) =1 if (2, §) e A,. There-
fore Lemma 1.12 is proved, in view of (1.38).

PRrROOF OF THEOREM 1.8. Multiplying a(xz, D) by an operator a'(z, D) €
€ £34(2) with elliptic symbol in 2 (take for example a'(x, &) ~ ¥(&)™#), we
are reduced to prove the theorem in the case y = 0. Then let a(x, D) be
in £3(R2), and choose &£ >0 such that a(z, &) is still elliptic in A°*. Take
7o(, &) as in Lemma 1.12, with supp 7,c A** and v,(z, &) =1 if (z, §) € A%,
for some &, 0 <é&' <e. Let 7(x, D) be in L£H(R), with z(z, &)~ 7o(z, &);
7(x, &) is rapidly decreasing in (2 XR")N\A** and we may apply Lemma 1.9
with &= A°**. So we get b(z, D) e £}(R), such that b(x, D)a(x, D) ~ z(z, D).
The symbol of the operator ¢(x, D)= b(x, D)a(x, D)— identity is rapidly
decreasing in A" for 0 < r <& and Theorem 1.8 is therefore proved.

Finally let us discuss some important examples of basic weight vectors.

ExampLE 1.13. We shall say that the n-tuple ¥(&) = (¥i(&), ..., Pa(£))
is a basic weight vector of rational type if it satisfies (1.1), (1.2) and more-

over

(1.40) there ewists a polynomial Q(&) € Sy (R™), u® = (13, ..., ud) e R* u?>0
for all § and |u°|+ 0, such that

|Q(8)|> (&) for |E|>C.
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That is, @(£) is elliptic with respect to ¥ in R#; it follows in particular
that the operator with constant coefficients Q(D) is hypoelliptic.
For example, let M = (M,, ..., M,) be a n-tuple of positive integers,

n
define [£],, =1+ Y |£]* and consider the basic weight vector (see [6],
[10]9 [16]’ [17]): i=1

(1.41) P(€) = [ = (613 -, [E131°) -

V(&) in (1.41) is of rational type, since (1.40) is satisfied by the quasi-

n
elliptic polynomial @(§) = 1 + > & where 7 is the least common mul-
tiple of the M)’s. i=1

ExampLE 1.14. Let ¥(&) = (Pu(&), ..., Pa(£)) be a basic weight vector
whose components coinzide; we shall identify ¥(&) with the function ¥,(§) =
=...= ¥,(&) and we shall call it a basic weight function (cf. [1], [3], [5]).
A positive continuous function ¥(£) in R~ is a basic weight function if and
only if there are positive constants ¢, ¢ such that (see (1.18) in [2]):

(1.42) e(1+ [£)) <PE <0+ ),
(1.43) e<P(E+NHPE)1<C if [Pl<e¥(£) .

For example, ¥(£) = (1 + [£]) is a basic weight function of rational type
for 0 < p<1.

2. — Y-filter of the singularities of a distribution.

Here as in the preceding section ¥ is a fixed basic weight vector in R»
and £ an open subset of R~.

DEFINITION 2.1. Let f be in D'(2); let A be a subset of 2 XR» and assume
n(A) has compact closure in 2. We shall say that f is ¥-smooth in A if there
exists a(x, D) € LY(2) with elliptic symbol in A such that a(z, D)fe C°(R).
We shall call Y-filter of the singularities of f the collection of subsets of £ xR»

(2.1)  Fe(f) = {I'c 2 XR"; the projection n(A), A = (2XR"\T, has com-
pact closure in Q and [ is P-smooth in A} .

Observe that if f is ¥-smooth in A, then it is ¥-smooth in A¢¥, for a
sufficiently small ¢ > 0.
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Let us check that F,(f) is actually a filter. Arguing on the collection
of the complements, we have to prove:

(i) ¢f f is W-smooth in A, and A’ c A, then f is ¥Y-smooth in A';

H
(ii) ¢f f is P-smooth in A,, ..., Ay, then f is W-smooth in |J 4, .
h=1
The first point is obvious. As for (ii), we assume there exigt a,(z, D)e
€ LWUD), h=1, ..., H, with elliptic symbol in A,, such that a,(x, D)fec0=(RQ).

Consider the operator a(x, D zah %, D)*a,(x, D). We have a(x, D)fe
€ 0°(£2) and moreover it follows from Theorems 1.1, 1.2 that a(x, D) has
principal symbol glah(x, &)|?, which is elliptic in G/ln- Therefore f is
Y-smooth in GA:=;nd it is proved that Fu(f) is ah;liter.

h=1

THEOREM 2.2. Let A = a(z, D) be in £4(2). Then
(2.2) Fo(f) c Fu(4f), for every feD'(0)

LeMMA 2.3. Let A be a subset of QXR* and assume m(A) has compact
closure in Q. If f € D' (Q) is P-smooth in A, then there ewists ¢(x, D) € £H(Q)
with mpidly decreasing symbol in A°¥, for a suitable & >0, such that f—
—¢(x, D)f € O°(Q).

PrROOF. We assume the existence of a(z, D) € £,(2) with elliptic symbol
in A such that a(x, D)fe C°(£2). Let us apply Theorem 1.8 to the operator
a(x, D): there exists b(z, D) € £3(2) such that b(», D)a(x, D) = identity +
+ ¢(w, D), where c(w, £) is rapidly decreasing in A°* for some &> 0. To
obtain the lemma then it will be sufficient to observe that f — ¢(w, D)f =
= b(x, D) a(z, D) is in O®(Q).

PRrROOF OF THEOREM 2.2. Arguing on the collection of the complements,
we have to prove that if f is ¥-smooth in A then Af is ¥Y-smooth in A.
Let c(w, D) e £%(R2) satisfy the conclusions of Lemma 2.3, i.e. assume f—
— ¢(x, D)fe0°(R2) and ¢(x, &) is rapidly decreasing in A°¥, > 0. Then take
7o(®, £) € 8%(Q) as in Lemma 1.12, with supp 7, c A°¥ and To(, &) =1 for
(x, &) e A%, 0< &' <e. Let z(w, D) be in £L(Q), 7(z, &) ~ To(x, §). To
prove that Af is ¥-smooth in A we shall check that w(x, D)Afe 0°(R)
Write

(2.3) 7(w, D) Af = ©(x, D) Ac(w, D)f + t(, )-A(f- o(w, D)f) .
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The second term in the right-hand side is in 0®(£2). On the other hand
it is e(x, &) ~ ¢o(, &), with supp ¢, N supp 7, = ¥; then it follows from
Theorem 1.1 that =(x, D)Aec(x, D) ~ 0, and therefore we have also 7(x, D)
Ac(x, D)f € C°(£2). Theorem 2.2 is proved.

Let Z be a subset of 2 xR~ and assume 7(Z) has compact closure in Q;
we define the filter

(2.4) Fe(le={I"cE; I"=ENT, for some I'e Fyl(f)} .
From Theorem 2.2 we have for all 4 e £{(0):
(2.5) Fy(NlzC Fe(4)z, for every fe D'(Q) .

PROPOSITION 2.4. Let A = a(x, D) be in L4{(Q2) with elliptic symbol in Z;
then

(2.6) Fo(Dls = FulAf)lz, for every feD'(Q) .

Proor. It remains to prove the inclusion Fu(f)|zD Fy(Af)|z. Since we
may also define F,(f)|z= {I"'c &, f is ¥-smooth in A'=5E\I"}, we are
reduced to prove that if Af is ¥-smooth in A’ c & then also f is P-smooth
in A'. Let a,(x, D) be in £3(Q) with elliptic symbol in A’, such that
a,(z, D) Af € C*(Q). If we take a,(#, D) € £5*(2) with elliptic symbol in 0,
we have

ay(w, D) ay(w, D) Af € 0°(£2) ;

on the other hand the operator a,(z, D)a,(x, D) A has principal symbol
as(w, &) ay(z, &) a(z, &), which is elliptic in A’. It is therefore proved that f
is Y-smooth in A’ .

PROPOSITION 2.5. Assume I € Fy(f) and let A = a(z, D) be in £4(Q)
with rapidly decreasing symbol in I. Then Afe C°(RQ).

ProOF. Note A = (2 xR"\I'. Applying Lemma 2.3 we find ¢(x, D) e
e £%(2) with rapidly decreasing symbol in A°Y, >0, such that f—
—¢(x, D)f € C*(£2). Write

(2.7) Af = Ac(@, D)f + A(f— e(x, D)) f .
The second term in the right-hand side is in C*(2). On the other hand

the operator Ac(x, D) is smoothing, as it follows from Theorem 1.1; there-
fore we have also Ae(x, D)f € C°(£2) and Proposition 2.5 is proved.
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Now we want to study in detail the filter Fy(f)|z in the case
g= {(w’ &) e QxR mza}ﬂ} .

DEFINITION 2.6. We shall note Fy(f, x,) and we shall call V-filter of the
singularities of fe D'(Q) at xy€ 2 the collection of all the subsets Y C R
such that f is ¥-smooth in {we} X (R™\\Y¥).

The following theorem gives for Fu(f, ,) an equivalent definition where
pseudo differential operators do not appear explicitly.

THEOREM 2.7. Y € Fyl(f, @,) if and only if there exists y€Cy’ (), x(@)=1
in a neighborhood of x,, such that for every integer N >0

(2.8) [(2h)™ (&)< Cylé]™Y for £€ RN\ Y),p,

where ¢ is a suitable positive constant independent of N.

Proor. Let (2.8) be satisfied for suitable y and e. Note X = R*\ Y.
Applying Lemma 1.10, we find o(&) € 83(R") with supp.oc X,y and o(§) =1
for £eX,y, 0<&'<e. The function o'({-‘)(;d)"(.f) is rapidly decreasing in R~
Regarding ¢(£) as a symbol in 8%(Q), with o(D): §(Q)— D'(Q), we have
a(D)(xf) € C*(R). Let ¢'(x, D) be in LL(Q) with ¢'(z, &) ~a(£) in Q. Define
(@, D)f = o'(x, D)(xf); the operator z(z, D) is in £(£) and its principal
symbol yx(z)a(£) is elliptic in {x,} Xx X. On the other hand we have z(z, D)f e
€ 0°(2) and it is therefore proved that Y € Fu(f, z,).

In the opposite direction, let f be ¥-smooth in {z,} X X, i.e. assume the
existence of a(x, D)€ £L3(£2) with elliptic symbol in {w} XX such that
a(xz, D)f € C°(2). The symbol a(z, &) is still elliptic in the ¥-neighborhood

(2.9) {o} X Y)¥ = {we Q, |v— 2| <e} X X,y ,

for a sufficiently small ¢ > 0. Take ye(y’(2) with y(x) =1 in a neigh-
borhood of x, and supp yC {z€ 2, |vr— x| < ¢&}. Let o(£) € S3(2) be fixed
again according to Lemma 1.10 and define v(», D) e £L(2) as in the first
part of the proof. From Theorem 1.1 we have

(2.10) (@, )~ (a!) "1 0ia(&) Dg x();

-3

hence we can construct 7,(z, £) € 8%(R) such that z(x, &)~ v,(x, & and
supp 7,C {w € 2, |v — x| < &} X X,p. Then, applying Lemma 1.9, we find
b(z, D) € £3,(Q) such that b(z, D)a(x, D)~ t(x, D). We obtain z(z, D)fe
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€ 0~(2) and therefore o(D)(xf) € 0°(£2). On the other hand, regarding o(D)
as pseudolocal map from §'(R*) to 8'(R"), we have also a(D)(xf) € C°(R™\
\supp z) and, summing up, o(D)(zf) € O°(R") N §'(R"). Thus o(£)(zf)" (€)
is rapidly decreasing in R* and the estimates (2.8) are satisfied in the subset
X, w where it is ¢(§) = 1. Theorem 2.7 is proved.

PROPOSITION 2.8. The following conditions are equivalent:
(I) Oe Fylf, o),
(II) @, ¢ sing supp f,

H
(IIX) there ewist X,, ..., XyCRe, with |J X, =R", such that f is V-
h=1
smooth in {x} xXX,, for h=1, ..., H.

In fact, it follows easily from Theorem 2.7 that (I) <« (II), and (III)
is equivalent to (I) since Fy(f, #,) is a filter.

3. — Action of 4 eﬁf;,’q,(Q) on the V-filter.

DEFINITION 3.1. A linear map A: Cy(2)— C0*(RQ), &§(2)—D'(2) is
said to be P-local in 2 if for all xye 2

(8.1) Fulf, @) C Fu(df, @), for every fe & (Q).

From Proposition 2.8 it follows immediately:

PROPOSITION 3.2. If A is ¥-local in £, then it is pseudolocal in L, i.e.
sing supp Af C sing supp f for every fe §(Q).

From (2.5) we have that every A4 € £4(Q) is P-local in 2. We want
now to discuss the action on the ¥-filter of an operator A in the classes
Eﬁ,’,p(.Q) of the Introduction. For the sake of definiteness we shall suppose
that @, ¢ are a pair of local weight vectors and A€ O(D, ¢) in the sense
of Beals (see the definitions of Section 8 in [2]); however, as it will be
clear from the proof of the subsequent Theorem 3.3, we could argue on
generic @, ¢, A assuming only the validity of (0.1), (0.2), an algebraic upper
bound for A and the pseudolocal property for 4 (which actually follows
from the hypotheses on @, ¢ in [2]).

THEOREM 3.3. Let Y(&) be a fixed basic weight vector. Let D(x, &), p(x, &)
be a pair of local weight vectors in Q and let A(x, &) be in O(D, p). Suppose
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for each KccC Q there exists a positive constant cg such that
(3.2) V(&) g;(@, &) >cklél*, weK, EeR", j=1,..,n.

Then every A ey (Q) is P-local in Q.

EXAMPLE 3.4. Every A €£h (2) is (1 4 [£])%local, 0 < p<1, if for all
K cc  there exists ¢, > 0 such that

(33) gl H>e(l+ )=,  weK, ek, j=1,..,n.
In particular if (3.3) is satisfied with ¢ =1 then
(3.4) WF AfcWFf, for every fe&'(Q) ;

in fact (z,, £) ¢ WF f, |&°| 7 0, means that f is (1 4 |&|)-smooth in {ze} X
x {&; & =& teR,} and therefore (3.4) follows from the inclusion

Fariens @) © F (11 1ey(AF; %) -

If ¢(x, &) =1 the conditions (3.3) is satisfied for every p, 0 <p<1;
actually, in this case (3.2) holds for any basic weight vector ¥, in view of
the assumption (1.1).

ExAMPLE 3.5. Let the vector ¥(£) = [£]% be defined as in (1.41). The
anisotropic wave front set WF,, of a distribution is defined in the following
way: (o, &) ¢ WFy, f, |&|+# 0, if and only if f is [£]}-smooth in {w.} X
x{&; & =1t"§, teR,}. Therefore if A is [£]}-local then in particular

(3.5) WFy Af cWFyf, for every fe&'(0).

For example, every operator A e Ly ,s(RQ) = ﬁg]]l%%’[gﬁdu(g), 0<d<o<l,
0# 0, %1, meR, is [£]¥-local and satisfies (3.5).

ExAMPLE 3.6. Let @, ¢ be a fixed pair of local weight vectors; assume
D, ¢ are independent of x in 2. We may always choose the basic weight
vector ¥(&) in such a way that (3.2) is valid. Define for example
(3.6) P = [BOH® T, j=1.,n.

If ¢> 0 is sufficiently small, P(§) is a basic weight vector, as it follows
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from (2.5) in [2]. Moreover from (2.8), (2.13) in [2] we have
(3.7) (&) @i(8) = 0,[D(8) @,(8) 71 > 0, Dy(8)° > 058

for suitable positive constants ¢, ¢,, ¢;, and therefore (3.2) is satisfied.

Proor or THEOREM 3.3. For arbitrary x,€Q2, XcR», fe&(2) we
want to prove that if f is ¥-smooth in {x,} X X then also Af is ¥-smooth
in {w} xX. In view of Theorem 2.7, if f is ¥-smooth in {z,} XX we can
find yeCP(£2), x(x) =1 in a neighborhood of z,, such that (xf)"(f) is rap-
idly decreasing in X,, for some £>0. Take o(&) € Sx(R") as in Lemma
1.10, with supp, 0C Xy, 0(§) =1 if fe€ Xy, 0 <& < ¢; clearly we have
o(D)(xf) € C*(R") N 8'(R).

Then, applying again Lemma 1.10, we construct o,(&)e SH(R"*) with
supp:z 6,C X,v, 0(§) =1 for £€X,y, 0 <r'<<r, where we may choose r
in such a way that

(3.8) (RNX, w)w [ (X)) =0,

arguing as in the first part of the proof of Lemma 1.10. Finally we take
ue 0y’ (R) with suppuc {re, y(») =1}, w(x) =1 in a neighborhood of ,.
We want to prove that

(3.9) 0o(D)(udf)e C°(R*) N §'(R") .

In fact, if (3.9) is satisfied then o,(£)(udf)” (£) is rapidly decreasing in R»
and (wAf)” (&) is rapidly decreasing in X,y in view of Theorem 2.7 this
will imply the ¥-smoothness of Af in {x,} x X. We begin by splitting
(8.10) 0o(D)(uAf) = ao(D)[uA(xf)] 4 oo(D)[ud (1 — x)f)] -

Since every 4 € £} () is pseudolocal in 2 we have uA((1— y)f) € C3(2);
then to prove (3.9) it will be sufficient to prove that o,(D)[wA(xf)] is in
O”R=») N 8'(R"), or else that its restriction to £ is smooth. Split again

(B.11) oo D)[uA(xf)] = oo(D)[udo(D) ()] + oo(D)[wA(1— o)D) (¥,
where now o,(D), o(D), (1 — 6)(D) are regarded as maps from &(£2) into
D'(L2). The first term in the right-hand side of (3.11) is in C*(2) and we

may limit ourselves to check that

(3.12) B = g,(D)ud(1— o)(D): &§'(2) - D'(Q)
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is smoothing in Q. The operator B can be easily written in the pseudo
differential form, B = b(x, D), with

(3.13)  b(=z, &) = f exp [i(@— y)(n— &)1(1 — a(8)) oo(n) u(y) aly, &) dy dy ,

where a is the symbol of 4. From the hypothesis (3.2) and from condition
(1.1) we deduce that for suitable positive constants 7, ¢

(3.14) W& Tgix, &) >clE]°, wesuppu, eR*, j=1,..,n.
Set
(3.15) L =1 D)= i %(5)—2(1—1)1)2

v

i=1

where 7 is the constant in (3.14), and take note of the identity

(3.16) exp[i(x —y)(n—&)]=

L -1
= [i;?l,.(g)—z(l—f)(m — E;)z] £(exp [i(z — y)(n — &)]) .
Using (3.16) and integrating by parts repeatedly in (3.13) we obtain

(317)  Dibia, &) = [exp [iw— y)(n— &) Hunly, & m) dy dn,
with
(3:18) Hax(y, &) =
= iy — o | S om0 (- o) o) (i) at, £)

where N may be taken arbitrarily large; observe that n— &= 0 for
(&, ) € supp (1 — a(&)) o,(n) c R XR} .
From (3.14) we get

(3.19) LY (u(y) a(y, £))|< Cx(L + |6]) 2 |uly) Ay, &),

where we can estimate

(3.20) [u(y) Ay, &)|<C(1 + )T
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for a suitable 7, in view of (3.15) in [2]. On the other hand, keeping in
mind (3.8), we have in supp (1 — o(£))oo(y)

(3.21) i, — & |>7F(6), Iy, — &> () ,

for some index j,, and therefore from (1.1)

(3.22) i~ &> (L + )T, b= &> (L + In)”
with ¢’ > 0; from (3.21), (3.22) it follows

(3.23) Y, ()2 g, — &) > 12D 2 (1 4 [n])2

Thus we can estimate in the right-hand side of (3.18)

(3.24) [é%(é)“’(m - 55)’]_ <On(1+ 7).
Summing up, from (3.18), (3.19), (3.20), (3.24) we have for large N

(325) IHuN(y’ 5, 17)|<00‘N(1 + I,’”)ltxl—hc'N(l + I§|)|a|+T—20N .

Since H,, has compact support with respect to the variable y, from (3.17),
(3.25) it follows

(3.26) IDz2b(, )| < Cly(L + [E) ™, weQ, E€R",

for every integer M >0. Using (3.26) we check readily that b(w, D) has
smooth kernel in Q; therefore B in (3.12) is smoothing and Theorem 3.3
is proved.

Adding a technical hypothesis in Theorem 3.3, we may obtain easily
the more general inclusion

(3.27) Folf)c Foldf), for every f€D'(Q),

which we have already proved in Theorem 2.2 for an operator A e £4(9).

THEOREM 3.7. Under the hypotheses of Theorem 3.3, set

D} (2, §) = min (P, &), Y), i=1,.,mn,
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and assume

(3.28) D*= (D}, ..., D))y ¢ = (@yy ..., @,) 18 @ pair of local weight vectors
in Q23 A, log¥,, ...,log ¥, e 0(D* ¢) .

Then every A€t} (Q) satisfies (3.27).

The proof proceeds as in Theorem 2.2, with the only difference that’
to prove t(x, D)Ae(x, D)~0 in (2.3), we shall use the following

LevmmA 3.8. Let the hypotheses of Theorem 3.7 be satisfied. Asswme
A eﬁé’q,(.Q\. Let v(z, D), o(x, D) be in SY(R) with rapidly decreasing symbol
in Iy A, respectively; suppose I'U A= QxRr. Then (v, D)Ac(z, D)f €
€ 0°(Q) for every fe D'(Q).

Essentially: regarding t(z, D), ¢(x, D) and A as operators in ﬁg.,w(!))
and Qéw(!?), one can apply Theorem 1.1 to their product and conclude
that it is smoothing. For a detailed proof of Lemma 3.8 see [14], Lemma 2.4.

Translating into the language of the Y-filters the second part of Pro-
position 1.8 in [14] we may also obtain a partial converse of Theorem 3.3.

THEOREM 3.9. Let D) = (Dy(&), ..., Pu(&)), @(&) = (9u(&), ..., @al§)) be
a pair of x-independent local weight vectors, and assume

(3.29) V(&) pi)< O for some je{1,...,n} and C>0.
Then there exists A € s:g,,,,,(R") which is not P-local in R".
Proor. It will be sufficient actually to assume

(3.30) V(£ 0, ..., 0)@ulés, O, ..., 0)< O, £ €eR,

(in the following we shall understand n»>2; the case n = 1 could be dis-
cussed separately in a lightly different way). Making use of the hypotheses
of Beals on @, ¢ and recalling in particular (2.3), (2.8), (2.14) in [2], We
may suppose for the same constant C of (3.30) and for suitable ¢> 0, &> 0:

(8.31) Dy <CDy(E), i) < Cps(§)*, j=1,...,m, if for each
E=1,...,m [&— < Duln);

(3.32) D,(%,,0,...,0)<&; for &>1;

(3.33)  @D,£,0,...,0)>0c8 for LER,, j=1,..,m.
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In view of (1.1), (1.2), taking a multiple of ¥ as a new basic weight vector,
we may also assume without loss of generality:

(3.34) 4Y,(£,0,...,0)<E&  for &>1;
(3.35) ¥i(61,0,...,0)>c& for &,eR,, j=1,...,n,
for the same constants ¢, ¢ of (3.33).
The operator A is constructed in the following way. First choose

# € C3°(R) such that &) = 0 for [t|>1%, ’¢9t)—1 for [t|<%. Write o, =
= (2% 0, ...,0) and define for s =1, 2,

(3.36) Lo(&) = ¥ Dy(w,)" Y& — 27)) 1‘[ HDy(w,)2E;) ;
£ (&) is in CP(R™) and
(3.37) supp £, C {E€R?, [E,— 2| < Dy(ws) /4, |&:| < Di(w,)[4 for j=2,...,n}.

Since D,(w,) <2*in view of (3.32), all supp £, are disjoint; moreover @;(w,) 1<
< C0P,;(&)~ for Eesupply, j =1, ..., n, in virtue of (3.31), and therefore

(3.38) IDEC(&)|<e,P(E)~?, EeR?,

with constants which do not depend on s. Observe also that in view of (3.33)
we have (,(§) =1 for every & in the subset I,,

(3.39) I, = {EeR &, — 2°|<02%[8, |&]|<02®[8 for j=2,..,n}.

Let M, be the least integer such that

(3.40) M, >30pq(w,) 5

in view of (2.1) in [2] we have for a suitable 7 > 0 independent of s:
(3.41) M, < va(wn)

Fix z,eR” and let % be in O (R"), u(x) =1 in a neighborhood of #,; we
define

(3.42) 4f(@) = (2m)exp [ia] u(w)o(a, &)(w)" (£) d
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with
(3.43) a(x, &) = > exp [iM,x,] {.(§) .

8=1

It follows easily from (3.31), (3.37), (3.38), (3.41) that a(w, &) € Sg,’q,(R”) and
hence 4 £ (R"). We claim that 4 is not ¥-local. This will be tested on

(3.44) f(@) = x(=) S’: 27% exp [12°x,] € L2, (R"),

8=1

where y e C°(R"), x(x) =1 in a neighborhood of z, and supp yc {reR",
u(x) = 1}. Note Z, the ball with centre w, and radius 2°*% and set Z = |J Z,;

8=1
observing that the series in the right-hand side of (3.44) is lacunary one gets
the estimates (cf. [14], Lemma 2.2 and subsequent proof):

(3.45) If&)|<eylé|™¥ for EeRNZ.

Write F = {w,, w,, ...} and observe that in view of (3.35) we have for
every r>0 Zc E,,N F,, where F, is a suitable bounded set depending
on r; it follows easily from (3.45), (1.25) and Theorem 2.7 that all the
Y-neighborhoods E,y, r> 0, are in Fu(f, 2,).

Let us prove that the assumption By e Fy(4f, @,) leads to a contradic-
tion. First introduce

(3.46) 9(@) = 5(@) S 2~ exp [i(2°; + M,,)] ,

8=1

with y as before. Write w, = (2 0, ..., 0, M,), let T, be the ball with

centre o, and radius 2% and set T = |J 7,; for any y, € O3°(R") we have
in this case estimates of the type: *=!

(3.47) [(229)" (€)|<oylé|™™  for EeR"\T .

On the other hand, inserting (3.44) in (3.42) and using (3.39), (3.43), one
obtains that Af — g is C® in a neighborhood of the origin (the argument
is similar to those in [13], [14] and we omit the details). Hence Hy € Fv
(Af, x,) implies Evw e Fw(g, x,) and for some y, € CF(R"), xp@) =1 in a
neighborhood of x,, we have

(3.48) l(x:9)" ()| <eylé|™  for EeR™\Zy .
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Writing Hy = |J {w,}», observing that all the sets {w,}y, are disjoint in
8=1

view of (3.34) and applying (3.30), (3.40), (3.35), one obtains that T'N Ey
is a bounded set. Therefore (x,9)" (£) is of rapid decrease in all R* and
%, ¢ sing supp g. So we get the contradiction, since the series in (3.46) is
lacunary and sing supp g = supp g. Theorem 3.9 is proved.

Let now P be a linear partial differential operator with smooth coeffi-
cients in £2; obviously P is ¥P-local in 2 for every choice of 7.

DEFINITION 3.10. P is said to be ¥-hypoelliptic in 2 if for all z,€ Q
(3.49) Folf, xy) = Fy(Pf, %) for every fe &(Q).
From Proposition 2.8 it follows immediately:

ProOPOSITION 3.11. If P is ¥-hypoelliptic in £, then it is hypoelliptic
in 0, i.e. sing supp f = sing supp Pf for every fe §(Q).

Let ¥'(&), ¥"(£) be two basic weight vectors such that for some O > 0
(8.50) P/(E)<CP(§), EeR*,j=1,..,n.

Since X150 C Xy for every X cR®, it follows from Theorem 2.7 that
F glf, @,) C Fu(f, xy) for every fe &'(2).

PROPOSITION 3.12. Under the assumption (3.50), if P is ¥'-hypoelliptic
in Q then it is also ¥'-hypoelliptic in Q.

ProoF. We have to prove Fy.(Pf,x,)C Fy(f, ,) for every x,c 2 and
all f€&(2). Assume Pf is ¥’-smooth in {,} X X, X c R*; then Pf is also
P’-smooth in {x,} X X y», for some &>0. Since Fy-(Pf, 2,)C Fy(Pf, @),
Pf is ¥’-smooth in the same set {#,} X X,p.. Therefore, if P is ¥’-hypoel-
liptie, f is ¥’'-smooth in {} X X 4. and then it is clear from Theorem 2.7
that f is ¥’-smooth in {z,} x X.

PROPOSITION 3.13. Assume there ewists a left parametriz of P, Ee £} (),
for certain local weight vectors @, ¢ in 2 and A€ O(D, ¢); then P is Y-ipo-
elliptic for all the basic weight vectors ¥ which satisfy (3.2).

In fact from Theorem 3.3 we have Fw(Pf, x,) C Fw(EPf, z,) and on the
other hand Fe(EPf, x,) = Fu(f, x,) since the difference EPf— f is smooth.

DEFINITION 3.14. P is said to be ¥-solvable at {x,} X X, #,€ 2, X c R,
if for every ge &' () there ewists f € &'(Q2) such that Pf— g is P-smooth in
{wo} X X.
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The following obvious statement can be regarded as dual of Proposi-
tions 3.11, 3.12.

ProposITION 3.15. Assume P is solvable in some meighborhood V c Q of
T € 2 in the following sense: for every ge &'(82) there exists f e &(Q) such
that Pf— g is C° in V; then P is W-solvable at {w,} X X for every choice of
the basic weight vector ¥ and all X c R

PROPOSITION 3.16. Under the assumption (3.50), if P is ¥"-solvable at
{wo} X X, wy€ 2, X CRn, then it is also ¥'-solvable at {w,} X X.

REMARK 3.17. Note that the (1 4 [£])-solvability of P at {x,} x {& € R,
E=1, teR,}, e R, £+#0, is equivalent to the solvability of P at
(2o, £°) in the sense of Hormander (see [8], Definition 3.3.3), whereas the
(1 4 |&])-hypoellipticity of P in £ implies the identity

(3.51) WFf= WF Pf, for every fe &' (Q)

(strict hypoellipticity, according to the terminology of [8]).

ExAmMpLE 3.18. Let us apply the preceding arguments to the model
in R?

(3.52) P,,= D, + i} D} .
From the results in [15], [16], for example, we have:

(3.53) P, ;. is hypoelliptic in R* if and only if one at least of the positive
integers h, k is even .

In the hypoelliptic case using the methods of [2] one can construct for P, ,
a left parametrix B, , €€} (R?), where noting

(3.54) () =1+ &l + &,
(3.55) 9ul@ &) =1+ 6]+ o[ & 4 06D,

we have A= 4,, =logg,, and @ = (D,, D,), ¢ = (p;, ;) With

O, = 0,5, = o0,
(3.56)

— — Lk .
D, = ¢2,h,k =05

1/h

(3.67) P = Qip= (gh,klo'k) ) Qo= Popr— 1.
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Observing that g, («, £) >0, (&)@ and ¢,(5)<C(1 - |&])* for C indepen-
dent of &, we get

(3.58) D, , >0y P,

(3.59) ‘pl’h’k>ak—1/(h+l)> 0—1/(h+1)(1 + IEI)—k/(hH) .

First let us define the basic weight vector ¥(£) as in (1.41), fixing
M = (k, 1) in R2. In view of (3.56), (3.57), (3.58) and of the first inequality
in (3.59), E, , can be regarded as an element of the class Lf, 1) 1;a+1),1/m+1) (R?)
in the Example 3.5; hence, applying Proposition 3.12 and referring to the
anisotropic wave front set in Example 3.5 we may conclude (cf. [16]):

(3.60)  if P,, is hypoelliptic then WF ,\f = WF ) P, .f for every
fe & (R?.

We shall now investigate the (1 - |&|)%hypoellipticity, 0 < o<1, of P, ,,
we claim:

(3.61) P, is (14 |&))%hypoelliptic in R® if and only if it is hypoelliptic
and kjf(h+1)<op.

In fact, if one at least of the integers h, k is even and k/(h | 1) < o, We
may apply Proposition 3.13 using the second inequality in (3.59). On the
other hand if P, , is not hypoelliptic certainly it is not (1 - |&])®-hypoel-
liptic either, in view of Proposition 3.11; moreover in the case o<k/(h 4- 1)
one can construct fe 8'(R?) which is not (1 4 |&|)%smooth in the ray

(3.62) I'={(0, 0)} x {(&1, &) €R? & = 0, &> 0}

and such that P, ,f is (1 4 |£])%smooth there. To define f consider a solu-
tion wu(t) of

(3.63) @M =0, w0 =1.

Then take »eCg°(R), #»(t) =1 for [{|<L, »(t) =0 for [¢t|>2L, write u, =»u
and set

uy(E1*VE)  for £,>0,

0 for £,<0.

(3.64) HE) =

Extend H to H e 8'(R?) quasi-homogeneous with respect to the weight
(&, b + 1), take 7€ C°(R?), (&) =0 for |&|<i, 7(§) =1 for [§|>1, and
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define
(3.65) f=FzH), F=g-({)),

where F-! denotes the inverse Fourier transform in R2. The distribution
F e 8§'(R?) is quasi-homogeneous with respect to the same weight (k, b 4 1)
and sing supp F = sing supp f = {(0, 0)}. Fix an arbitrary ye C3°(R?) with
%(x) = 1 in a neighborhood of the origin; it is easy to check that

(3.66) . ligl (2)"(0, &) = u(0) =1

and, in view of Theorem 2.7, this implies that f is not ¥-smooth in I' in
(3.62) for any basic weight vector ¥. On the other hand, if o<k/(kh + 1),
in the region

(3.67) {6, &) e R, &4 &>1,86>0, |§] < L&g}
we have
(3.68) (Py )" (&) =[G €50, + ETH(E) =0

and using Theorem 2.7 we conclude that P, ,f is (1 + |£|)%smooth in I
In particular we may discuss the validity for P, , of (3.51); looking again
at f in (3.65) and applying Remark 3.17 we obtain:

(3.69) WFf=WEFP,,f for every e &(R?) if and only if P,, is hypo-
elliptic and kj(h+1)<<1.

Incidentally, note that (3.61), (3.69) give a new proof of Theorem 3.9 for
D, ¢ in (3.56), (3.57) and ¥(£) = (1 + [£])% Let us refer to [15] for results
on the propagation of WFf when k/(h + 1)>1. Fixing in (3.52) k=1
we get

(3.70) @,= D, + D,

which is hypoelliptic if and only if & is even; for h even @, satisfies always
(3.51) whereas it is (1 4 |£[)%hypoelliptic if and only if 1/(h + 1)< g.
As for the solvability, say in a neighborhood of the origin, we recall that
Q, is solvable if h is even; if h is odd @, is (1 4 |&|)-solvable at every ray
{0, 00} x{(5,, &) e R*; & =48, &= A&, AeR,, £+ 0 or £ <0}, but it
is not (1 + |&])-solvable at the ray I' in (3.62) (see for example [8]). How-
ever:

(8.711) Q5 is (1 |&])%-solvable at I', if o<1/(h+1).
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In view of Proposition 3.16 it will be sufficient to prove (1 - |&[)°-sol-
vability for ¢ = 1/(h + 1). Trying to solve @,f = g € &'(R?) by means of
fe 8'(R?) we are reduced to consider

(3.72) [(@)+1&, 0k 1 &1 H(E) = §(&) .

By regarding (3.72) as an ordinary differential equation depending on the
parameter &, one proves easily that there exists H € §'(R?) solution in the
region (3.67) for an arbitrary fixed L, and the difference @,f— ¢, f = F-1(H),
is indeed (1 + [£])¢-smooth in I

4. — A class of Fourier integral operators.

Let A be a fixed subset of R} XR; and assume the projection n(A) is
bounded in R}. We define S;,loc(/lew), e> 0, to be the class of all a(z, &) €
€ C=(A%¥), A°Y as in (1.16), which satisfy for every & <e

(4.1) |D; Dia(w, &)| <5 PEF? for (w,8) €A,

whereas we write 8§ ... (4) for the class of all a(z, §) € S%(R") such that
supp a c A.

In this section we shall refer to basic weight vectors ¥ of rational type,
according to the definition in Example 1-13; we shall also assume that for
suitable positive constants ¢, ¢

(4.2)  e<Wi&+t0)VPi(é) <0, j=1,..,n, te[—1,1],
if  minP(®) Pu&)1<e.
k

Note that this new property holds for ¥(£) = [£]¥% in (1.41), since
[€ + t3u<[&]n+ [t|[H]m if te[—1, 1]. For a basic weight function condi-
tion (4.2) reads

4.3)  o<PEHPE) <0, te[—1,1], if P®)<cP(©),
and joined with (1.42) implies (1.43); for example (4.3) is valid for ¥(§) =

=1+ &])e, 0 < o<1.
We want to study the Fourier integral operator

(4.4) Ff(w) = (2n)“"fexp [icw(2, 5)] b(2, n)f(n) dp, feCy®R),
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where the amplitude b and the phase w satisfy the following properties.
Fix two basic weight vectors of rational type:

!"F("?) = (T1(77)’ ceey Y]n(n)) ’ W*(f) = (T:(§)7 seey 'P:(.f)) H

let (4.2) be valid at least for ¥*(§). As for the amplitude, we suppose
b(@, n) € 8Y ,,np(A), Where AcC R} xR} has bounded projection m(A)c Rj
(to guarantee the existence of non-trivial amplitude-functions, it will be
convenient, though unnecessary in the following, to assume A = I'%¥, for
some 6 >0 and I'c R}XR}). The phase w(z,n) is a real-valued C® func-
tion in A¢¥, for some &> 0, and it satisfies the three conditions:

0%w(@, n)/0m; O, € 89 16(A°) ,
(4.5)
¥, (n) B*w(z, n)[0n; Ony € 8Y 106(A°) , for j, k=1, ..., n;
(4.6) Y’f(ﬂ)_”f’k(n) 82(»(:0, ﬂ)/awjaﬂk € ng,loc(/lsw) y
. Y’j(’?)—l azw(wr 7])/8‘”5 Oy, € Sg’,loc(/lew) ’ for j, k=1,...,m;

4.7 ¥} (d,o(z,n) ~Fn) for (@,m)ed*,j=1,...,n.

In (4.7) we mean: the quotients of the functions ¥} (d,w(x,n)) and ¥j(n)
are bounded in A°¥, for every ¢ <e. The product exp [iw(z, 5)]b(z,n) in
(4.4) (as well as similar products later on) is understood to be defined = 0
for (x, n) ¢ As¥. It will be useful to observe that the conditions in the
Introduction

(4.8) oo(, 77)/6"756 Sg’,loc(/lew) ’ i=1.,mn,

(4.9) !"P;'("])—l aw(wr n)/amj eS()Y’,loc(/lsw) , j=1, ey M5

imply trivially the weaker conditions (4.5), (4.6). Condition (4.7) is the
spatially inhomogeneous version of the standard ellipticity condition on
|d, .

THEOREM 4.1. Under the preceding asswmptions we have
(I) F: O3(R") - O (R"), &(R") — &'(R") continuously.

(I1) Let A = a(z, D) be in L. (R"). Then the product AF: &(R") —
— &'(R™) is the sum of a smoothing operator and an operator of the form (4.4),
with the same phase w(x,n) and with amplitude h(x,n) eS&fcsz(A), h(x, n)~
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~ > hy(,n), where h,(x,n) € 8§ wnsl?(A) is given by:

¥, comp
[

(4.10) hzx(x) 77) = (“!\—1 aga(m7 da;w(m7 7])) D;"(exp [@d"(z’ X, 77)] b(zy n))[z=x ’
with

(4.11) ®(2, 2, ) = (2, n) — 0@, n) — {d, 0@, 1), 2— x> .

Levma 4.2. If a(w, &) € Sy.(R"), then a(w, d,0(@, 1)) € 8y 10,(A°T).

Proor. Noting af(x, n) = a(x, d,0(, 7)), we want to prove that for
every o, f we can write

(4.12) D;Dlat (@, ) = Y (D;Dfa)(w,d,0@,n))ges®mn),

(o',8")el

where I is a suitable finite set of multi-indices and g, (2, ) are suitable
symbols in 8§ 75(A°¥). Since we have from (4.7)

(4.13) (DD a)(w, d,w(@, 1) |<Cupe P )", (w,m)eA”¥,

for every &' <e, it is clear that (4.12) will imply af(z, n)eS;,,]oc(Asw). Obgerve
that (4.12) is trivial for |« + f| = 0. Then assume formula (4.12) has been
proved for every a, f with |x + f| = k; differentiation with respect to x;
gives

(414) _Dsz;Df:(J/#(w, ’7) =( ',92) I{(D:"Dg,a’)(w’ dww(x7 7])) D:wgoc'ﬁ'(w7 77) +
«',B')e

n
+| 3 (0,05 D a)(a, d,0(@, ) e(a, 1)/0, 0, +
k=1
+ (D, D5 D )@, d,0(z, 0)) | gurpla, ) -
Applying the second assumption in (4.6) we recognize that (4.14) is still an
expression of the type (4.12). Developing in the same way D, D} D! a*(x, 7),
| 4+ B| =k, and applying the first assumption in (4.6) we easily conclude

that formula (4.12) is valid for |« 4 | =k 4+ 1 and therefore, by induc-
tion, for every «, f. Lemma 4.2 is proved.

LEMMA 4.3. Let a(x, D) be a linear partial differential operator in the
class £4.(R"). Then \

(4.15) h(w, n) = exp [— iw(z, n)] a(@, D,)(exp [in(z, n)] b, 1))
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18 a symbol in the class Sty (A) with principal part hy(x, n) = a(z, d,o
(@, 7)) bz, 7).

Letting a(x, D) act under the integral sign ir (4.4), Lemma 4.3 essen-
tially proves the second part of Theorem 4.1 for a partial differential oper-
ator in £3,.(R").

Proor. A standard computation shows that h(x, 5) in (4.15) is given by

(4.16) h(@, n) = > h,(@, ),

where h, (2, 7) is exactly as in (4.10), (4.11), but the sum in « is obviously
finite. Hence, to obtain Lemma 4.3 it will be sufficient to prove that
h,(®,n) is actually a symbol in 8§'r 52(A).

Observe first that the term 0;a(w,d,w(r,n)) in the right-hand side of
(4.10) is in ”,,jl‘;c(/l‘s""), in view of Lemma 4.2. On the other hand we may

develop
(4.17) D:(eXp [id(z, @, 7)]1b(2, 77)) |lo=s =

=3 (;\) Di(exp[id(2, @, 9)])|.-- DS Pb(2, 7)),

B

where D}~ b(w,n) € 8§ oomp(A). From (4.6) and from the fact that &(z, z, )

vanishes of order two at 2 = we deduce easily
Di(exp [id(2, @, 1)]),-0 € 0o A -

Therefore the function in (4.17) is a symbol in S;:Lc‘(")ﬁp(/l) and it is proved
that k, (2, ) € 8§ o3(A).

¥,comp
LEMMA 4.4. We can find

(i) a linear partial differential operator with constant coefficients P(D) €
ELE(R™), v°= (02, ...,20), ¥)>0 for all j and °|50;

(ii) @ symbol q(x, n) e;S’;,,”:omD(AE'W), for some &', 0 <&’ <eg;

(iii) @ symbol r(z,n) € 8, compA°),
u

such that the identity
(4.18) exp [io(, 7)] = (¢(@, n) P(D,) + r(w, 1)) exp [i(®, )]

is valid for (x, n) € A.
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ProOF. Since ¥* is of rational type, we can find in S8%.(R") a polynomial

P(&) which is elliptic with respect to ¥*. Applying Lemma 4.3 we obtain
easily that

(4.19) p(@, ) = exp [— iw(z, ﬂ)JP(Dz) exp [tw(z, 17)]

is a symbol in Sy (4*¥), 0 <e& <e, whose principal part P(d,w(z, 1))
satisfies for suitable positive constants ¢, C:

(4.20) [P(d,0(z, n))|> ()", (w, ) €A”¥, nl>C,

in view of (4.7). Let 74(x, ) be defined as in Lemma 1.12, with supp z,C A°F
and 7,(%,n) =1 in a ¥-neighborhood of A; set

To(, n)[p(®y 1)  for (=, 7) EAelwy

421 )=
- 1= for (@, m) ¢ 4”7 .

It follows from (4.20) that g(x,#) is well defined in Sz’ ..(4°¥) for

¥, comp
large |n|. Therefore, if we fix a smooth extension of g(», %) and define

(4.22) (@, 1) = (2, 1) — 9(@, n)p(2, )
in N S;,comn(/ls"", the identity (4.18) is trivially satisfied for (z, n) € 4.
»

ProoF oF THEOREM 4.1 (I). Using (4.7) and applying the condition (1.1)
to ¥*, we obtain in every /°¥, &' <, the estimates

(4.23) 0(1 + ,dmw(wi n)|)°<9’f(77)< 0(1 + ldmw(w’ 7])')0 )

where the positive constants ¢, C depend only on ¢'; applying (1.1) to ¥,
from (4.23) we have for some other constants ¢, C"

(4.24) (1 + ) <1+ |do(@, )< 01+ )%
Differentiating under the integral sign in (4.1) and using the second ine-

quality in (4.24) we obtain easily that F: C(R*) — C5°(R"™. To prove
F: §(R") — &(R") we shall argue on the adjoint tF:

(4.20)  “Ff(e) = 2m)~ [exp [iloly, n)— @] bly, ) () dy dn,
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where for the moment the integral is purely formal. We want to show that
tF: 0°(R*) — C*(R") continuously. We begin by assuming in (4.25) b(y, n) €
€ 8% comp() With

(4.26) Pnyr<C1+ Ip)—, neRn,

for some positive constant C. In this case the integral with respect to 7
in (4.25) is absolutely convergent; moreover, if we fix an arbitrary ye C;°(R")
and if we take y,e C°(R"), x,(y) =1 for yen(d), we have

(4.27) I Ff ”L-(Rn)<0x" Yofloarnys f€ C*[R"),

with ¢, independent of f.
In the general case, we shall first apply Lemma 4.4 under the integral
sign in (4.25). Actually, from (4.18) we have the identity

(4.28) exp [iw(y, 7)1b(y, ) = b(y, n) ¢(y, n) P(D,) exp [iw(y, n)] + s(y, 1)

where P(Dy) € Q;:'(R”)’ qy, € Sy’ (AB'W)’ 0<e <eg, sy, 7) Gﬂ S;,comn(‘/l)'

¥, comp

Inserting (4.28) in (4.25) and integrating by parts we obtain ea,gily that
(4.29) ‘Ff(x) = Ef(x) + feXP [ileo(y, 1) — anT] “P(D,)(a(y, 7) b(y, n) f(y)) dy dn

where R is a smoothing operator. Now, applying the generalized Leibnitz
formula, we have

(4.30) *P(D,)(q(y, n) by, n) f(¥)) = 2, (@)~ Dy(q(y, n) b(y, 7)) L,(D,) {(y),
with
(4.31) L, (&) = i"*ID*['P(&)] € Siz (R .

Then, inserting (4.30) in (4.29) we may write the integral as a sum of
integrals of the type (4.25) where the amplitude-functions are in S@jcﬁlnp(/l)
and f is replaced by the functions L, (D)f, where L (D)e Q,”(“g,.)(R”) for
every «. Iterating the preceding argument, say M times, the condition

(4.26) will be finally satisfied, so that in view of (4.27)

(4.32) 'F: Hige, 10oR) L

2 (R continuously .

Since ¥ is also of rational type, there exists a polynomial (%) ES‘;}'(R”),
po = (Ul ..., u0), u?>0 for all j, [u°| 0, which is elliptic with respect
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to ¥; consider the function
(4.33)  [QDIF Ff(@) = (2m) [exp [ilw(y, ) — an] Q)" bly, ) 1(y) dy dn

Observing that Q(n)Y b(y, n) € 834 4(A) we may argue as before in (4.33),

¥, comp
and reach the following conclusion: for every u'e R" there exists u2eR"

such that ‘F: Hiy., ,,(R") — Hly 1 (R") continuously. This is sufficient to
obtain *F: O°(R") — C°(R"), and the first part of Theorem 4.1 is there-
fore proved.

PrOOF OF THEOREM 4.1 (II). Letting 4 = a(x, D) act under the integral
sign in (4.4), we are easily reduced to prove

(4.34) a(w, D,)(exp [iw(z, 7)]b(z, 7)) = exp [ie(x, n)] bz, 7) + w(@, 1),

where w(z, 7) Eﬂ 8% (R*) and h(z, ) zh x, n), with h_(z, ) as in (4.10),

(4.11). Note tha.t we have already seen in the proof of Lemma 4.3 that

h,(x,n) is actually in 8§'y._**(A4); in fact, the arguments there rely only

on the assumption a(z, D)€ £i..(R").
We can write:

(4.35) (@, D,)(exp [iw(@, )] b(@, 7)) =

= (2m)~n f f exp [i(@ — 219 4 iw(z, 1)] b(z, ) a(w, 9) dz 4D .

Take u € Cy°(R"), u(z) =1 for |¢|<0/2, u(t) =0 for [¢|>0, where the con-
stant 6>0 will be chosen later. Define

(4.36) b'(z,w,m) = uw(z— 2)b(2,m); V(@ 2,n)=(1—ulk— %)) b(z, n)
and denote by ¢'(x, ), ¢"(%, ) the functions which we get from the integral
in the right-hand side of (4.35) by replacing there b(2, ) with b'(z, z, %),
b"(z, @, n), respectively. Using the obvious identity

(4.37) exp [i(xz — 2)F] = |o— 2|*¥(— 4,)¥ exp [i(x— 2)T]

and applying repeatedly formula (4.18) of Lemma 4.4, we obtain by means
of integrations by parts

(4.38)  g'@,7) = (@) [exp [iw(e, )] lo— 2=
(= 4y a(@, §) A (exp [i(@— A BV (z, @, 7)) de b
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where the operator A, = A, (2, D,) is defined by
(4.39) Mo, p(2) = ‘P(D,)(q(2, 1) p(2)) + (2, 7) p(2)

With g(@, 1) € 87 mmplA” "), 7(m, 1) € (| 8 comp(4°¥); 0 <& <, as in Lem-
"
ma 4.4. Taking large N and M, we deduce easily from (4.38), (4.39) that

g"(x, m) € ) S%R"). Thus we are reduced to consider the remainder
I

(4.40) E(x, n) = exp [— iw(@, n)] 9'(@, ) N 2 h(@,n) .

al<k

A standard computation gives the following expression for R (see [18], for
example):

(4.41) R(@,n) = X k(a!) R, (2, 7),

o[k
where R_ is defined by the oscillatory integral

(4.42) R,(@,n) = (@a)[exp [— ila— 2B r,(@, 0, 0)b, (5, @, m) de b,

with
1
(4.43) r, (@, 1, 9) =f(1 — t)*" (07 a)(w, d, 0(w, n) — 1) dt
V]
(4.44) b, (2, @, n) = D(exp [id(2, @, n)]b' (2, z, 7)) -

Note that b,(z, #, ) = 0 for (2, n) ¢ 4, or (z, ) ¢ A°*, where ¢ is the con-
stant in the definition of the function % in (4.36); suppose o < ¢/2, for
example. It will be sufficient to prove that E (z,7) e SE~*2(R™), for a fixed
geRr. As a matter of fact, we shall content ourselves with proving

(4.45) |, (@, )| <0¥,("7)T‘_ulz y (@, n) eR" XR?,
since the argument for the estimates of D;’D,‘:Ra(w, 7) is almost exactly the
same.
Define for 7> 0
(4.46) Wi, = {9 € R", min(¥}@) Pin)™) <7} c R}
k

and consider the complement

(4.47) W =RpN\W., = {#eR"; Pi(®)>7¥(n), k=1,..,n}.
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Arguing as in the proof of Lemma 1.10, we can easily construet a funetion
Ad, n) € C°(R"XR"), with A(d,9) =1 if de WZ,, Ad,n) =0if de o
for some 7/, 0 << 7' <7, and such that

(4.48) | D} A(9, "7)|<Gy¥,("7)_y )
where the constants ¢, do not depend on #. Set
(4.49) 1’;(0&‘, My P = (1 — A, 77)) ru(wi 7, #); 1‘,’,:(.’3, 7, 3) = A(d, 7) ra(m’ 7, )

and denote R, ,(z. 1), R, ,(«, ) the functions which we get from the integral
in the right-hand side of (4.42) by replacing there 7, (%, 5, #) with 7,(z, 7, 9),
(@, 7, ®), respectively.

First let us estimate R, ,(w,7). Applying the identity

(4.50) exp[—i(z—2)9] =

n - n
= (1+ S vt —ap) (1+ 3wy b) expl— i@ —2)9)
i= i=
and integrating by parts, we may write

(451) R, = (@) f f exp[— i(z— 2) 8]-

-¥

' (1 + ﬁlﬂ(’?)zl% - zilz) Ta,N(x7 7, "9) b“(z, z, ’7) dz‘llﬁ',
with
(4.52) runto 8 = (1+ 3 W) D3, ) v, m, 9.

If the constant 7 in (4.46) is chosen sufficiently small, for 4 € W,l,,, and
(2, 7) € A°¥'? we have

(4.53) (0 @) (x, dyeo(z, n) — 19)|< O, ¥* (d (@, 7)) ™",

since min (P ¥y (4,0, 7)< O min P5($) Py(n)~" in view of (4.7), and
k k

one may apply (4.2) to ¥* (here and in the following C, C,, ... are suitable
positive constants). Using (4.48), (4.53) and (4.7) from (4.43), (4.49), (4.52)
we get

(454)  fronl@, 1, <0, PO) ™ for deR", (@, ) A"
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On the other hand we have

wss)  Pulen <O oy (14 3wt —al)

for suitable integers L., as one obtains easily from the arguments in the
proof of Lemma 4.3 and from the estimates

(4.56) [0w(, n)/ 0%, — Bw(2, n)] 02| <6 D Piln) |ws— 2]
j=1

(@, ) e A2, (g,m)ed, k=1, ..,n,

which are consequences of (4.6). Applying (4.54), (4.55) in the integral (4.51)
we obtain

(4.57) By (@, )| < O, Plp)* ** =2V () I(y)

where V(y) is the volume of W;, in (4.46) and

n Lay—~N
(4.58) I(n) = f (1 +j21%(n)’fv§‘) dv.
If N is fixed sufficiently large, we have
(4.59) I <ein)... Paln)?.

On the other hand, it follows from (1.1) that W:m is included in the ball
with centre the origin and radius H(1 + ||)¥%, for a suitable H >0, and
therefore

(4.60) Vi) <@H)1 + )" <o, ¥(n)*,
for a suitable i€ R" Applying (4.59), (4.60) in (4.57), we conclude that
an estimate of the type (4.45) is valid for R, ,(=, ).

To handle R, ,(z,7) it will be convenient to develop (4.44):

(4.61) b, (2, z, n) = exp [id(z, @, n)] E b.s(2, 2y 1) ,
B
where the sum in g is finite and the functions bas satisfy

(4.62) |D:baﬂ(zy z, )| <0“ﬂyl_.p(n)ﬂaﬁ ,  (Bayne R ’
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with suitable uss € R"; moreover:
(4.63) bas(z, 2y ) = 0 for g—x|>0.
We are reduced to consider
(468)  Tuy@,7) = @n)[exp[— iwd]ri(@, 1, ) Fopla, n, 0) 0,

where 7,(@,7,?) is defined in (4.49) and

(4.65) Fos(@, , ¥) = |exp [0(2, @, 1, })] bas(2, 2, 1) d2 ,
with
(4.66) (2, @, n, ) = 20 + &(2, z, 1) .

Observe that 7,(z, 7, #) = 0 for & ¢ W2, where v/ > 0 is the constant in
the definition of the function 4 in (4.49); therefore we may limit ourselves
to estimate F,4(x, 7, ) in W2, where ¥5(#)>7'Wi(n), k=1, ..., n, in view
of (4.47). Applying (1.2) to ¥*, we have that in this subregion

(467) E<EO+ 0T, j=1,.n, i S |GPun<s,
k=1

where ¢, C are suitable positive constants which do not depend on 49, ¢, 7.
Consider now

(4.68) d,o(z, x,n, %) = O+ d,0(z, n) — d0(z, ) .

If ¢ is sufficiently small, for |¢— 2| <o we have
n

(4.69) 2 [0e(z, )| 02— Oar(w, )/ 0| () < T,
k=1

a8 we obtain from (4.6); then from (4.67) it follows that
(4.70) P(d, 0(2, z, 7, 9)) ~ P*D)

for (2, @, ) € supp bas and # € W7 ,. Let P(D)e £2.(R") be as in Lemma 4.4
and consider

(4.71)  p(2, 2, m, ¥) = exp[— io(2, @, 7, #)]P(D,) exp [t0(2, 2, 1, 9] .
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Observing that D7 o(z, @, 5, ¥) = D} w(z, n) for |x|>2, arguing as in the
proofs of Lemmas 4.3, 4.4, using (4.70) and keeping in mind that ¥} (9)>
> 7' Pi(n), we see easily that

(4.72) q(z, @, 9, ¥) = p(2, z, n, §)7*

is well defined for (2, %, ) € supp b,s, #€ W2, In| large, and it satisfies
there

(4.73) D3 q(2, @, 7, 9)| <} P*() " <G ¥(n) ™"

for constants 0},, ¢2 which do not depend on z, #, n, . Applying in (4.65)
the identity exp [ig] = ¢qP(D,) exp [¢go] and integrating by parts repeatedly,
we obtain from (4.62), (4.73) that in supp 7.(z, 7, 9)

(4.74) B (@, 1, 9) < O @)~ P*()™H,

for arbitrary u!, u> € R". Hence, observing that 7,(z, 7, #) < C,¥P*®)’ for
some 7 € R* and fixing a suitable u? in (4.74), we conclude:

(4.75) T, 5@, 7)| < Cpa )™,  (w,7)eR"XR".

This ends the proof of the second part of Theorem 4.1.
We can now study the action of F in (4.4) on the P-filter of a distribu-
tion. Let us associate to the phase w(x,#) the transformations

(4.76)  x: AV >ROXRY, (@ m) = (y = d,0(, 1), 7),
(4.77) p: AY >RIXRY, y((@, ) = (=, & = d,0(z, 7)),

and assume g is a diffeomorphism with inverse

4.78) 7 p(AT) A5 (@, 8) = (2,1 = (@, 8) ;
suppose moreover w(A)’** c y(A*¥) for a sufficiently small § > 0 and

PF(E) ™ WLE) Ony(w, £)[08, € S, 1oe(9(A)™)

(4.79) s )
Tj*(é)_l a’?ﬁ(% &)/ ox, € Sg'*,loc(W(A) ) ’ Jhk=1,...,m.

THEOREM 4.5. Under the hypotheses of Theorem 4.1 and the additional
assumptions (4.79), let e &'Rn) be P-smooth in OcC y(A); then Ff is ¥*-
smooth in B = y(y4(0)).
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ProoF. In view of Lemma 2.3 there exists ¢(z, D) € L%R") with rapidly
decreasing symbol in @%¥, for a suitable d,> 0, such that f— ¢(z, D)fe
€ C;°(R*). Recalling (1.19) and Lemma 1.11, we can find J, > 0 such that

(4.80) (O%%)¥ c @HF .

Moreover, using (4.5) and (4.79), we see easily that there exist d; >0,
6, > 0 such that

(4.81) P(x~UOF) cOF; T EWF)c x YO .

Then, applying Lemma 1.12, we take 7,(z, &) € S3.(R") with supp 7,C Fo
and 7(z, &) =1 if (x, &) e & .’J"“"‘" for a suitable constant ;> 0. Let 7(z, D)
be in £%.(R"), with z(x, £) ~ 7(®, £); to get the conclusion in Theorem 4.5
it will be sufficient to prove z(x, D) Ff €Cy’(R"). Split

(4.82) ©(#, D) Ff = t(x, D) F(f — ¢(x, D)f) + =(», D) Fe(x, D)f .

The first term in the right-hand side is in O3’(R"); therefore we may limit
ourselves to prove that the operator t(z, D) Fe(x, D) is smoothing. We shall
begin by applying Theorem 4.1 (II) to the product F, = z(2, D) F; it fol-
lows that, modulo the addition of a function in C°(R"),

(4.83) F,f(@) = (2m)~[exp Lioo(a, )] by(a, n)f(n)

where b, (2, 1) € 8§ on,(A%) with

(4.84) by(z,m)~ 2 ()™t 92‘70(93, 4,0z, 77)) D:(exp [id(=, @, )] b(2, "7)) lsmss -

In view of (4.84) and of the second inclusion in (4.81) we may assume in
(4.83) supp b, C y~Y(O)*¥. To prove that F,c(x, D) maps & (Rr) into OF(R"),
we shall argue on the adjoint ‘e(x, D)‘F,. From Theorem 1.3 we have that
to(x, D) is in £%(R™) with symbol

(4.85) ¢~ (@, &)~ 3 (a!) 0; Dy e(w, — &) .
Then, arguing on the oscillatory integral in (4.25), we may write

(4.86)  ‘c(e, D)'Fyf(x) =

= (2a)~[ [exp [iloty, n)— o] &~ (@, — 1) by, 7)) dy diy .
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Observe that ¢~(z,— ) is in SH(R™); in view of (4.85) it will be not restric-
tive to assume supp ¢~ (z,— 5) c R"™\@*¥, if (4.86) is understood to be valid
modulo the addition of functions in O°(R"). In (4.86) we may apply the
identity

(4.87)  exp [i[w(y, n) — @n]] = |d,0(y, n) — z|2¥(— 4,)¥ exp [i[w(y, n) — @n]]

and we integrate by parts. From (4.80) and from the first inclusion in (4.81)
we have

(4.88) |4, 0y, n)—x|>8, for (2, y,n)esupp ¢~ (@, — N by(y, n);
hence the function

(4.89) ex(@, 9, ) = |d, 0y, n) — @[~ ¢~ (x, — 1) bi(y, 1)
satisfies the estimates

(4.90)  |DEDIDYey(@, 9y )| <Cupy P)*7,  (3,y,7) R,

in view of (4.5). Since N may be taken arbitrarily large, it follows easily
that te(x, D):F,: D'(R") - O°(R") continuously and this coneludes the proof
of Theorem 4.5.

EXAMPLE 4.6 (Changes of variables). Let y = o(x) be a diffeomorphism
from a neighborhood U of x,€R" into a neighborhood V = o(U) of y, =
= g(x,) € R* and let ¥ = o—(y) be its inverse. Fix a small neighborhood U,
of @, U,cc U, and write V, = ¢(U,); the map

(4.91) F: &(Vy) —&(Uy), (Ff)(@) = foo,
can be expressed in the form (4.4), with w(», n) = <{o(x), > and be 05°(U),
b(x) =1 for z € U,.

Fix P(n) of rational type; assume for simplicity ¥(5) is a basic weight
function, and let (4.3) be valid. Conditions (4.5), (4.6) are satisfied for F
in (4.91) if and only if
(4.92) Y(n)10%o(@), ny|ox; 0z, e 8HT), j,k=1,..,n.

Consider the linear transformation

(4.93) o,: R} >R, &E=o0,(n) = dLo@), Mg,
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and define

(4.94) (&) = P((0,)74(9);

it is easy to check that ¥*(£) is a basic weight function of rational type
gatisfying (4.3). Moreover, possibly after a shrinking of U, from (4.92)
we have that the property (4.7) is valid for ¥*(&):

(4.95) P*(d<o(w), n)) ~P(n) for (x,m)e UXR~.
Let us introduce the new condition
(4.96)  WHE0XoM(y), £/0y; 0y, € 8%(V), Gk=1,...,m.

We shall say that a (germ of) diffeomorphism o is P-consistent at x, if (4.92),
(4.96) are both satisfied. Observe that every diffeomorphism o is (1 + [£])-
congistent; a linear o is ¥-consistent for all ¥, whereas all ¥-consistent ¢
are linear if ¥(£)<O(1 + |£])¢ for some C>0 and o <1.

For a given collection § of subsets of R* let us write

(4.97) 0*(8) = {YCcR~, (0,) YY) €S},
with o, as in (4.93); we claim:

(4.98) if o is P-consistent at x, then Fg.(foo, #,) = o*(Fu(f, %,)) for every
distribution f defined in a neighborhood of y, = a(x,) .

In fact, if o is ¥-consistent we can apply Theorem 4.5 to both F in (4.91)
and its inverse F-1; we have in particular that f is ¥-smooth in {x,} x X
if and only if foo is ¥*-smooth in {y,} X 64x(X) and therefore ¥ € Fy.(foo, )
if and only if ¥ € o*(Fu(f, 2,)).

ExAMpPLE 4.7 (Propagation for evolution equations). We shall refer to
the following translation invariant model. Let A(&) be a real x-independent
symbol in S%(R"), where the basic weight vector ¥ is of rational type and
satisfies (4.2); assume also that for some constant ¢ >0

(4.99) P(E)*<CminP&), &EeR™
i

The unique solution € C°(R,; 8'(R%) of the problem

(4.100) du—iAD)u=0, u0,r)=fx)es R,
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is expressed forn}ally in R,x K, KccR}, by
(4.101) u(t, @) = (2)" [exp [io -+ itA)] b@)fsln) d

where b e Cp°(R"), b(x) =1 in a neighborhood of K. For every fixed tc R
we recognize in (4.101) a Fourier integral operator of the form (4.4); in
fact, for w,(x, ) = on -} tA(y) the condition (4.7) is trivially satisfied with
V¢ =¥ and (4.5), (4.6) follow from (4.99). Define for @,c R} xR}

(4.102) O,= {(#, &), v = wy— A A&), £ =E° for some (x,, &) € Oy} .

Applying Theorem 4.5 in (4.101) and keeping in mind the reversibility of
the problem (4.100) we obtain for f,(») = u(t, ), teR:

(4.103)  f, e 8'(R*) is P-smooth in O, if and only if f,€ 8'(R*) is ¥-smooth
n @,.

For example, fix (&) = [£]¥ as in (1.41) and consider the quasi-elliptic

n
polynomial @(§) =1 + > &M, where v is the least common multiple of
i=1
the Mjs; from the resolution into pseudo differential factors of the oper-
ator D}"— Q(D,) one obtains the first order terms 9, - ¢Q***(D,), to which
proposition (4.103) applies in an obvious way (cf. [10], [17] and Theorem 1.6.5
in [8]). A more exotic example is given by A(&) = |£|¢sin |¢['¢, where
0 < p <1 and we argue on large |&|; for the corresponding equation 9,4 —
— tA(D,)w = 0 the preceding arguments apply with ¥(£) = (1 + [&])°.
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