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Remarks about Signorini’s Problem in Linear Elasticity.

DAVID KINDERLEHRER

Assume given an elastic body in its natural configuration occupying a
region 0 of n-dimensional space Rn. The body is then subjected to assigned
body and surface forces in such a manner that, for example, it must remain
on or above a portion r of the boundary of Q, 8Q. Under these circum-

stances, we are asked to find the equilibrium configuration of the body,
which means we are asked to determine the displacement vector arising
from the imposition of the forces with respect to the constraint on .h.

This is a typical example of Signorini’s problem in (linear) elastostatics [22].
The existence of a solution and its uniqueness properties have been inve-
stigated by Fichera [4]. They are also a consequence of a theorem of Lions
and Stampacchia [16] and the problem is discussed at some length in the
book of Duvaut and Lions [3].

Here our attention is directed to the smoothness of the solution and the

nature of the subset of T in contact with the body in the equilibrium
configuration. This subset we call the set of coincidence. We confine our-

selves to the case where .f is a smooth finitely connected n -I sub-

manifold of aS2. Special attention will be devoted to the case of plane
elasticity. Here we show that the displacement vector is continuous in D
and continuously differentiable in jQ except perhaps near 8T (Theorems 3.5
and 4.2). More generally we are able to prove that the solution is con-

tinuous in dimension n  4 except near 8T (Theorem 3.6).
As part of our endeavor, we prove that the body is in equilibrium in

its deformed state. This means that the equations expressing the balance
of forces and moments are valid and may be understood in the classical

sense. We also show that the coincidence set has positive (n - 1) dimen-
sional measure. Returning to the study of plane elasticity we show that
the coincidence set consists of a finite number of intervals and isolated

points under suitable hypotheses (Section 6).

Pervenuto alla Redazione il 4 Novembre 1980 ed in forma definitiva il 7 Mag-
gio 1981.
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From the physical standpoint, the problem described above is that of
a body occupying S2 impressed on a rigid support or punch conforming
perfectly to h. It is one topic in the theory of contact mechanics (cf. [3]
or J. J. Kalker [10]). Or, for example, Villaggio has studied the problem
of an elastic body on a soft foundation [24]. Many such questions are
within the purview of our method, the well known Hertz problem being
another such instance.

The analog for a single equation, the boundary obstacle problem or the
thin obstacle problem, was first considered by H. Lewy[14]. We have
also found [15] very useful. Our method may be adopted to study the
smoothness of solutions of this problem as well [11]. Our reference for

the subject of elliptic systems has been Agmon, Douglis and Nirenberg [1].

1. - Complementarity conditions

In this first section we shall define the Signorini problem and give a
brief variational analysis of it. Our principal aim is the statement of the
complementarity conditions or natural boundary conditions, e.g., (1.11)-(1.13),
which will play a role in our regularity proof. Let D c Rn be a bounded

region whose boundary 8Q is smooth and contains two smooth (finitely
connected and open) n - 1 dimensional manifolds P and h’ such that

aS? = P u F’= -P U -r’ and mr’=0. By H-,-(.Q) we denote the Sobo-
lev space of distributions in S2 whose derivatives through order m are in
L’(Q). Abusing notation, we also let Hm.8(Q) stand for (H-,"(S2 ))n, the
n-fold product of Hm"(Q). Also, Hm(Q) = Hm,2(Q) and H’;(Q) is the closure
of G:(Q) in H"’-norm.

Let us review a few of the notions of the theory of linear elasticity.
Let aiihk(x) E COO(D) satisfy

and x c- D for some ao &#x3E; 0. Here I 12 = 1 $2 ii and the usual summation
convention is intended on the left side of (1.1). For the aUhk to represent
elastic coefficients the symmetry conditions (1.2) are frequently imposed:

The linearized strain and stress tensors of u = (ul, ..., un) E Hl(Q) are

given by
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and

From (1.2), the stress matrix a= (aij) is symmetric.
For a point x c-.Q and a unit vector $ c- Rn, the vector a(u(x))  is the

force per unit area applied at x to the hyperplane whose normal is $. The

equations (1.4) are Hooke’s Law.
Define the bilinear form

and note that in view of (1.2),

In equilibrium with respect to body forces 11, ..., In the displacement u
is a solution of the equations

The conditions (1.1) and (1.2) ensure that (1.7) is an elliptic system in as
much as for any E Rn,

It is important to keep in mind, however, that the definiteness condition
of (I.:L) holds only for symmetric tensors == (i) E Rnl.
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Given f,,, ..., In E L2(Q) and gl , ..., g. c L2(rl) we define the distribution
(of active body and surface forces)

where dS denotes the element of surface area on aS2. With v = (vl, ..., v.)
the outward directed normal on aS2 let

The Signorini problem we consider here is the variational inequality

PROBLEM 1.1. Find u e K : a(u, v - u) &#x3E; (T, v - u) f or all vEK.

The displacement u which resolves Problem 1.1 has least energy

For example, the reader may wish to recall that in the case of a homo-

geneous isotropic material, after suitable normalization,

where the real constant a is chosen so that (1.1) holds. For instance, a &#x3E; 0

for n = 2 and oc &#x3E; -1 when n = 3 ([13], p. 16), however the system of (1.10)
is elliptic if a &#x3E; -1 in any dimension.

Let us derive the complementarity conditions or natural boundary con-
ditions associated to Problem 1.1 which we mentioned earlier. Assuming
that u E H2(Q), an integration by parts yields that

First choosing C E Hol(S2) so that u + C E K we obtain that Au = f in S2.

Next choosing C so that C = 0 on P, thus again u + C E K, we obtain
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Setting this information in the variational inequality, ,

For C == (Cl, ..., Cn) let us write C == C1: + C"v where C1: is the tangential
component of i on jT and C, = C - v. Thus,

and since v., is arbitrary, the first integral vanishes, or

Finally,

Whenever C -v  0 on P, v =- u + C c- K. This yields that C1ij(U)’Vi’Vj;£ 0
on T. On the other hand we may choose C == 0 so

But each factor in the integrand is negative (non positive), so the integrand
vanishes identically.

Summarizing, if u c H2(S2) is a solution of Pioblem 1.1, then

Observe that (1.1l)-(1.13) are valid if we assume only that u E H-(Q r1 Br(x))
for some B,.(x), r &#x3E; 0, whenever x E 92 - r n -r’.

40 - Ann. Scuola Norm. Sup. Pisa Ole Sci.
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To briefly summarize the existence and uniqueness theory of Problem 1.1,
let A denote the set of infinitesimal affine transformations

It is elementary to check that a(’, ,) = 0 if and only if C c- A. The result

of [4], [16] is that a solution of Problem 1.1 exists provided that

Also, if u, u* are two solutions, then u* == u + 27 where T,,q&#x3E; = 0. A
converse also holds, namely, given a solution u of Problem 1.1 andq c- A r1 K
with - q e A n K, then u + ’YJ is also a solution.

For technical reasons it will be helpful to consider a variational inequality
slightly more general than Problem 1.1. Suppose that

and that for some ao &#x3E; 0 there is a C &#x3E; 0, depending also on Q, such that

and

This coerciveness inequality reduces to Korn’s inequality when (1.1)
holds. Some general conditions pertaining to coerciveness may be found
in [5]. We define, for u, C E Hl(Q),

Also suppose that T, T’ and F" are mutually disjoint smooth, finitely
connected submanifolds of aS2 satisfying jruf"uf== aQ. Let f C- L2(Q)
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and gi, qi E Hl(Q), I  i  n, be given, and set

It may be that -P’, T"’, or both are empty but we always suppose that
T =A 0. We also suppose that K =A 0, a hypothesis made necessary by the
introduction of T’.

Our more general variational inequality is

PROBLEM 1.2. To /M u c- K: a(u,v-u)T,v-u&#x3E; f or VEK.

Above, a(., ), K, and T are given by (1.16), (1.17), and (1.18).
Analogous to our discussion of the Signorini problem, we set

and

The matrix (aii) is not necessarily symmetric nor does it generally represent
stresses determined by a linear Hooke’s law.

Complementarity conditions associated with Problem 1.2 may be derived
in the same fashion as (1.1l)-(1.13). An integration by parts, assuming
that u c- H2(.Q), gives that

Thus
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Consider the special case when there is an open subset To c r ()
n (z : Xn = o}. Then (1.22), (1.23) may be written, assuming v = - en -
- (0, ..., 0, -1) on .,T’o ,

If .ho c T’’ r1 {x: x. = 0}, then (1.24) may be written

again with v = - en .
If u E H2(S2 n U) in a neighborhood U of xo E S.Qy one establishes that

the conditions (1.21) and (1.22)-(1.25) appropriate to 8Q n U hold almost
everywhere (and in the sense of distributions). In particular if ho c
c {x,. = 0} r1 F r) U then u E H1(.ho) and on the set Io = {.r E To : U-(X) = 0}
we know that u" = 0 a.e. on 10, I-’ = 1,..., n -1. Thus the first equation
of (1.26) leads to

We shall exploit this relation in our proof of regularity.

2. - Local formulation and integrability of the solution.

The object of this section is to show that a solution of the variational
inequality Problem 1.2 is in H2 except perhaps near points of aFu ar’ U
U aF’c aS2. The solution may fail to be in H2(Q) even if 8Q is unloaded
near 8T, that is, even if gi = 0 on F’ near 8T and 8T" n aF =A 0. A simple
example is noted at the conclusion of this section. By Sobolev’s lemma
we then deduce that the solution u is continuous in D u T for n = 2, 3.

Problem 1.2 admits a convenient local formulation in a new domain

G.,, = {y C Rn: y,, &#x3E; 0, ly I  B} with F u Fl c {y,, = 0} and where the signi-
ficant constraint of K is
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This will simplify our computations here and in § 3. Given xo c- 8Q, let U
be a neighborhood of Xo E Rn with smooth boundary aU and set

where u is a given solution of Problem 1.2. Clearly, , u is a solution of

where the subscript 0 indicates that the integrations are restricted to S2 r1 U
and r’ n U.

Now we shall straighten the portion 8Q r1 U of 8Q and then alter the
solution to obtain the simplified constraint. After a rigid motion we may
suppose xo = 0 E 8Q and the exterior normal to 92 at xo = 0 is v = - eft .
Here and in the sequel, e; denotes the unit vector in the direction of the

xi-axis, 1:-, i  n. Suppose that 8Q is described by aD: Xn = tp(x’), Ix’l small,
near z = 0, with tp(O) = 99. ,.(0) = 0, p == ly ... n-l-, and set

For B &#x3E; 0 sufficiently small, OR = ly c- Rn: ly  B, y,, &#x3E; 0} is the image
of U f1 Q under (2.2) for some smooth neighborhood U of 0.

Under these circumstances, let Tl(Y)’ T.(y) denote a frame of smooth
orthonormal vectors in GR satisfying

For any vector function v(0153) = (vl(x), ..., vn(x)), x c- 92 n U, define 9(y) by
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We may calculate a variational inequality for fi(y) directly from (2.1).
Note especially that

so Vh’Vh 0 on Tn U if and only if jin(y" 0 ) &#x3E; 0 f or y = ( y’, 0) in the image
of .I’.

After an elementary computation, we find that for any v, ’E H"(U r1 S2),

where dijhk(O) = aijhk(o) and all the coefficients smooth. In particular, for
B sufficiently small, the coerciveness inequality, that for some Co &#x3E; 0,

for any c E Rn, is valid, cf. (1.15’).
Finally suppose that x = 0 E I’ and that Z c {Yn = o} is the image of

.P r) U and E’C {Yn = o} is the image of F’n U with respect to the change
of variables (2.2). Let

Then for suitable functions f C- E2 (G.,,) and gi E H’(G,,)

Thus if u is a solution of Problem 1.2, for each xo E oQ we may find a
smooth linear combination it’ of u which is the solution of a variational

inequality, namely (2.8), whose bilinear form given by (2.5) has the same
expression as (1.16) in a domain GR with convex set given by (2.7). Con-

sequently in our discussion of the smoothness of the solution we may sup-
pose without loss in generality that
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LEMMA 2.1. Let u be a solution of the variational inequality

where K is given by (2.9) and a(., .) and T are defined by (1.16) and (1.18).
Let Xo E r u T’. Then

for some e &#x3E; 0.

Recall that h, F’, and F’ are open in aGn. Before proving the lemma
observe that for any vector A = (211, ..., 111) E Rn

thus the system of equations (cf. (1.20)) .

may be solved for (U;nxn’ ..., u’ ’in terms of the right hand side and u:"XJ’ I
1  ,u  n -1, 1 :!!g h, j  n. Indeed, for a constant C depending on the
operator A,

PROOF OF THE LEMMA. Our proof is based on a standard difference

quotient technique, cf. Nirenberg [21], Frehse [6], to show that u4 EX,,Xj

E _L2 (GR r1 BQ(xo)). Then (2,10) is applied. 
"

Confining our attention to the case xo E F, we suppose that GR = Gl = G
and xo = 0. Choose p so small that

and let
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for a fixed It  n. Thus

Let x == (x’, 0) E r and consider v:(x’,O). If q(z) # 0 and t  e, then

Ix + te, ]  Ixl + t  3(2, so x + tep e B4(l n ôOt c F. Hence uft(x + te,) &#x3E; 0.
Similarly, q(z - tep)2un(x - tep) &#x3E; 0 for t  (!. Thus for each t  (2, v:(x) ¿ 0
on jT when e  t2/2, or

Now we follow a well established procedure, briefly recounted below.
More precise estimates of a similar nature will be given in detail in the
next section. Set v = v. in the variational inequality. Since gi = 0 for

lxl I  4e, i.e., in the support of v8 - u, we see that

After a change of variables we obtain that

We use (2.6) in this fashion. Set v == rDtu. Then
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Keeping in mind that

we find that for some constant C

where the Young’s Inequality lab [  sa 2 + (2je)b2 has been used. Now we
may let t -* 0 to conclude that q h E L2(G), P,  n; k, h = 1, ..., n. In

view of (2.10), u E H2(G n B.).
When Xo E T’ the same argument applies noting that gi E Hl(r’). The

lemma follows. Q.E.D.

THEOREM 2.2. Let u be a solution of Problem 1.2 with

and the complementarity conditions (1.22)-(1.25) are valid on r u r’ u r".

PROOF. This is an immediate consequence of the lemma. We know that
u E Hf’oo(Q). If Xo E r U r’ then the conclusion of the lemma holds in a

neighborhood Bg(xo) (B Q since u is a smooth linear function of u. If

xo E r’f, it follows in an analogous manner that u E H2(Q (B Bq(xo)), some
&#x3E; 0, since ggi E H2(Q). Q.E.D.

From Sobolev’s inequality we conclude

COROLLARY 2.3. Let u be a solution of Problem 1.2 with Ii E L2(Q),
gi E Hl(Q), and ggi E H2(Q), I  i  n.

(i) I f n == 2, then u E OO,i.(lJð) () H1,S(Qð) for 0 c Â  1, I  s  oo,

(ii) If n == 3, then u E OO,t(Qð) r) Hl,6(92,,),
where QIJ is defined in Theorem 2.2.

A solution of Problem 1. 2 or Problem 1.1 may fail to lie in H2(Q) even
in the case of a single equation and g = o. To see this let
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and

where (a, b) denotes the segment {(x,, 0): a  x,  b} of the real axis.
So u(z) is harmonic and u(x) = 0 for xl  0, x, = 0. By the Cauchy-

Riemann equations

Hence u E Hl(Q) :

It is easy to verify that u is the solution of the variational inequality

PROBLEM 2.4.

where

3. - Continuity of the first derivatives in two dimensions.

We shall prove that the second derivatives of the solution of Problem 2.1

obey a growth condition which implies continuity of its first derivatives
in the two dimensional case. Our method exploits the complementarity
conditions to obtain a certain inequality to which Widman’s hole filling
device may be applied, cf. [9], [25]. The conclusion then follows by a version
of Morrey’s lemma ([18], p. 79) when n = 2. In a brief appendix to this
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section some elementary technical facts are noted for the reader’s con-

venience.

We employ the notations

In the course of the proof, C or const. refers to a constant independent
of u and r. The summation convention is undervtood with respect to

i7j, h, k=l, .,,,,n and 291z==19 ..., n -1, here as in the previous sections.
Our conclusions will follow from the local integral estimate formulated

below.

THEOREM 3.1. Let u be a solutions of Problem 1.2 in G where

then, for each 6, 0  6  1, there are M &#x3E; 0 and A, 0  Â  1, such that

and r: 26.
Since we are pursuing a local analysis, , the regularity properties of the

surface forces gi have not been explicitly mentioned and are not relevant.
However we remind the reader that gi E H1(G) according to the hypotheses
of Problem 1.2. In the interest of brevity we shall not determine the precise
dependence of .M and Â on the various parameters.

The principal step in the proof of the theorem is to show that for

constants C,,, Cl, and 0  f3  1, depending only on A, G, IIUIIH"(G,,-.,)l
and B1 Ii 11 LOO(G) ,

This will imply (3.1) when x,, c- F. The estimate (3.2) follows in turn from

(3.3) and (3.4) by applying a version of Poincare’s inequality. A companion
estimate to (3.2) is available for balls B,(x,,), xo E G, and r suitably restricted.
Combining this with the case for Xo E F, we shall obtain (3,1).
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LEMMA 3.2. With the hypotheses of Theorem 3.1 set

and for each Xo E T, let (eii) be an n X n constant matrix with Cin == 02 j = j ... , n.
Then there are O2, , 03 &#x3E; 0 such that

and

where

The use of the coerciveness inequality (2.6) leads us to an unfortunate
circumlocution in the course of our estimates. We isolate this step now
as a technical observation.

TECHNICAL OBSERVATION 3.3. Let v == (vI, ..., vn) E HI(G), r E O:(B2,.),
0  q  I , q = I on B,., and [q, ]  2 /r. Then f or a constant 0&#x3E; 0,

The proof of (3.6) is delayed to the appendix.

PROOF oF 3.3. We may suppose that x, = 0 and GR = 0. Observe first

that whenever C E H’(G), C = 0 on Ix I = 1,

for any constant matrix (Cii) with Cin = 0, I i : n.
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Let e C:(B2r)’ BQ == {Ixl ]  p}, satisfy 0  q  I, 7y = 1 on Br and
[qz [  2/r. For a given p, I  p  % - I , 00 and 8&#x3E; 0 set

where

It is easy to check that for t sufficiently small,

so we e K for s small, E &#x3E; 0. Setting v = vE in the variational inequality
and using (3.7) we obtain that

Consider the first term on the left in (3.8). Expanding and transposing
the .D_ we see that

Since a,j, ui zi c- H1(GSð) by Lemma 2.1, we may let t -* 0 in (3.8) to obtain
that for each p, Ip n-1,
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for any c &#x3E; 0. Summing on p,

We apply Young’s Inequality in the second and third terms recalling
that

For new constants s &#x3E; 0, C = C(s) we obtain

In (3.9) we apply the technical observation (3.6) for each ¡.t with

v = ux = (u) , ..., u:p). This gives that

The conclusion now follows by choosing 8 sufficiently small and noting that
,q == 1 on Br. The estimate (2.10) is then employed to account for the
remaining second derivatives.

PROOF oF (3.4). On this occasion we choose

with the notations as before. As in the proof of Lemma 2.1, one checks
that
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so we E K for small s &#x3E; 0. Writing Vs = u + EC, by (3.7) and the variational
inequality

In particular,

Here we may let t -* 0, again because aii 7 ul, Ili E Hl{GSð). The terms involv-
ing (]).1 - CAJ i.e., C’ for Â  n, may be treated exactly as in the proof of (3.3), ,
so we may let t - 0 in (3.10). This gives for each p = 1, ..., n -1.

We first calculate that
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Observe that for any 0  G G1,

The terms involving CA in (3.10) are treated exactly as in the proof of (3.3)
(viz. the passage to (3.9)). Summing (3.11) on p and using (3.13) to con-
trol (3.12), we deduce, analogous to (3.9), that

where the term involving f’. (,q 2 ). ,,U" on the right is treated analogously
to (3.13).

The desired estimate follows from (3.14) by employing the technical
observation (3.6) and (2.10) precisely as in the proof of (3.3).

PROOF OF ESTIMATE (3.2). We apply the Poincare type inequality of
Lemma 3.7 to (3.3) or (3.4). According to (1.28),

Assuming as before that GR = G and x,, = 0, for each r  4ð, one of two
cases occurs:

or

Suppose that for a given r, 0  r  46, (i) holds. Then we consider (3.3).
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Keeping in mind that ci,, = 0,

Now (]pn = 0 on F, i  It  % - I, so again we obtain

Finally, if j  n, the ordinary Poincare inequality may be used since the
cij may be chosen to our convenience. Thus from (3.3) we obtain the estimate

Now u E H2(GSð) and f E LOO(G), thus by the Sobolev and Hölder ine-
qualities,

where 1/2* = -1 - I/n if n &#x3E; 2 and 2* is any finite number if n = 2. This

gives (3.2).
If on the other hand (ii) holds, we turn to (3.4) applying our variation

of Poincare’s lemma to the term 
.

and the ordinary Poincare inequality to the remaining terms. Again (3.16)
and thus (3.2) follows.

PROOF OF THEOREM 3.1. Adding 

41 - Ann. Scuola Norm. Sup. Pisa Cl. Sci.
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to both sides of (3.2) and dividing by 1 + Co, we obtain, for a different 01,

It is well known that (3.1) follows from (3.17) by iteration. Indeed

if to(r), r  4ð, is an increasing function which satisfies

then

where K and a  # depend only on 0 and fl (cf. Stampacchia [23] or [12]
p. 81).

Thus we obtain for some M,, and A,

and r  23.
By the argument just given for xo e r we may establish a similar ine.

quality for Xo E G. This is

4d = dist. (xo, aG)  1 2013 8 6, where 0  A :!::- 1 and

for some constant N., &#x3E; 0. To prove this, one merely notes that for xo E G
and r sufficiently small,
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for an arbitrary n X n matrix of constants (Oii), which is analogous to (3.3).
One now applies the Poincare inequality and the hole filling technique
from which (3.20) follows with the estimate of (3.21).

To complete the proof of Theorem 3.1 we combine (3.20) and (3.1) for
the case xo E F. This is elementary but involves the examination of several
cases. Let xo c- G, - 8,, and 25 and suppose first that xon==dist.(xo, aG) = 4d.

Case 1. zon  26 and xon  r. Then

whence

Case 2. r:-:;: xon:!E-: 46  26 and d  6/2. Here we have that

so applying (3.21),

Thus

so,

where we may take,

for example.
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Finally suppose that Xon&#x3E; 4d == dist.(xo, ’ðG). The set of such points
in Gl-8ð satisfy xon&#x3E; !(1- Ix12). For any such xo , 4d 2:: 8ð or d &#x3E; 23,
and thus

This establishes (3.1) with

We now study the two dimensional problem

LEMMA 3.4. Let n == 2. Let u be a solution of Problem 1.2 in G where

Then u E Cl,"(G u F) for some Â:&#x3E; 0.

PROOF. This is an immediate consequence of Morrey’s growth lemma,
[18] p. 79, or more properly, a slight variant of it. 

THEOREM 3.5. Let n = 2. Let u be a solution of Problem 1.2 in Q where

Set

Then

PROOF. Given ZO E r U F’ U F’, we may assume after local transfor-
mations that x, = 0 and that u is a solution of Problem 1.2 in (? with the

interval (-1,1) corresponding to an arc of 8Q. If x, c F, then u E C1,Ä
near zo by the preceding lemma. The same method applies to points xo c
c- r, u -Pff.

Suppose xo E r,, for example. After changing variables as indicated, so
F’c (- 1, 1) near xo ,
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For any CEHl(G) with C == 0 for ]z] &#x3E; ldist(O, of’), we may write

where ci2 = - gi and cil is arbitrary.
Now choose as a test function

and proceed as before. Q.E.D.

THEORE11Z 3.6. Let n  4. Let u be a solution of Problem 1.2 in Q where

f E L-(S2), i == 1, ..., n. Then

PROOF. As before, given a point zo E .T we may assume that xo = 0
and that u is a solution of Problem 1.2 in G with r == {lxl  1, Xn = 0}.
Thus Theorem 3.1 may be applied. The condition (3.1) implies that

Ui xi EL-(GB), R= 1-166, for s==4(2-Â)j(I-Â»4 when n= 4 by a
theorem of Meyers [17] or Campanato [2]. Utilizing Sobolev’s inequality
we obtain that

Although we have adopted the technique of Morrey spaces to deduce
this last result, it is also possible to employ Gehring’s « reverse Holder

.nequality #, Gehring [7] or Giaquinta and Modica [8], Prop. 5.1. Here one

argues directly from the inequalities (3.3), (3.4) and (3.22) and concludes
that

Appendix.

LF,mmA 3.7. Let C E Hl(G2r - Gr) and suppose that for 6 &#x3E; 0

Then

where C = C(b).
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LEMMA 3.8. Let C E Hl(G2r). Then

and

where Tr = f(x’, 0) : r C [z’  2r, Xn-l&#x3E; O} and .gl, ... , X4 depend only on
the dimension, n.

The proofs of these statements are elementary.

PROOF OF TECHNICAL OBSERVATION 3.3. Apply the coerciveness inequa-
lity (2.6) to 7,v = q(w - c) where

To the term involving IIwll.(Glr) apply Lemma 3.8 (i).

4. - The global continuity of the solution in two dimensions.

According to Theorem 2.2, a solution of Problem 1.2 in H 2(S?,6) n 00,-I(D,6)
for any Â, 0  h  1, in the two dimensional case. Indeed, it is even in
ot,Ã(D,,) by Theorem 3.5. However it is not necessarily in the class H2( Q),
as the example of Problem 2.4 illustrates. Nonetheless, the Dirichlet integral
of the solution satisfies a growth condition which implies continuity in D.

THEOREM 4.1. Let u be a solution of Problem 1.2 in Q c R2 where

Then there are 6 &#x3E; 0, M:&#x3E; 0, and A &#x3E; 0 such that

PROOF. The proof is merely a simplified version of that of Theorem 3.1.
Given xo E P, suppose that xo = 0 and that, after local transformations, a
portion .0 t) B,,86(xo) contains GSð(xo) = GSð with (- 8ð, 86) correspond-
ing to an arc of 3j0.
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We may suppose that the segment (0, 86) c r, 0 Ern F’. We now

briefly describe the derivation of the estimate analogous to (3.3), (3.4). Let

’f} E O:(B2f’)’ 0  q  1, ’f} = 1 on Bf’ and - iq_, [  2/r, as usual, and set

where c = (cl, 02) E R2 with c2 &#x3E; 0. Thus

so v E K. Setting this v in the variational inequality gives

After some elementary manipulations, we find that for any s &#x3E; 0, there is
a C = C(E) &#x3E; 0 such that

where

Turning to the right hand side of (4.2), let us choose

so in particular o2 &#x3E; 0 since (0, 86) c r and

Thus
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since u E Hl(G). Also,

Thus, after applying Poincare’s Inequality in the form of Lemma 3.7 (ii),

Placing this in (4.3) and again using Poincare’s inequality leads to the
estimate

Thus

satisfies (3.18). The conclusion follows in this case.

The other case is when 0 E T r1 r’. The argument here follows the
same lines with

as the test variation. Here it is important to note that we may assume that

since q2(0)  0 implies that the convex K is empty so no solution of Pro-
blem 1.2 exists. Note that the estimate (4.1) also holds for xo E fi’ n [iff,
which may be shown by taking v(x) as in (4.5).

Once again an estimate is available for points xo E G. Specifically we
have

4d = dist.(x,, aG:! 1- 86, for some A, 0  A:! 1, with an appraisal for N
similar to (3.21) where U:.1Xk is replaced by Uj. Combining (4,I) in the case
xo = (xlo, 0) with (4.6) we obtain (4.1) for any xo c- Gl-8,. The theorem

follows.
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THEOREM 4.2. Let u be a solution of Problem 1.2 in Q c R2 where

Then

PROOF. The proof follows from Morrey’s lemma [18], p. 79.

5. - First applications.

Can any information of a mechanical nature be derived from our ma-

thematical analysis of the Signorini problem, Problem I,I : Let us illustrate

how our integrability lemma, Lemma 2.1, or Theorem 2.2 may be used

to verify that the deformed body is in equilibrium and retains substantial
contact with its rigid support. Let SZ and r be as in § 1 and let u be a
solution of Problem 1.1. The set

which does not undergo normal displacement under the imposition of the
forces T, is called the set of coincidence of u. It is defined up to a set of

measure zero in F (and for n  4 is a closed subset of .T.) The normal pres-
sure, defined on 8Q except for x E 3jT by virtue of Theorem 2.2, is given by

where v is the outward normal to ðQ. Moreover, av E Lfoc(ôQ - aT), that
is, a, is square integrable on compact subsets of ôil - ôT. Recall that

o,  0 on T by (1,12).

THEOREM 5.1. Let u be a solution of Problem 1.1 and let I and J, be

defined by (5,I) and (5.2). Then (], E Ll(r) and

f or any C == (Cl, ..., C-) E Cl(Q).

In general, (J" does not belong to E2 (F) as the examples of sections 2
and 6 suggest.
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PROOF. This is elementary. For the sake of clarity we first show that

Let p E 01(Q) vanish in a neighborhood of aT in Q. In this case we may
integrate by parts in a(u, p) and (5.4) follows immediately.

For 0  r  1 let 1Jr(x) be a scalar valued Lipschitz function in Rn
satisfying

r -. ’I- 

Since 8T is a compact n - 2 dimensional manifold,

for some constants C, Co.
Now choose C E 01(Q) so that C = v on 8Q and set f{J = 27, C in (5.4).

Recalling that u,  0 on P, we see that

- u,(Fqr v) = -1]r a, increases to - a, as r - 0 on T.

Meanwhile in (5.4) we have

Now u0153 E L2(Q) so

as r -* 0. Since q, --* I pointwise a.e., by the monotone convergence theo-
rem f.1" E Ll(T) and
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For an arbitrary C c- C’(D), (5.4) is an easy consequence of the bounded

convergence theorem and the preceeding argument, using, of course, that
Clv E Ll(r).

Finally, y (]" == 0 in r - I by the complementarity conditions, which
demonstrates (5.3). Q.E.D.

COROLLARY 5.2 (Balance of forces). Let u be a solution of Problem 1.1
and let I and cr, be defined by (5.I) and (5.2). Then

for any affine rigid motion C and

PROOF. For any affine rigid motion, a(u, C) = 0, so (5.5) holds. Accord-

ing to the existence hypothesis (1.14), there is an q c- A r) K with T, r)  0.

Thus

r . 

which implies (5.6). Q.E.D.
A particular consequence of the corollary is that the body, known to

be an equilibrium in its deformed state, cannot be supported by a stress
distribution on the boundary ar of its rigid support. For otherwise I c 8T
but meaSn-l ar = 0  measn-1I, or (5.6) could not hold.

A situation of special interest is when r is contained in a plane, say,

in agreement with our conventions in § 1. In this case a, = Gnn(u). Let

be the external force in the i-th direction. It follows from (5.5) that

since en E K and - en rt K. Analogous expressions hold for the various

moments.
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6. - The coincidence set in Signorini’s problem.

Our efforts here will concern the simplest case, plane elasticity for a,

homogeneous isotropic body with T a segment of the x,-axis. In this section
it will be convenient to use complex notation. Let .0 c R2 be a domain with
smooth boundary and assume that

where (a, b) stands for the interval (a, b) of the real axis. Suppose that
v = (0, -1) is the outward pointing unit normal to S2 on 1’. Let oc&#x3E;0

be given and introduce the stress tensor, bilinear form, and corresponding
second order operator

Let us summarize our information about the solution of Problem 1.1.

The distribution of surface and body forces

is assumed to satisfy the condition

wheie X is the convex set of admissible functions

and A is the collection of infinitesimal affine motions (cf. (1.14)). With

these hypotheses, i.e. (6.1)-(6.3), let u be a solution of the Signorini problem.

PROBLEM 6.1. u E K : a(u, v - u) :! T, v - u&#x3E; tor v E K.

Provided that f, E LOO(S2) and gh E Hl,OO(Q), h =1, 2, we know that

u E eo,,(D) for some 2 &#x3E; 0 and

2G E H2(Qð) n C1,Â(Qð) for each 6 &#x3E; 0 where

0 and S2,, = {zc-.Q: Iz-cl&#x3E;b and lz+cl&#x3E; 61 .
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The complementarity conditions are valid; those of interest may be written

In addition

The coincidence set

is a relatively closed non empty subset of F by Corollary 5.2.
To facilitate our investigation, introduce the complex valued functions

which satisfy w, w* E L2(Q) (B H1(Qð) n CO,i.(Qð) for any 6 &#x3E; 0.

LEMMA 6.2. Let u be a solution of Problem 6.1 with fl = f2 = 0 in S2
and define w, w* by (6.7). Then

(i) w(z) is holomorphic in Q and

(ii) there is a holomorphic 9’o(z) such that

In other words, the system of (6.4) may be written
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PROOF. The proof of (i) is a rearrangement of the equations in (6.4).
To prove (ii) note that

In fact, Au = 0 in S2, thus

The first equality in (6.8) follows since Re w = 0’22 + On. The assertion (ii)
now follows by integration. Q.E.D.

In view of the lemma

is holomorphic in 92. In addition, since z = z on P, we deduce that

formally

a.P = {- c, c}. Consequently, although w* is not holomorphic in Q, its

boundary values on .,T’ - ah coincide with those of a holomorphic function.
This is the property of w* which we shall exploit.

THEOREM 6.3. Let u be a solution of Problem 5.1 under the hypotheses
(6.1)-(6.3). Suppose that

and set

Then I is the union of a f inite number of intervals and finitely many isolated
points.

LEMMA 6.4. With the hypotheses of the theorem, define f(z) by (6.9). Then

f(z) is analytically extensible into a full neighborhood of P in the z-plane.
Assuming this lemma we give a proof of the theorem.
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PROOF. Due to (6.11), and (6.4), the shear stress

Recall that w is continuous in D - 8T and f E C(S? u h) so the statements
above make sense. Combining these gives for q(z) = i(w(z) -+- f(z)),

Thus, 0’22 + i"u: 1 is the boundary value of an analytic function.
According to the complementarity conditions (6.5) and (6.11 ),

so we have in particular that

Thus q(z)! admits an analytic extension into a neighborhood U of jT in the
z-plane, indeed,

with possible isolated singularities at z = c, - c.
Since W E L2(Q) and f is smooth near r by Lemma 6.4, q(Z)2 E Ll(Q).

Thus the singularities of q(z)2 are at worst poles of first order, so

is holomorphic in the neighborhood U of T and real valued on r. In par-

ticular, , Re P(z) is a real analytic function of z == Xl on a segment contain-
ing r, say 1’, so it has only finitely many zeros there. Indeed we may
express r as the union of disjoint open intervals T), ... , r:, Ti, ... , Ti,
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and a finite number of points ai, ..., am such that

Since

thus

On the other hand, u2 (z) &#x3E; 0 in -P -I and U2(122 = 0 on T imply (122 = 0

on r- I. Thus

This proof was motivated by H. Lewy’s theorem [15].

PROOF oF LEMMA 6.4. First we justify (6.10). Since w* is continuous

any zo E r- aT, it will suffice to show that

Let qJ be holomorphic in Br(z) for some z E Q, r &#x3E; 0 so

Thus

Integrating and applying the Schwarz inequality, we obtain the elementary
estimate
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Thus for z E D and near zo, ,

so by (6.15),

as x2 = Im z -- 0, since w’ E L2(Dð). This gives (6.14).
Hence I(z) is continuous in S? u P - {c, - c} and by virtue of (6.11)

is real valued on 1’ - {c, - c}. Hence we may extend f to a neighborhood
U of jf as a holomorphic function in U which may admit isolated singu-
larities at the points z == - c, c. To show that these singularities are remov-
able, , we shall prove that for z = c (or - c),

for a 3 &#x3E; 0. In view of this, the Laurent expansion of f at z = c admits
no negative powers, so f is holomorphic in a neighborhood of z = c. The

estimate of Theorem 4.1 will serve us here.

In general, suppose that cp is holomorphic in B,,(Z) for some e &#x3E; 0.

Then, analogous to (6.15),

Now for each z = c + r exp [iO] c- T,,, 6 small Br/2(Z) c Q so (5.18) may be
applied to w with e = r/2. Furthermore, since Br(z) C G3r/2(C), by Theorem 4.1,

Thus for some 1 &#x3E; 0,

Consequently

42 - Ann. Scuola Norm. Sup. Pisa Cl. Sci.
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Since w* E L2(Q), we conclude that f E L2(Tð). Thus c, - c are removable

singularities. Q.E.D.
Poles may indeed occur in q(z)2 at z = c, z = - c or both. This is

equivalent to the presence of infinite stress points or the failure of the
solution to lie in H2(0). However when a pole arises at z = c, say, the
stress tensor there has a prescribed singularity. From the formulas w, w*
of Lemma 6.2,

If q(Z)2 has a first order pole as z = c, that is, for an A =1= 0,

then

where qo is holomorphic near z = c and qo(c) =1= 0. On the other hand f(z)
is holomorphic near z = c; thus, we have

COROLLARY 6.5. With the hypotheses of Theorem 6.3, the stress tensor

(O"Ak) is continuous on f’ with the possible exception of z = c, - c. If the stress
tensor fails to be continuous at z = c, say, then

f or some X &#x3E; 0.
In Corollary 5.2 we showed that the coincidence set, or contact set,

of a Signorini problem is not empty provided (6.3) is satisfied. We then

devoted considerable effort to its analysis, leaving open the possibility
that the noncoincidence set might be empty. When it is, that is, when
I = -P, there seems to be little more to say. Let us offer now two examples, 
one with I = r and the other with Z properly contained in F. According
to (6.17) it is sufficient to specify the functions q(z) and f(z) provided that
we fix uh(z) at some point.

Let 0 be any smooth domain in the z-plane whose boundary contains
the segment P = (- 1, 1) with v = (0, - 1) the outward directed normal to
.Q on 9. Let Ool and set r= (- c, c).
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EXAMPLE 6.6. Set

so

i.e., for - c  z  c. Here Ý Z2 - c2, for real c, denotes the branch holo-
morphic in the complex plane slit along (- c, c) which behaves like z for
large values of lz I. Thus in the expression above, for ((z G.V)) we intend

Note in particular that -V/ii 02 = - IZ2 - c211 for z  - c (and real.)
Let f be a holomorphic function in Q, smooth in D, which is real valued

on P. From the above, u2 = const = 0 on T and take ul(o) = 0. In this

case I = T.

EXAMPLE 6.7. Let 0  a  c and set

In this case

is imaginary whereas

which is negative.
Again we choose f to be an arbitrary holomorphic in Q, smooth in’D,

and real valued on P. Fix u2(c) = 0 and, say, u1(0) = 0.
In this case, it follows that
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As a - 0, q tends to a function much like the q of the first example. As
ac -&#x3E;- c, q(z) = qa(z) - - iz, which is imaginary on the real axis. In this

case F, - 0 so the applied forces are equilibrated. 
°

Although these examples have infinite stress at z = c, - c, examples
assigned with finite stress may be found in the same way.

The questions of plane elastostatics have been discussed by Muskhelish-
vili [19], [20] from the viewpoint of integral equations. A typical contact
problem in this theory is the problem of the indentation of an elastic body,
usually a half plane, by a rigid stamp. However the technique of [19] is

to assume that I consists of a connected interval and then to solve equations
for its endpoints. Our example 5.7 is the solution of such a problem. In

general, once the solution is obtained in this fashion, one must check a poste-
riori that

The author would like to thank Professor John Athanosopoulos for his
assistance in constructing the examples.
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