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Stability of the Polynomial Hull of T2.

ERIC BEDFORD

1. - Introduction.

As is well known, the polynomial hull of the standard 2-torus T2 =

{(Z,,, Z,) C- C2: IZ.,, - IZ2/ J = 1} is the closure of the unit polydisk A 2

= {z E C2 : IZI/’ IZ2/ 1}. The existence of the hull is seen because the to-
pological boundary of 42 consists of two 1-parameter families of disks,
namely ad X d and d X ad, whose boundaries lie in T2. Alexander [1] has
shown that under a small deformation of T2, there continue to exist two
1-parameter families of (deformed) disks, whose boundaries lie in the de-
formed torus. Here we extend that work somewhat and show that these
deformed disks give exactly the polynomial hull. Our method is similar
in spirit to that of [1]: we solve a functional equation that is analogous to
the one used by Bishop [3] to construct disks near a « vanishing » disk.
We also adopt the functional analysis approach to this problem developed
by Hill and Taiani [5].

Given complex functions y = (yi, ’fJJ2) E Om+3(T2)2, we may extend them
to (CB{O})2 by making them constant in the variables iz.11 and Iz,l. Let

us define the map P = (CBfo 1) 2 --&#x3E; C2 by setting T= (IF,, Yf,) with

Let T’ denote the image of T2 under P.
We will prove that the polynomial hull of T2 is stable in the following

sense.

THEOREM. For m &#x3E; 1 and 1 &#x3E; 6 &#x3E; 0, there exists an 8 &#x3E; 0 such that if
1p E Om+3(T2)2 and 111p J/ cm+s 8, then there exist
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with the following properties:

2. - Construction of disks.

It will be more convenient for us to use T-1 rather than !P in (1). If

111jJ BI 01 is small, then W gives a diffeomorphism between T2 and TP’. If we

write z* = T(z), then there exists cp E Cm+3(T2)2 such that lJ&#x3E;(z*) = z for

z E T2. For points z* c- T:, we may writhe 99 as

Thus there is an open set U c CI(T2)2 containing 0 such that we may define

given by 8(y) = 99, where W)T, == 1JI-I. By Lemma 5.1 of [5] S is a mapping
of class Cl. We note also that at ’00FFJ == 0, the differential of this Banach

space mapping is the negative of the identity i.e. dS(0, Z) = - y.
Now let us consider a fixed mapping G(’r, ,) = (g,, g,) c- C’,’(ad x j) 2

such that G is holomorphic in cd. We assume also that G( ad X ad ) c To .
For small y we wish to find F1p E om,a( oLl X 3) 2 such that F1p( oLl X ad ) c TP’, r
and F1p(í, C) is holomorphic in i e 4. With our notation, this means that
we want

Following [2], we write Fv = ( f 1, f 2 ) in « polar » coordinates as

where í == 1-rlei0,’ == "leiO, and T denotes the harmonic conjugate operator
acting in the )-variable. Thus for all functions (2i, (I + iY)(2i is holomorphie
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in ,. We let CRa(T2) denote the real valued functions in cm,tX(T2). It is
well known that r is a bounded operator from O,tX(T2) to itself for

o  IX  1.
We consider the mapping

given by

or

Thus (3) is equivalent to

It follows from Lemma 5.1 of [5] that is a Banach space mapping
of class Cl. When V = 0, cp = 0, so d,,E(de, 0) = de. It follows by the
implicit function theorem that for y near 0 in Cm+3 there is a epc- om,cx

solving (5), and the correspondence y - e1p is continuous.

Let us set G: aj XA --&#x3E; C2 equal to the identity mapping G( T, C) -

- (z, i). By the argument above, we have F(’) : aL1 x 4 - C2. To obtain

F(2): ’A X aj -&#x3E; C2 we replace r, in (4) by lov the conjugate operator in
in the r-variable. By the continuity of (F(’), F(2)), we have (2a). Now
(2b) follows from the definition of fi, and (2c) follows from (3).

3. - Polynomial hull.

We write M, = Mi(y ) = F(2)(aJ xA) and M2 = M2(y) = F(Z) X 2d ).
Since Mi(0) and M2(0) intersect transversally at To, it follows from (2a)
and (2 c) that 9, (y) and M2(W) are transverse at T§/ . It f ollows from the

transversality, then, that -HII(V) n M2(VJ) - T . Thus MI(W) U M2(W) U T;
is homeomorphic to S3, and it separates C2 into two components. Let Q(VJ)
denote the bounded component of C2B(M,(V) U M2(V))’ Clearly M,(V) and

M2(VJ) are Levi flat surfaces, and thus they are pseudoconvex from both
sides. It follows that M,(V) U Mj(VJ) is pseudoconvex from the « acute »
side of the intersection, and so Q( VJ) is pseudoconvex.
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In order to show that Q(1p) is polynomially convex, we will construct a
family {Qt} of pseudoconvex domains with the properties:

When the family {Qt} has been constructed, the polynomial convexity
of QO will follow from the Docquier-Grauert Theorem [4].

To construct the domain S2’, we set

and

Thus II 1ftllcam+3  111p Ilcam+a so by Section 2, we have a domain Q(1ft) satisfying
(2a), (2b), and (2c) of the Theorem. Now we set

In order to verify (6 a-d) we need only verify (6b).
To show (6b) we look at the behavior of M,(V,) as s increases. It will

suffice to show that for t &#x3E; s, It - s ) small, F(’) - Fil) is transverse to MI(1p,)
and points outward.

Let us compute the differential dE(e, 1p; Xe, Xp) of E with respect to
the variables e and V in the directions X. and X1p, respectively. We find
that dF(e; X,) = F(Z + iY)Xe and thus

where V denotes the gradient of q;i as a function on R4 = C2, and. is the

Euclidean inner product on R4, where we have identified (al, b1, a2, b2)
with (al + ib1, a2 + ib2).

Now let us set (7) equal to zero and consider the mapping R : X’tP -+ xe -
For 1p = 0, we have q; - 0 and dS(O, X’tP) = - Xw; thus Xe = Re Xw. Now
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for e &#x3E; 0 small, we have IV(p I rll «1, and so R is a small perturbation
of the real part operator. We wish to compare the sets

and

so we take

Since R is a small perturbation of the identity operator it follows that

Xe&#x3E; 0 when Xp= (t - s)i(1 + s).
Thus to first order in X, we have

When 1jJ = 0, the outward normal to Mi = 84 X LI at (-r, C) is r. Since TXe is
bounded in terms of Xe and since ze &#x3E; 0, it follows that larg (I + i.Y),y, 
 ,, nj2. Thus by (2a), F?&#x3E;- F(’) is transverse to Mi(v&#x3E;,) , and so (6b)
holds, which completes the proof.

Remark added in proof. The polynomial convexity of Q(’tfJ) may also be seen
because it is starshaped with respect to 0.
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