Annali della Scuola Normale Superiore di Pisa Classe di Scienze

J. Dugundji

A. GRANAS

KKM maps and variational inequalities

Annali della Scuola Normale Superiore di Pisa, Classe di Scienze 4^e série, tome 5, nº 4 (1978), p. 679-682

http://www.numdam.org/item?id=ASNSP_1978_4_5_4_679_0

© Scuola Normale Superiore, Pisa, 1978, tous droits réservés.

L'accès aux archives de la revue « Annali della Scuola Normale Superiore di Pisa, Classe di Scienze » (http://www.sns.it/it/edizioni/riviste/annaliscienze/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

KKM Maps and Variational Inequalities (1).

J. DUGUNDJI (*) - A. GRANAS (**)

dedicated to Jean Leray

In 1929, Knaster-Kuratowski-Mazurkiewicz [5], using the Sperner Lemma as a tool, established the following geometrical result:

Let X be the set of vertices of a simplex in $E = R^n$ and let $G: X \to 2^E$ be a compact-valued map such that $\operatorname{conv}\{x_1, \ldots, x_s\} \subset \bigcup_{i=1}^g G(x_i)$ for each subset $\{x_1, \ldots, x_s\} \subset X$. Then $\bigcap \{G(x) | x \in X\} \neq \emptyset$.

The significance of this type of result (beyond that of being simply a convenient «Lemma» for proving the Brouwer fixed-point theorem) was established by Ky Fan many years later. In 1961, Ky Fan [2] proved that the assertion of the Knaster-Kuratowski-Mazurkiewicz Theorem remains valid when X is replaced by an arbitrary subset of any Hausdorff topological vector space E, and (what is more important) he gave numerous applications of this generalization; since then, many more applications have been found (cf. [1], [3], for example) and use of his methods is now a standard tool in some fields.

The requirement that G be compact-valued is not always met in practice [1] and prevents a direct application of Ky Fan's theorem. In this note, we present a slight modification of his result, and a technique that helps avoid the difficulty with compactness. We illustrate the method by giving a direct proof of a fairly general form of the Hartman-Stampacchia theorem on variational inequalities.

- (1) This work was partially supported by a grant from the National Research Council of Canada.
 - (*) University of Southern California, Dept. of Mathematics, Los Angeles, Cal.
 - (**) University of Montreal, Dept. of Mathematics, Montreal, Que. Pervenuto alla Redazione l'8 Luglio 1977.

1. - KKM maps.

Let E be a vector space. The set of all subsets of E is denoted by 2^E and $\operatorname{conv}(A)$ will denote the convex hull of any $A \in 2^E$. An $A \in 2^E$ is called finitely closed if its intersection with each finite-dimensional flat $L \subset E$ is closed in the Euclidean topology of E; note that a set closed in any topology making E a topological vector space is necessarily finitely closed. A family $\{A_{\lambda}|\lambda \in \mathfrak{C}\}$ of sets is said to have the finite intersection property if the intersection of each finite subfamily is not empty.

1.1. DEFINITION. Let E be a vector space and $X \subset E$ an arbitrary subset. A function $G: X \to 2^E$ is called KKM map if conv $\{x_1, \ldots, x_s\} \subset \bigcup_{i=1}^s G(x_i)$ for each finite subset $\{x_1, \ldots, x_s\} \subset X$.

The following result differs slightly from Ky Fan's generalization of the Knaster-Kuratowski-Mazurkiewicz theorem, in that we require only that the sets G(x) be finitely closed; the topology in E plays no role.

1.2. THEOREM. Let E be a vector space, X an arbitrary subset of E, and $G: X \to 2^E$ a KKM map, such that each G(x) is finitely closed. Then the family $\{G(x)|x \in X\}$ of sets has the finite intersection property.

PROOF. We argue by contradiction, so assume that $\bigcap_{1}^{n} G(x_{i}) = \emptyset$. Working in the finite-dimensional flat L spanned by $\{x_{1}, ..., x_{n}\}$, let d be the Euclidean metric in L and $C = \operatorname{conv}\{x_{1}, ..., x_{n}\} \subset L$; note that because each $L \cap G(x_{i})$ is closed in L, we have $d(x, L \cap G(x_{i})) = 0$ if and only if $x \in L \cap G(x_{i})$. Since $\bigcap_{1}^{n} L \cap G(x_{i}) = \emptyset$ by assumption, the function $\lambda \colon C \to R$ given by $c \mapsto \sum_{1}^{n} d(c, L \cap G(x_{i}))$ would not be zero for any $c \in C$ and we would then have a continuous $f \colon C \to C$ by setting

$$f(c) = rac{1}{\lambda(c)} \sum_{1}^{n} d(c, L \cap G(x_i)) \cdot x_i$$
 .

By Brouwer's theorem, f would have a fixed point $c_0 \in C$. Letting

$$I = \left\{i | d(c_0, L \cap G(x_i)) \neq 0
ight\},$$

the fixed point c_0 cannot belong to $\bigcup \{G(x_i) | i \in I\}$; however

$$c_0 = f(c_0) \in \operatorname{conv} \{x_i | i \in I\} \subset \bigcup \{G(x_i) | i \in I\}$$

and, with this contradiction, the proof is complete.

As an immediate consequence,

1.3. COROLLARY (Ky Fan). Let E be a topological vector space, $X \subset E$ an arbitrary subset, and $G: X \to 2^E$ a KKM map. If all the sets G(x) are closed in E, and if one is compact, then $\bigcap \{G(x)|x \in X\} \neq \emptyset$.

We now observe that the conclusion $\bigcap G(x) \neq \emptyset$ can be reached in another way, which avoids placing any compactness restriction on the sets G(x); it involves using an auxiliary family of sets and a suitable topology on E.

1.4. COROLLARY. Let E be a vector space, X an arbitrary subset of E, and $G: X \to 2^E$ a KKM map. Assume there is a set-valued map $\Gamma: X \to 2^E$ such that $G(x) \subset \Gamma(x)$ for each $x \in X$, and for which

$$\bigcap \{ \Gamma(x) | x \in X \} = \bigcap \{ G(x) | x \in X \} .$$

If there is some topology on E such that each $\Gamma(x)$ is compact, then $\bigcap_{x \in X} G(x) \neq \emptyset$. Because of 1.2 the proof is obvious.

2. - Application to variational inequalities.

Let E be a Banach space, $E^* = \mathfrak{L}(E,R)$ its dual space, and $e \colon E^* \times E \to R$ the natural pairing map $(A,x) \mapsto A(x)$; we denote A(x) by $\langle A,x \rangle$. Let C be any subset of E; a map $f \colon C \to E^*$ is called monotone on C if $\langle f(x) - f(y), x - y \rangle \ge 0$ for all $x, y \in C$. The following theorem is a fairly general version of one of the basic facts in the theory of variational inequalities [4].

2.1. THEOREM (Hartman-Stampacchia). Let E be a reflexive Banach space, C a closed bounded convex subset of E, and $f: C \to E^*$ monotone. Assume that $f|L \cap C$ is continuous for each one-dimensional flat $L \subset E$. Then there exists a $y_0 \in C$ such that $\langle f(y_0), y_0 - x \rangle < 0$ for all $x \in C$.

PROOF. For each $x \in C$, let

$$G(x) = \{ y \in C | \langle f(y), y - x \rangle \leq 0 \} ;$$

the theorem will be proved by showing $\bigcap \{G(x)|x\in C\} \neq \emptyset$.

First, $G: C \to 2^g$ is a KKM map. Indeed, let $y_0 \in \text{conv}\{x_1, ..., x_n\}$.

If $y_0 \notin \bigcup_{i=1}^n G(x_i)$, we would have $\langle f(y_0), y_0 - x_i \rangle > 0$ for each i = 1, ..., n; since all the x_i would therefore lie in the half-space $\{x \in E | \langle f(y_0), y_0 \rangle > \langle f(y_0), x \rangle \}$, so also would conv $\{x_1, ..., x_n\}$, and we have the contradiction $\langle f(y_0), y_0 \rangle > \langle f(y_0), y_1 \rangle$. Thus, G is a KKM map.

Consider now the map $\Gamma: C \to 2^E$ given by

$$\Gamma(x) = \{ y \in C | \langle f(x), y - x \rangle < 0 \};$$

we show that Γ satisfies the requirements of 1.4.

- (i) $G(x) \subset \Gamma(x)$ for each $x \in C$. For, let $y \in G(x)$, so that $0 > \langle f(y), y x \rangle$. By monotonicity of $f: C \to E^*$ we have $\langle f(y) f(x), y x \rangle > 0$ so $0 > \langle f(y), y x \rangle > \langle f(x), y x \rangle$ and $y \in \Gamma(x)$.
- (ii) Because of (i), it is enough to show $\bigcap \{ \Gamma(x) | x \in C \} \subset \bigcap \{ G(x) | x \in C \}$. Assume $y_0 \in \bigcap \Gamma(x)$. Choose any $x \in C$ and let $z_t = tx + (1-t)y_0 \equiv y_0 t \cdot (y_0 x)$; because C is convex, we have $z_t \in C$ for each 0 < t < 1. Since $y_0 \in I'(z_t)$ for each $t \in [0, 1]$, we find that $\langle f(z_t), y_0 z_t \rangle < 0$ for all $t \in [0, 1]$. This says that $t \langle f(z_t), y_0 x \rangle < 0$ for all $t \in [0, 1]$ and, in particular, that $\langle f(z_t), y_0 x \rangle < 0$ for 0 < t < 1. Now let $t \to 0$; the continuity of f on the ray joining y_0 and x gives $f(z_t) \to f(y_0)$ and therefore that $\langle f(y_0), y_0 x \rangle < 0$. Thus, $y_0 \in G(x)$ for each $x \in C$ and $\bigcap \Gamma(x) = \bigcap G(x)$.
- (iii) We now equip E with the weak topology. Then C, as a closed bounded convex set in a reflexive space, is weakly compact; therefore each $\Gamma(x)$, being the intersection of the closed half-space $\{y \in E | \langle f(x), y \rangle \leqslant \langle f(x), x \rangle \}$ with C is, for the same reason, also weakly compact.

Thus, all the requirements in 1.4 are satisfied; therefore $\bigcap \{G(x)|x\in C\}\neq\emptyset$ and, as we have observed, the proof is complete.

BIBLIOGRAPHY

- [1] H. Brézis L. Nirenberg G. Stampacchia, A remark on Ky Fan's Minimax principle, Boll. Un. Mat. Ital., (4) 6 (1972), pp. 293-300.
- [2] Ky Fan, A generalization of Tychonoff's fixed-point theorem, Math. Ann., 142 (1961), pp. 305-310.
- [3] Ky Fan, A minimax inequality and application, Inequalities III Shisha, ed., Academic Press (1972), pp. 103-113.
- [4] P. HARTMAN G. STAMPACCHIA, On some nonlinear elliptic differential equations, Acta Math., 115 (1966), pp. 271-310.
- [5] B. KNASTER C. KURATOWSKI S. MAZURKIEWICZ, Ein Beweis des Fixpunktsatzes für n-dimensionale Simplexe, Fund. Math., 14 (1929), pp. 132-137.