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KKM Maps and Variational Inequalities (1).

J. DUGUNDJI (*) - A. GRANAS (**)

dedicated to Jean Leray

In 1929, Knaster-Kuratowski-Mazurkiewicz [5], using the Sperner Lemma
as a tool, established the following geometrical result:

Let X be the set of vertices of a simplex in E = Rn and let G : X - 2E
8

be a compact-valued map such that conv ..., c U G(xi) for each

subset ~xl, ... , xs~ c X. Then n e ~} 5~ o. i=l

The significance of this type of result (beyond that of being simply a
convenient « Lemma &#x3E;&#x3E; for proving the Brouwer fixed-point theorem) was
established by Ky Fan many years later. In 1961, Ky Fan [2] proved that
the assertion of the Knaster-Kuratowski-Mazurkiewicz Theorem remains

valid when X is replaced by an arbitrary subset of any Hausdorff topo-
logical vector space E, and (what is more important) he gave numerous
applications of this generalization; since then, many more applications have
been found (cf. [1], [3], for example) and use of his methods is now a

standard tool in some fields.

The requirement that G be compact-valued is not always met in prac-
tice [1] and prevents a direct application of Ky Fan’s theorem. In this

note, we present a slight modification of his result, y and a technique that
helps avoid the difficulty with compactness. We illustrate the method by
giving a direct proof of a fairly general form of the Hartman-Stampacchia
theorem on variational inequalities.

(1) This work was partially supported by a grant from the National Research
Council of Canada.

(*) University of Southern California, Dept. of Mathematics, Los Angeles, Cal.
( * * ) University of Montreal, Dept. of Mathematics, Montreal, Que.
Pervenuto alla Redazione 1’8 Luglio 1977.
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1. - KKM maps.

Let E be a vector space. The set of all subsets of E is denoted by 2E
and conv (A) will denote the convex hull of any A E 2E. An A E 2E is

called finitely closed if its intersection with each finite-dimensional flat

LeE is closed in the Euclidean topology of L; note that a set closed in
any topology making E a topological vector space is necessarily finitely
closed. A family E Q of sets is said to have the finite intersection

property if the intersection of each finite subfamily is not empty.

1.1. DEFINITION. Let E be a vector space and X c E an arbitrary subset.
s

A function G: X - 2E is called KKM map if conv IXJ U G(xi) for
each finite subset (si , ..., 

The following result differs slightly from Ky Fan’s generalization of the
Knaster-Kuratowski-Mazurkiewicz theorem, in that we require only that
the sets G(x) be finitely closed; the topology in E plays no role.

1.2. THEOREM. Let E be a vector space, X an arbitrary subset of E, and
KKM map, such that each G(x) is finitely closed. Then the

family of sets has the finite intersection property.

n

PROOF. We argue by contradiction, so assume that n G(xi) = ø. Working
1

in the finite-dimensional flat L spanned by ixil ... , let d be the Eucli-

dean metric in L and C = conv ..., xn~ c L; note that because each
L r1 G(xa) is closed in L, we have d(x, L r1 G(xi)) = 0 if and only if x E

n

E L r1 G(xi). Since n L n G(xi) = Ql by assumption, the function I : 0 -+ R
n 1

given by c d(c, L n G(xi)) would not be zero for any c E C and we
1

would then have a continuous f: C - C by setting

By Brouwer’s theorem, f would have a fixed point co E C. Letting
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the fixed point co cannot belong to U however

and, with this contradiction, the proof is complete.
As an immediate consequence,

1.3. COROLLARY (Ky Fan). Let E be a topological vector space, X c E
an arbitrary subset, and G: X - 2E a KKM map. If all the sets G(x) are

closed in E, and if one is compact, then n E x} =A o.

We now observe that the conclusion n G(x) =,,,- o can be reached in

another way, which avoids placing any compactness restriction on the sets

G(x) ; it involves using an auxiliary family of sets and a suitable topology
on E.

1.4. COROLLARY. Let E be a vector space, X an arbitrary subset of E,
and G: X --&#x3E;- 2E a KKM map. Assume there is a set-valued map 1~: X - 2Jf:

such that G(x) c for each x E X, and for which

If there is some topology on E such that each is compact, then n =1= ø.
xEX

Because of 1.2 the proof is obvious.

2. - Application to variational inequalities.

Let E be a Banach space, E* = E(E, R) its dual space, and e : E* X E - R
the natural pairing map (A, x) r-~ A(x); we denote A(x) by A, x~. Let C

be any subset of E ; a map f : C - E* is called monotone on C if 

- f (y), x - y&#x3E; &#x3E;- 0 for all x, y E C. The following theorem is a fairly general
version of one of the basic facts in the theory of variational inequalities [4].

2.1. THEOREM (Hartman-Stampaeehia). Let E be a reflexive Banach space,
C a closed bounded convex subset of E, and f : C -~ E* monotone. Assume that

r1 C is continuous for each one-dimensional flat L c E. Then there exists

a yo E C such that  f ( yo ), yo - x~ ~ 0 for all x E C.

PROOF. For each

the theorem will be proved by showing



682

First, : map. Indeed, let ;
n

If yo 0 U we would have &#x3E; 0 for each i = 1, ..., n; sin-

ce all the xj would therefore lie in the half-space 2/o) &#x3E; 

so also would conv {Xj ..., and we have the contradiction 2/o) &#x3E;

&#x3E; /(y.) y,,). Thus, G is a KKM map.
Consider now the map jT: C - 2E given by

we show that F satisfies the requirements of 1.4.

(i) c I’(x) for each x E C. For, let y E C~’-(x), so that 0 ~  f (y),
y - x~. By monotonicity of f : C --~ .E~ we have (/(~/)2013/(~)~2013.r)&#x3E;0 so

and 

(ii) Because of (i), it is enough to 
Assume yo E n F(s) . Choose any x E e and let zt = (l - t) yo = yo- t ~ I

- (yo - x); because C is convex, we have for each 0  t  1. Since

yo E 1’(zt) for each t c- [0, 1], we find that  f (zt), c 0 for all t e [0 , 1] .
This says that t f (zt), yo- x~ ~ 0 for all t E [0, 1] and, in particular, that
 f (zt), yo- x~ ~ 0 for 0  t  1. Now let t --* 0; the continuity of f on the
ray joining yo and x gives f(zi) - f(yo) and therefore that (/(2/o)~o2013~)0.
Thus, G(z) for each x E C and n I’(x) == n 

(iii) We now equip E with the weak topology. Then C, as a closed
bounded convex set in a reflexive space, is weakly compact; therefore each
1~(x), being the intersection of the closed half-space y~ ~  f (x), x~~
with C is, for the same reason, also weakly compact.

Thus, all the requirements in 1.4 are satisfied; therefore n C~ ~ Ql
and, as we have observed, the proof is complete. I
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