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Some Critical Point Theorems and Applications
to Semilinear Elliptic Partial Differential Equations (*).

PAUL H. RABINOWITZ (**)

dedicated to Jean Leray

.Introduction..

Let E be a real Banach space and I a continuously differentiable map
from E to R, i.e. I E C1(E, R). We say I satisfies the Palais-Smale condi-
tion (PS) if any sequence (um) such that l(um) is bounded and - 0

is precompact. In [1] and [2], by imposing various qualitative conditions
on I near 0 and oo, Ambrosetti and the author obtained several results con-

cerning the existence of critical points of I and applied them to semilinear
elliptic boundary value problems to get existence theorems in that setting.

The purpose of this paper is to extend the theory of [1] and [2]. To be
more precise, let Br =  r}. It was shown in [1, Theorem 2.1]
that if I ( o ) = 0 and

1) There are constants e, a &#x3E; 0 such that I &#x3E; 0 in Ben(0) and 
on and

2) There is an e E E, e =1= 0 such that I(e) = 0,

then I has a critical value c &#x3E; a.

It was further shown in [1, Theorem 2.21], [2, Theorem 3.37] that if I
is even and 2) is replaced by the requirement that I be negative at infinity
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in an appropriate sense (see condition (I,) of § 1), then 1) can be weakened
to hold in Be r) E where E is a subspace of E of finite codimension. More-

over for this case I has an unbounded sequence of positive critical values.
Our main results here show how one can still obtain critical points of I

under weakened versions of 1) without requiring that I be even. The ab-

stract critical point theorems will be given in § 1 and some applications to
semilinear elliptic partial differential equations will be carried out in § 2.

1. - The critical point theorems.

In this section we shall extend the results of [1] and [2] mentioned in
the Introduction. Some additional variants will be presented for the special
case of E = Rn. Lastly a case where we only require 1) for Be intersected
with a finite dimensional subspace of .E will be treated. As in [1], [2], our

arguments are based on minimax characterizations of critical values of I.
Our main result is

THEOREM 1.1..Let E be a real Banach space and let I E C-I(E, R) and
satisfy (PS). Swppose that E = Ek EB L where Ek is k dimensional and I

satisfies

(11) 

(7~) There are constants e, cx &#x3E; 0 such that 1&#x3E;0 in Be n Ê and I ~ a on
n Ê.

(I,) For each finite dimensional subspace R of E, there is a constant R = R(R)
such that I c 0 on E""-.B R(É) . ..

Then I has a positive critical value, c, characterized by

where =-: Ek EÐ span for some fixed T E ~B~0}, r = and

A finite dimensional version of Theorem 1.1 was given in [5] and it

motivated this paper. Two preliminary results are required for the proof
of Theorem 1.1. The iirst is a standard lemma from the calculus of variations.
Let AS = and .Ks = = sand I’(u) = 0}.
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LEMMA 1.3. Let I E C’(E, R) and satisfy (PS). Let c E R, c~ be any neigh-
borhood of K,, 0. Then there is an 8 E (0, ë) and an ?7 E C([0, 1] XE, E)
such that

See e.g. [2] or [3] for a proof of this lemma. Next we need a topological
lemma. and 

the orthogonal complement of R" in Rm.

LEMMA 1.4. Let and let If
~o C .R, and there is a homotopy 

n such that G(0, x) = x and x) = g(x), then n

n aB~ n (Rk ) 1 ~ 0.

PROOF. A proof of Lemma 1.4 due to E. Fadell using intersection the-

ory [4, p. 197] can be found in [5, Lemma A-2]. For the convenience of the

reader, we include it here. The problem is normalized by taking R = 1
and (2  1. Let D = Be n (Rk).L, 1) = n b+ = and ab+ _
= {~ E = 0 or Ixl = 1}. The intersection pairing :

yields -+-1 as intersection number for appropriately chosen generators in
the homology groups above. Furthermore naturality yields the diagram

where j : ab+ c is inclusion. If g E C(b+, and G is as in the

statement of the lemma, then j* would be the trivial homomorphism and the
intersection number would be 0, a contradiction.

These preliminaries being completed, we can now give the

PROOF oF THEOREM 1.1. Assume for the moment that If c is not

a critical value of I, we can invoke Lemma 1.3 with 9 = oc/2. Let hEr be
such that
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Since h) E C(Br n E) and if I(w)  0, then h(u)) = u) = u
by 1) of Lemma 1.3 and our choice of e, it follows that h ) e F. But
then by (1.5) and 3) of Lemma 1.3,

contrary to the definition of c.

To complete the proof, we must show c &#x3E; oe. Using (12), it suffices to show
h(B,. r1 r1 aBe n l# # 0 for all h E -P. Let K = h(Br n Ek+1). Since K

is compact, by an approximation lemma of Leray-Schauder [9], for all

8 &#x3E; 0, there exists a finite dimensional subspace Fe c E and a mapping
is E O(K, such that 11 i,,(u) - for all u E K. We can assume 

Let hE = ieoh. Then he E C(B,. n Ek+1, and - h(u) as 8 - 0 uni-

formly for Observe that if by (1,)
and we have

Since E = Ek EÐ Ê, u E E implies u = v + w, where v E Ek, I WE Ê. We
can assume + Thus if u E (ôBr r) U Ek , I it foi-

lows that

Choosing e  fl, identifying with Rm, Ek, E,,, with Rk, and defining
G(t, u) = the(u) + (1- t)u, it follows from (1.7)-(1.8) that G satisfies the
hypotheses of Lemma 1.4. Hence Ek+l) n aB, 0. Conse-

quently there exists uE E Br n Ek+1 such that E aBe n E. As s - 0,
along a subsequence we have ue - u and

Therefore and the proof is complete.

REMARK 1.9. If E is infinite dimensional, in general I will not be bounded
from above in contrast to the finite dimensional case where this is a con-

sequence of (1,). By (I2), I then has a positive maximum c in Br. In general
c  c. However if c = Cy I possesses infinitely many critical points. In-

deed (1.2) then shows I achieves its maximum on h(Br n Ek+1) for each h c- T
and this implies I has infinitely many distinct critical points corresponding
to c = c. Our next result gives another characterization of critical values
of I in the finite case and a more precise description of the degenerate situation.
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THEOREM 1.10. Let I E C’(R-, R) and satisfy (11)-(1s). Then I possesses
at least two positive critical values characterized by

and

where

Before proving Theorem 1.10, a few remarks are in order. The notation
catma refers to the Ljusternik-Schnirelman category of the subset A of M.
In (1.11) as admissible A we only consider A c M with A closed in Rm. By
definition cat~ A = 1 if A is contractible to a point in ~kl and cat, A = j
if j is the least integer such that A can be covered by j closed sets A with

It is clear that any admissible A c M is homotopic
to a subset of the unit sphere Sm-k in (Rk) 1. Moreover catM Sm-k = 2 since
if eatm 8--k = 1, any homotopy of to a point in ~ would induce a
homotopy of Sm-k to a point in Sm-k. However as is well known (see e.g.
[6]), = 2 so no such homotopy can exist.

PROOF OF THEOREM 1.10. Define

Then C1 = c since we can take A = {x} for any x E M and C2 = b o c. Note

further that by (I2), I &#x3E; 0 on (2Sm-k and therefore b &#x3E; 0. (Is) implies I satis-
fies (PS) on the set where I&#x3E; 0. A slightly strengthened version of Lemma 1.3
and a standard argument (similar to the first paragraph of the proof of The-
orem 1.1) shows that b is a critical value of I and if c = b, cat~ .Kb = 2.

(See e.g. [6], [7], or [2]).

REMARK 1.13. We believe that b as defined in (1.11) equals c defined
in (1.2).

An examination of the proof of Theorem 1.10 shows that the argument
in fact gives the following result which interchanges the finite dimensional
and finite codimensional hypotheses (Ii) and (Zg) of Theorem 1.1.

THEOREM 1.14. Let E be a real Banach space, I E 01(E, R) and satisfy (PS).
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Suppose that E = Ek EÐ E where 7~ ~ 1, Ek is and I satisfies

There are constants

(16) 1 is bounded f rom above.

Then I possesses at least two positive critical values characterized by

where A is compact in E and M = EB-P. Moreover if b, = b2 = d, 

PROOF. Immediate from that of Theorem 1.10 and the remark pre-
ceding it.

2. - Applications to partial differential equations.

In this section we shall show how Theorems 1.1 and 1.14 can be employed
to obtain existence theorems for semilinear elliptic boundary value problems.
Consider

where S~ is a bounded domain in Rn with a smooth boundary, Z is uniformly
elliptic in D with smooth coefficients, c ~ 0 in is smooth and positive
in S~, and p is smooth and satisfies

There are constants .lVl &#x3E; 0 and 6 E (0, i) such that

If n  2, (p1 ) can be considerably improved.
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Set

Formally critical points of I in E = are weak solutions of (2.1).
The smoothness of L, a, p, and (PI) and standard regularity results then
imply such weak solutions are smooth functions. Thus we focus our atten-
tion on finding critical points of I in E.

Consider the linear eigenvalue problem

As is well known, (2.3) possesses an unbounded sequence of eigenvalues
0  ÂI  ~2 c ...  Am - oo as m -~ oo with corresponding eigenfunctions
VIL 7 ... 9 V, 7 .... It was shown in [1 ] that if p satisfies and ~,1 &#x3E; 1,
(2.1) possesses a positive solution (i.e. u &#x3E; 0 in S~) and a negative solution.
If the argument of [1] fails unless p(x, z) is odd in z. We will show:

THEOREM 2.4. I f p satisfies (p,)-(p,) and

then (2.1) possesses a nontrivial solution.

PROOF. Because of the result just mentioned, we can assume 
In fact suppose ,k c 1  +1. Let Ek = span{vl, ... , vk and Ê E-L the
orthogonal complement of Ek. By (P4)’ I ~ 0 on Ek . It was further shown

in [1] that (pl)-(p3) imply that I E C’(E, R) and satisfies (1,), and (PS).
Hence Theorem 2.4 follows immediately from Theorem 1.1.

REMARK 2.5. As was noted above for A, &#x3E; 1, (2.1) has a positive and a

negative solution. In contrast we next show:

COROLLARY 2.6. Tlnder the hypotheses of Theorem 2.4, if ~,1 c 1, (2.1) does
not have a positive (or negative) solution u(x) unless Â1 = 1, u(x) is a multiple
of vl(x) and p (x, u(x)) == 0.

PROOF. Suppose u is a positive solution of (2.1) with Then.
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Since we can assume

which is impossibile unless p(x, z) =- 0 for and in

which case ’U = f3v1 .
Next we illustrate how Theorem 1.14 can be used in similar situations.

Consider (2.1) again where p satisfies and e.g.

No growth conditions are needed for this case since (p~) implies that az -f - p
can be redefined to be independent of z for large Izl so the modified nonlinearity
is uniformly bounded. Moreover solutions of the modified equation are still
solutions of (2.1). (See e.g. Theorem 3.4 of [2]). It is easily verified that
if ~,k C 1 ~ ~,k+~ , 1 Ek , ~ are as in Theorem 2.4 and

where P is the primative of the modification of az -E- p, then J satisfies the
hypotheses of Theorem 1.14.

Since stronger results can be obtained for this problem using methods
based on Leray-Schauder degree theory [8] we will not carry out the details
here. However if L were replaced by a higher order divergence structure

elliptic operator one could obtain results using Theorem 1.14 where degree
theoretic methods would fail.
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