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The Shape and Smoothness
of Stable Plasma Configurations (*).

DAVID KINDERLEHRER (**) - JOEL SPRUCK (**)

dedicated to Hans Lewy

Consider an axially symmetric toroidal vessel which contains an ionized
gas, for example hydrogen, held in equilibrium by an externally applied
magnetic field. We are asked to find the magnetic vector of the vessel which
in part is occupied by the gas and in part is vacuum. The magnetic vector
admits a stream function which satisfies a different equation in each
of the two regions, gas and vacuum. The boundary of the gas region, or
plasma region, is a free boundary.

In this note we consider the simplest model of this phenomenon with the
object of showing that the plasma set is bounded by an infinitely differentiable
manifold. Our proof, which is very simple, is suggested by a method of
H. Lewy [L1] (cf. also [L2]). We then illustrate how our result may be
extended to higher dimensions (§5). In a subsequent paper, written jointly
with L. Nirenberg, we show that the plasma boundary is an analytic manifold.

We wish to thank R. Temam for suggesting this problem to us.

1. - Variational formulations of the problem.

Let S~ be a bounded simply connected domain in the z = x, --f- ix2 plane
with smooth boundary aS2. Given g~ E and q(z) real analytic in Q

(*) The preparation of this paper was partially supported by NSF grants
MPS 75-06489 and MPS 75-06490.

(**) University of Minnesota, Minneapolis, Mn.
Pervenuto alla Redazione il 26 Maggio 1977.
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satisfying , we set

PROBLEM 1.

If c &#x3E; 0 then 0. Hence the number v exists.
0

The connection between Problem 1 and the confinement of a gas is

given in [T1].

THEOREM 1. Let c &#x3E; 0. (i) Then there exists a solution u to Problem 1
which satisfies u E C2,o,(S?), 0  a  1 and

for some number Â &#x3E; 0.

(ii) Let w be any solution to Problem 1. Then w E C2~a(,~) and satis-
fies (1.2) for some I depending on w.

The proof of Theorem 1 is quite standard and may be found for example
in [T1]. The point of part ii) is that any must be a weak

solution of equation (1.2 ), which is the Euler equation for problem 1.

Hence by a theorem of Stampacchia [Si] w must be of class 02,0(;.
It is possible to consider a space V defined by other conditions, for

example, y

where 8Q = 3ijQ u and are open arcs and v is the outward directed

normal.

Now suppose that V is defined in such a manner that a solution u to

Problem 1 satisfies
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For example we may take (p &#x3E; 0 in (1.1) or g &#x3E; 0 in (1.3), recalling that
is the outward pointing normal derivative. We then define

From the maximum principle it is obvious that Q+ is connected.
A simple model of the problem of plasma containment by a magnetic

field can be expressed in this framework [Tl]. Let I &#x3E; 0 be given. We
seek a funct’on y E and a domain Qp such that

a constant to be determined

Choose cp = 1 and set

where is a solution to problem 1 with Q1J = S~_(u).
A similar problem occurs in the theory of the hydrodynamical

vortex [Ber-F] [N].
Berestycki-Brezis [Be-Br], Puel [P] and Temam [T2] have also consi-

dered the plasma problem (1.5) where A&#x3E;0 is prescribed a priori. It is easy
to see that there is no solution for ~,1 the first eigenvalue of the
Dirichlet problem in S~ with respect to the weight function q. Furthermore
if A = Z, then the first eigenfunction suitably normalized is the unique solu-
tion and hence S~, an uninteresting case. For Z &#x3E; Ài the authors men-
tioned above have shown there is always at least one nontrivial solution.
In [T2] the solution to this version of the plasma problem is obtained as a
solution of the following interesting variational problem.
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PROBLEM 2. To find where

Once again we observe that any solving Problem 2 is of

class 02,rx.

2. - Topological properties of the plasma.

This section is devoted to the clarification of the topological nature of
the set

for a given solution u to Problem 1. Our object is to prove

THEOREM 2. Let u be a solution to Problem 1 and let S~_ _ ~z E 92: u(z)  0}.
Then Jordan domain and jT = aS2_ is a Jordan curve of class 02,a
0 a  1.

In the next lemma we use that u minimizes the Dirichlet integral on a
given set in an essential way. A similar idea has been used by Berger and
Fraenkel [Ber-F] and Norbury [N].

LEMMA 2.1. Let u E solution to Problem 1. Then f2- is connected.

PROOF. Suppose, for an argument by contradiction, that .A1 is a com-
ponent of SZ_ and A2 = SZ_ - 0. Let us define

Assume for the moment it is possible to find ai &#x3E; 0, i = 1, 2 so that w E Vc,
that is
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and

Then w would also be a solution to Problem 1 and in particular, would be
of class However this can occur only if a1 = a2 = 1. For we can

find points zi E aAi at which Ai satisfies an internal sphere condition. At

such points grad (0, 0) by the maximum principle. Thus grad w is
continuous only if a1 = a2 = 1, i.e. w - u.

To prove the lemma, we exhibit w. In view of (2.1), (2.2) our object is
to solve the equations

Now we set

and note that

in D which implies that

By the definition of g this yields

A corresponding expression is valid for Å2. So let us set
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and write the equations (2.3), (2.4) as the system

This is a system in the unknowns which admits the solution al = a2 = 1

corresponding to w = u. Hence the two equations are dependent and there
is a whole line of solutions. Consequently the hypothesis that A2 0 0 is

untenable. Q.E.D.

PROOF oF THEOREM 2. Recall that S2+ is connected. We will rely on a
theorem of Hartman and Wintner [H-W]. Since U E C2&#x3E;«(Q) and u = 0
on 1~= aS2-7 it suffices to show that grad u(z,,):A (o, 0) at each zo E .1~ to

conclude that h is a curve. From (1.2)

for an appropriate constant k &#x3E; 0. Assume that u(zo) = ux,(zo) = 0 for

some Then by the theorem of Hartman and Wintner, there is an
2 and a complex number c = 0 such that

and

in a neighborhood of zo . From (2.6), the zeros of grad u are isolated. Given
that UXt(zo) = 0, i = 1, 2, there is a neighborhood Iz - zol  8 which is divided

by 21t smooth curves emanating from zo into 2,u ~ 4 sectors c~~ such that

and

Choose z, E ~2 and z, E 04. We may construct a simple arc fl from z2

to Z4 contained in S~_ because S~_ is open and connected. Further, we join z2
and z. to zo in ~2 and a4 respectively to obtain a Jordan curve y c U S2_ .
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This y must enclose (1" for some odd v. Consequently the bounded component
of R2 - y contains w and the unbounded component of R2 - y contains
points of Q+ near aS2. Since this contradicts that SZ+ is connected

It is a simple matter to modify the proof of Theorem 2 to apply to solu-
tions of Problem 2. We need only show that S2- is connected. Let w, Al, .A.2
be as in the proof of Lemma 2.1. We must n9w try to find ac2 so that

E(w) = E(u), and Ilmin(w, =f Imin(u, O)Iqdx = 1/2. As before
sa D

Hence

and

by (2.7). Hence for the first equation any two numbers a2 sufhce.

The second equation

is linear. Hence there is a line of solutions. As before this violates the

smoothness of the minimum. Hence 0- is connected. By the maximum
principle, 0+ is also connected.

We may now proceed as before; namely, the existence of a point zo E aS2_
where grad u(zo) = (o, 0) is not consistent with the connectedness of Sz+
and ,~_ . We restate this result as :

THEOREM 2’. Let u be a solution to Problem 2 and let Q- == {z E 0:
u(z)  01. Then Q- is a Jordan domain and r = is a Jordan curve of
class C2,fX, 0  a  1.
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3. - A local formulation.

The smoothness of the «free boundary » jf = aS2_ will be studied as a
local problem. Let us suppose that Â(z) is a real analytic function in a
neighborhood of z = 0. Let B =  R} be a small ball and .1~ a simple
arc of class C2~a, 0  «  1 in B passing through z = 0 and joining two
points a, b E aB. The ball B is thereby separated by r into two Jordan
domains I~+ and ZI_ . We sssume 1~ to be oriented positively, that is

counterclockwise with respect to U+ .
Assume now that C2,a(f3), 0 C a C 1 satisfies

The complex gradient of u,

is holomorphic in U+ , where u is harmonic, and attains continuous values on F.
Motivated by the ideas of Lewy [L1], we will derive a second function which
is holomorphic in U_ and whose values on 1~ are related to those of aulaz
through an integral equation. 

-

We introduce the Riemann function B(z, ~2 t, t) of the equation

It is a holomorphic function of the four independent complex variables

z, z, t, t for z, t E B. Writing B = R(z, z*, t, t*), for an appropriate range of
the complex variables z, z*, t, t*, it satisfies the relations
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Fix a point zo on r. For z E ~_ we define the function

along any path in U_ joining zo to z. O(z) is a well defined holomorphic func-
tion in U_ since the integrand in (3.3) is exacet. This follows since JR and u

as functions of t, t satisfy (3.2) in 
More useful than 0 is its derivative 0.

LEMMA 3.1. Let

and (/J’ E 

This follows immediately from (3.3) and the relations

To conclude this section we interpret the information derived so far in
terms of the Plemelj formulae.

THEOREM 3. Zet 

Let R(z, z, t, t) denote the Riemann function o f (3.2) and for zo E F fixed, set

Let  r  R and let To = ao bo c r r1 Br satisfy 0  ao - _ bo - =

- ~ ~r - iz,, 1. Then there is a function h(z) holomorphic in such that
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PROOF. Let zo and To be as described in the hypotheses and set

Then by Cauchy’s Theorem

Hence for by the Plemelj formulae,

Adding these two equations we obtain by lemmac 3.1

where

4. - Regularity of the free boundary.

In this paragraph we show that when the conditions (3.1) are fulfilled,
then 1-’ is an infinitely differentiable curve. We assume, as in § 3, that
B =  1~} and that F is a simple arc of class joining two points

E aB and passing through z = 0.

LEMMA 4.1. and define
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Then and

PROOF. We include the proof of this elementary lemma for the reader’s
convenience. First we observe that since E it may be considered

the restriction of a function gg* E in such a way that

where s denotes arc length on 1~. The integral in (4.1) is thus well defined
if we agree not to distinguish between 99 and its extension ~~.

The function 0 is understood to be a principal value integral on so

where the integral is absolutely convergent because g is smooth. Now ob-
serve that

a quantity easily seen to be absolutely integrable on 1~, again because T is
smooth. Hence
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where (4.2) is the result of an integration by parts. Q.E.D.

LEMMA 4.2. Suppose that r E and g~ E 

Then

PROOF. Let us first suppose that 99 = 0 in a neighborhood of the end-
points a, b of For functions C(s) defined on 1’ we define the operator

It follows from Lemma (4.1) that, assuming

The right hand side is Holder continuous since h E C1 and
by well known estimates. Since

the conclusion follows under our assumption about 99.
For the general case, given z, let q(t) be a C°° function satisfying

and write

The case just considered applies to the first integral. The second integral is
holomorphic near z. Q.E.D.

To prove that 1~ is a Coo curve, we employ an inductive procedure based
on the representation in Theorem 3.
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THEOREM 4. Let A(z) be a positive real analytic f unction in a neighborhood
of B. Let u E satisfy

Then Get:) curve.

PROOF. Let f(z) - 8uf8z(z), holomorphic in U+ and continuous on 1~.

The assertion that 1-’ is a curve of class, say, is equivalent to claiming
the existence of a function ~(z), defined for z in a neighborhood of 1~ and of
class there, such that

To show that 1~ is C°°, it suffices to show that ~ is in C°°, indeed, it suffices
to show that is a 000 function of z for z E r. In the case at hand,

on F, since u = 0 on T, so

i

Therefore, if or .1 is of

class 
_

So suppose now that ho = laol _ Ibol = r, and f E To
is of class and there exists a function h (z) holomorphic in Br such that

, uz

Here = The above holds for I-" = 0 and = F by
Theorem 3.

With these hypotheses about the smoothness of f and 1~’ we see that
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In (4.4), y 8j8z denotes differentiation with respect to the first place in
.R(z, z*, t, t*) and, suppressing the notation z = C(z), z is regarded as a func-
tion of z. Hence (4.4) contains derivatives of f and z up to order p - 1.
Therefore E By Lemma 4.1,

Using Lemma 4.1 once again, we differentiate (4.3) to see that

From this and Lemma 4.2 we conclude that (4.3) holds for and

and 1~’ is in C&#x3E;+2&#x3E;" for any subarc Q.E.D.

5. - Generalizations of the problem.

Let S~ be a simply connected domain in R’~. It is natural to ask whether

our results extend to solutions of the minimum problem corresponding to
the divergence form equation

It is easy to see that Lemma 2.1 continues to hold, that is D_ = ,~ :

u(x)  01 is connected. When n = 2 we may still deduce that IVul =1= 0
on r = 8Q_ for the more general equation. But since this conclusion was
based on a two dimensional level line argument, y when n &#x3E; 3 we may only
assert that the points of 1~ where IVul ~ 0 are open and dense in 1~’.

We now proceed to generalize the local regularity theorem proved in § 4.
For n = 2 and real analytic the methods employed in § 3 and § 4 via
the Riemann function yield the desired result. Rather than working out the
details in this particular case, we will prove an extension of this result valid
in n dimensions by using methods of classical potential theory.

Let B =  R~ eRn be a small ball and 1~ a simply connected hyper-
surface of class C2~a, 0  a  1 passing through z = 0 and separating B into
two components U+ and U_ . For simplicity we assume n &#x3E;- 3.
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Assume now that L satisfies

where the aii are symmetric and for simplicity we assume all coefficients
are of class COO(B).

We introduce y), fundamental solutions of the equations Lxv = 0
in B. In terms of G+ we represent u in U+ recalling that u == 0 on .1~ as

follows:

where v is the exterior normal to 7~ with respect to U+ and h+ is of class C°°(B).
Let I be any direction such that 

Then

where alat refers to differentiation in the x variables. Now letting x tend
to r we obtain via well known properties of the single layer potential [M]

Since u vanishes on h we see that

and

Using (5.3) to simplify (5.2) we arrive at the formula

10 - Annali della Scuola Norm. Sup. di Pisa
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In a similar way working with G- in U_ we obtain

where h- E C°°(B) and v, as before, is the exterior normal with respect to U +. *
Adding (5.4) and (5.5) we arrive at the following representation theorem

for solutions of (5.1).

THEOREM 5. Then

where v is a normal field to F, l.v &#x3E; 0, h E C°°(B), and the kernel K(x, y) is
000 for x ~ y and satisfies

PROOF. Formula (5.6) follows from adding equations (5.4) and (5.5)
where we have set K(x, y) = (G+ - G-)(x, y) and h = h+ + h-. The point
of the formula is that the kernel K satisfies the nice estimates stated

above. This holds since the operators .L+ and L- have the same principal
part. Q.E.D.

Using Theorem 5 we can essentially copy our old proof of the C°° nature of T.

THEOREM 6. satisfy

where b~ (x), c±(x) are 000 in a neighborhood of B.
Then .1~ is a 000 hypersurface.

PROOF. We sketch the essential ideas.

Let us represent .1~ as the graph of a function
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in a neighborhood of the origin containing B, so that direction is

normal to at the origin. To show that h is C~ it suffices to show that

g E C~. We compute

since

It follows that if 8uJ81 is a function of xx, ..., xn_1 for all vectors I

with &#x3E; 0 then qg E and

Because of the good estimates for the kernel .g in (a/at)g(x, y)
is a «smoothing kernel &#x3E;&#x3E; and formula (5.6) implies that au/at E 
Proceeding by induction we arrive at the desired conclusion. Q.E.D.
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