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A Nonlinear Degenerate Parabolic Equation.

B. H. GILDING(*)

1. - Introduction.

In this paper we shall prove uniqueness and existence theorems for the

Cauchy problem, the first boundary value problem and a mixed Cauchy-
Dirichlet problem for the equation

in which subscripts denote partial differentiation. The functions a and b

are both assumed to be defined, real and continuous on [0, oo), with

and

To be precise, we shall study the following three problems for equation (1).
Let T be a fixed positive real number.

PROBLEM I (The Cauchy problem). To find a solution of equation (1)
in the strip

satisfying the initial condition

where uo is a given function which is defined, real, nonnegative, bounded and
continuous on (- 00, oo).

(*) Technische Hogeschool Delft, Netherlands.
Pervenuto alla Redazione il 15 Maggio 1976.
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PROBLEM II (The first boundary value problem). To f ind ac solution of
eq2catiorc (1) in the rectangle

satisfying the conditions

where uo is a given function which is defined, real, nonnegative and con-
tinuous on [- l, 1], and, T- and p+ are given functions which are defined,
real, nonnegative and continuous on [0, T] and satisfy the compatibility condi-
tions = uo(-1) and T+(O) = uo(1).

PROBLEM III. To f ind a solution of equation (1) in the half-strip

satisfying the conditions

where uo is a given function which is defined, real, nonnegative, bounded and
continuous on [0, 00), and T is a given function which is defined, real, non-
negative and continuous on [0, T] and satisfies the compatibility condition

uo(0).

When b - 0, i. e. equation (1 ) is replaced by the equation

we shall call the Problems I, II and III, Problems I’, II’ and III’, respec-
tively.

Equation (1) is nonlinear and of degenerate second order parabolic type.
At points where u &#x3E; 0 equation (1) is parabolic, but at points where u = 0
it is not. Such equations arise, for example, in the study of the flow of two
immiscible fluids in a porous medium [2, p. 511].



395

It is now well established, no matter how smooth a, b and the boundary
data are, that since equation (1) degenerates, the Problems I-III need not
have classical solutions [10, 15]. It is therefore necessary to generalize the
notion of solutions of these problems. To do this we shall follow Oleinik,
Kalashnikov and Yui-Lin [15] who defined classes of weak solutions of the
Problems I’-III’ and subsequently proved existence and uniqueness theorems
within these classes. Alternative definitions of generalized solutions of the
Problems I-III have been given by other authors [3-6, 11, 12, 14, 1S-20~.

Set

DEFINITION I. A f unction u(x, t) defined on S is said to be a weak solu-
tion of Problem I if: (i) u is real, nonnegative, bounded and continuous in )3;
(ii) A(u) has a bounded generalized derivative with respect to x in S ; and (iii)
u satisfies the identity

for all cp E which vanish for large lxl and for t = T.

DEFINITION II. A function u(x, t) defined on R is said to be a weak solu-
tion of Problem II i f : (i) u is real, nonnegative and continuous in R;
(ii) u(- 1, t) == Yf-(t) and t) = for all t E [0, TI; (iii) A (u) has a

square-integrable generalized derivative with respect to x in .R; and (iv) u satis-
lies the identity

for all g E 0(-R) which vanish for lxl =1 and for t = T, and which have square-
integrable generalized first derivatives in R.

DEFINITION III. A function u(x, t) defined on H is said to be a weak solu-
tion o f Problem III if: (i) u is real, nonnegative and continuous in H;
(ii) u(O, t) = for all t E [0, T]; (iii) A(u) has a generalized derivative with
respect to x in H which is square-integrable in bounded measurable subsets of H
and bounded in sets of the form (6, oo) X (0, T], 6 E (0, 00); and (iv) u satis-
fies the identity
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for all 99 E C(H) which vanish for x = 0, for large x and for t = T, and which
have square-integrable generalized first derivatives in H.

Clearly any classical solution of Problem I, II or III is a weak solution
of that respective problem.

We shall show that if

then each of the Problems I-III has at most one weak solution. To prove
existence we shall not need condition (4). Instead, we need to assume that a’
and b’ exist and are locally Holder continuous on (0, oo) and that

and

Under this condition, with weak assumptions on the boundary data, we
shall show that each of the Problems I-III has at least one weak solution.

Thus we shall extend earlier uniqueness and existence theorems which have
been proved for the Cauchy problem for the equation

[10] to the Problems I-III.
To prove the existence of a weak solution of Problem I’, Oleinik,

Kalashnikov and Yui-Lin [15] do not need condition (5). They do impose
regularity and growth conditions on the function a which we do not require,
but, these conditions are not essential to their argument. However to prove
existence results for the Problems II’ and III’, Oleinik, Kalashnikov and
Yui-Lin suppose, in addition to the extra regularity and growth condi-
tions, y that

and

In view of the continuity of a at s = 0, (7) implies (5). Thus our condi-

tions for the existence of weak solutions of Problems II’ and III’ are less

restrictive.
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As an example of a pair of functions which do not satisfy (5), and there-
fore as an example of an equation to which our existence results do not

apply, we may take

and

By a change of variables, it is clear that our results for the Problems II
and III apply equally well in the domains (r¡1, (0, T] and (~, oo) X (0, T]
respectively, y for any r2 and q and - 00 

The paper is structured as follows. First, in section 2 we shall prove two
preparatory lemmas. Subsequently, in section 3, we prove our uniqueness
theorems. We then turn to the proof of our existence theorems. These require
some technical machinery, which we shall set up in section 4. This gives us a
clear field in which to prove our existence theorems in section 5. Here,
we also prove a result on the local regularity of weak solutions. In section 6,
we shall say how we can extract maximum principles for weak solutions
of the Problems I-III from our existence proofs. The last section is devoted
to a discussion of a necessary and suPficient condition for weak solutions of

the Problems I-III to vanish in open subsets of their domains of definition.

2. - Preparatory lemmas.

In this section we prove two preparatory results. The first one is used

in the proof of our uniqueness theorems. The second one is used, in sec-
tion 4, to set up the machinery with which we prove our existence theorems.

LEMMA 1. Given acny &#x3E; 0 there exists a constants C such that

if and only if

PROOF. Clearly to prove the lemma, it is sufficient to show that
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if and only if

Let 0  g, M. By Cauchy’s mean value theorem, there exists a
point such that

but then, by a second application of this theorem, y there exists a point
r2 E (rl , s2 ) such that

Note that 

Now if (8) holds, it follows, by letting /S2 - sll - 0 in (10), that (9)
also holds. On the other hand if (9) holds, since by Young’s inequality

for any r1, r2 E (0, M), using (10) we deduce that (8) also holds. This proves
the lemma.

LEMMA 2. Suppose that a, b E C’(O, oo). Then given any M &#x3E; 0 there

exists a f unction 6 E C2(0, M] and a positive constant C such that for all

s E (0, M]

if and only if
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PROOF. We first prove that (11) is a necessary condition for the existence
of a function 0 E C2(0, M] and a constant C satisfying (i)-(vi).

Observe that if 0(s) satisfies (i)-(vi) then so does - 0(s). So without any
loss of generality, by (i) and (ii), we shall suppose that 0"(s)  0 and

C &#x3E; 6(s) ~ l/C for s E (0, M].
By (iii) there holds

and by (v) there holds

So

Integrating this inequality from ê E (0, M) to M yields

Now, because 0"(s)  0 for SE(O, M], we deduce that

for all

and moreover that

Thus

As 8 E (0, M) is arbitrary it follows that M).

To show that (11) is a sufficient condition for the existence of a func-
tion 0 E C2(o, M] and a constant C satisfying (i)-(vi) we need only con-
struct an example.

We choose
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We calculate that for s E (o I

and

Hence

and (ii) is satisfied. Next we observe that

and

by (12), and also, since

that

for

Thus for all s E (0, if] there holds

and

It follows that if is bounded above and away from zero on (0, M] then
it is possible to choose a constant C such that not only (i), but also (iii)-(vi),
are satisfied. 

-

Plainly though, 0 is bounded below by 1 on (0, M] and since F e L’(O, M)
it is also bounded above on (0, M].
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3. - Uniqueness theorems.

We prove our uniqueness theorems for the Problems I-III in this section.
We begin with the Problem I.

THEOREM 1. If

then Problems I has at most one weak solution.

PROOF. Suppose, contrary to the statement of the theorem, that there
are two distinct solutions of Problem I, U1 and ~c2. Then we can define

toE[O, T) by

By the definition of a weak solution of Problem I there exist positive
constants .M and g such that

and

almost everywhere in S .

Moreover, U1 and u2 must satisfy the identity

for all E which vanish for large lxl and for t = T. Plainly (13)
will also hold for all 99 E 0(8) which vanish for large Ixi and for t = T, and
which have bounded generalized first derivatives in S.

Let t1 E (to, T] and define
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We also define a sequence of functions 000(- C&#x3E;o 1 00) such that:

and

It is not difficult to see that the functions rxkr¡ are admissible test

functions in (13). Thus, choosing 99 = a,i7, (13) becomes

where St = (- 00,00) x (0, t]. We shall denote the first integral on the
right hand side of (14) by h and the second one by I2.

By Young’s inequality and the definition of to,

for any 8&#x3E; 0. However, because (4) holds, by Lemma 1 there exists a con-
stant C which only depends on M such that

Hence, setting 8 = 1/(2C), we obtain

In view of the bound on and I(A(u.)),,I, if we choose a positive
constant Cl such that

sup a(.g) , y sup Ii
SE[O,ML
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we can estimate I2 by

where

From (14), (15) and (16) we derive the estimate

in which O2 is a constant which depends only on lVl and .g’.

Next we define the function

Then ?I(x, t ) == t ) - ~ (x, ti) for 0  t  tl . Substitution into (17) yields,
when To = min {to + 1/(4C), T},
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Hence,

for all t1 E (to, To] and all k. This implies by Gronwall’s lemma [13, p. 94]
that

for all t1 E (to, To] and all k. It follows E and hence, by (18),
that Consequently we derive from (18),
by use of the dominated convergence theorem, y that

for all t1 E (to, To]. A second application of Gronwall’s lemma now yields

and hence

Thus, in view of the continuity of u, and u2 , we have shown that U1- U2
in 8To. This contradicts the definition of to. We can therefore only assume
that Problem I has at most one weak solution.

To prove that if (4) holds then Problem II can have at most one weak
solution we use many ideas from the proof of the last theorem. We shall
therefore only sketch the proof.

THEOREM 2. I f (4) holds then Problem II has at most one weak solution.

PROOF. Suppose that u, and U2 are two distinct solutions of Problem II.
Then we can define T) by
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Now, it follows from (3) that u, and u, must satisfy the identity

for all E C(-R) which vanish for Ixl =1 and for t = T, and have square-
integrable generalized first derivatives in R.

Let t1 E (to, T] and define

It is not difficult to see that q is an admissible test function in (19). Setting
q = r~ in (19) gives

where Ri, = (-1, 1) X (0, t,]. However, because (4) holds and because U1
and U2 are bounded in .R, arguing as we did in the proof of Theorem 1 we
can show that there is a positive constant C such that

Thus, from (20) and (21), we have

Next we define the function
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By manipulation in (22), we deduce that

whenever t1  To = min{to + 1/(4 C), T}.
The proof of the theorem is completed similarly to the proof of Theorem 1.
By a combination of the techniques used in the proofs of Theorems 1

and 2, we can also prove a uniqueness result for weak solutions of the

Problem III. We omit the proof.

THEOREM 3. If (4) holds then Problem III has at most one weak solution.

4. - Machinery for existence.

We shall prove our existence theorems using a method due to Oleinik,
Kalashnikov and Yui-Lin [15]. Thus, we construct weak solutions of the
Problems I-III as the pointwise limit of sequences of positive classical solu-
tions of equation (1). The strategy is as follows. In this section we first

show that the requisite positive classical solutions of equation (1) exist.

Next, we find an interior smoothness estimate of them which only depends
on a number of given parameters. After this we find an L2 estimate of their
first derivative with respect to x. In the next section we shall show how,
for each of the Problems I-III, these estimates enable us to construct a
sequence of positive classical solutions of equation (1) which converges
pointwise, and guarantee that its limit function is indeed a weak solution
of the problem.

Throughout this section, we shall denote by Q the rectangle (r~l, 1}2) X (0, T],
where - 00  1}2  oo, I and by Q6 the rectangle (~1--~ ~, 1}2 - ð) X (0, T]
where 

LEMMA 3. Let E, a E (0, 1] and M E (0, oo) be fixed arbitrary real constants.
Suppose that uo(x) is a C2+«[~1, ~2] function, and, that T,(t) and P2(t) are

T] functions such that

and
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for i = 1, 2. Then if a’ and b’ exist and are locally Holder continuous on

(0, oo) there exists a unique f unction u(x, t) such that:

PROOF. Because a’ and b’ exist and are locally Holder continuous on (0, 00)
there exists a ~3 E (0, 1] and functions f, g E C" 0 (- 00, oo) such that

and

Then by [13, p. 452] there exists a y E (0, 1] and a function u(x, t) E
E which satisfies the equation

and the boundary condition (23), (24). Moreover by a straightforward ap-
plication of the maximum in Q. Hence u satisfies (1 )
as well. Thus, we have shown that there is a function u(x, t) satisfying (i),
(iii), (iv) and (v). If there were two such functions, then by retracing the
above argument, we could find two solutions of problem (23)-(25),
which is not possible [13, p. 455].

To complete the proof of the lemma it therefore remains to show that (ii)
is satisfied. Set v = A (~c) . Then v satisfies the equation

We observe that u E C2 +Y(Q) and that f, g E C1+fJ(- 00, oo) for some fl, y E (0, 1].
Thus by a series of elementary computations we can show that f(u),
(8/8tc) (f(u)) , g(u) and E By a result from the standard

theory of uniformly parabolic equations it follows that vx E C2~1(Q) [7, p. 72].
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In Lemma 3 we have established the existence of a class of positive clas-
sical solutions of equation (1) which we shall use later to construct weak
solutions of the Problems I-III. First, however, we must make some regularity
estimates of these positive classical solutions.

LEMMA 4. Let the assumptions of Lemma 3 hold and let u(x, t) be the func-
tion exhibited in Lemma 3. Suppose that

in

Then if

and

there exists a constant K which depends only on M and ð, such that

f or all (tci , t,), (X2, t2 ) E Q,, -

PROOF. We use a Bernstein-type technique.
Since (5) holds and a’ and b’ are continuous on (0, oo) it follows that

F(s) = -~-- EL1(0, M).

Thus by Lemma 2 there exists a function 0 E C2(o, .M] and a positive con-
stant 0 such that for all s E (0, M] :
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Set

Noting (i) we see that w is as smooth as A (u). Furthermore, from (1 ) we have

We differentiate this equation with respect to x and multiply through by wx .
Writing p = wx we obtain

Consider the function

in is a cut-off function such that:

If z attains a positive maximum at a point in Q, then at that point we have

and

or in other words

and

Using this in (26), we deduce that at a positive maximum of z in Q,

27 Annali della Scuola Norm. Sup. di Pisa
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So at this point, by (ii)

which by (iii)-(vi) means

Thus, by Young’s inequality

On the other hand, if z does not attain a positive maximum in Q, then z
must take its maximum value in Q on the lower boundary of Q. However
by definition

It follows from (27) and (28) that there exists a constant 01 which depends
on Eo, M and 6, but not on 8, such that

However, by (i) this implies that

Now set v(x, t) = A(u(tc, t)). Then v satisfies the equation

and v has a bound which only depends on M in Q. Moreover, from the above

(29) I v(W , t)-V(X2’ t) c 0101x1-X21 for all (Xl’ t), (X2, t) E Q4a .

It follows from [8] that there exists a constant O2 which depends on C1 C,
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M and 6, but not on s, such that

Combining (29) and (30) produces the required result.

LEMMA 5. Let the assumptions of Lemma 3 hold and let u(x, t) be the func-
tion exhibited in Lemma 3. Suppose that there are positive constants Ko and K’ 0
such that

in

and

Then if (5) holds there exists a constant L which depends only on M, T
and 6 such that

PROOF. We shall only prove that

In an identical way one can show that

Let

Then, using (1) we have
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Integrating by parts with respect to x, this is equivalent to:

Denote the four integrals on the right hand side of (31) by 11, 1,, I3 and I4
respectively. We shall estimate these integrals in turn.

First, we introduce some notation. Let

and choose a positive real constant 01 such that

Then

But by Lemma 4, there exists a positive constant K which depends on M

and 6, but not on E, such that

Thus

Next, we observe that

and so



413

Now,

and therefore

Whereas

and so

From the estimates for 11, I2 , I3 and I4 , we deduce that

5. - Existence theorems.

We are now in a position to prove our first existence theorem.
THEOREM 4. Suppose that a’ and b’ exist and are locally Holder continuous

on ( o, 00) and that

and

Then if A(uo) satisfies a Lipschitz condition on (- oo, oo) Problem I has at
least one weak solution,.

PROOF. Because A(uo) satisfies a Lipschitz condition on (- 00, oo) we
can choose positive constants M and Eo, sequences of positive constants

and a sequence of functions such that :

for all k ;

for all k ;
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Then by Lemma 3 there exists a

unique function UkE 02,l(Qk) such that:

We note that, in view of condition (iv), by a standard application of the
maximum principle, u,+,(x, t)  uk(x, t) for all (x, t) E Qk. Hence we can

define a real, nonnegative, bounded function u(x, t) on 8 by

We assert that u is a weak solution of Problem I.

Since (5) holds, by Lemma 4 there exists a constant I~ which only depends
on if and .g’o such that for any there holds

for all (xl , tl ), (x2 , t2 ) E Qk . Hence

for all (xl, t.), (X2’ t2) It follows that u is continuous in 8 and moreover
that A (u) has a bounded generalized derivative with respect to x in S. Thus
to show that u is a weak solution of Problem I it remains to show that u
satisfies the integral identity (2).
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Let q be an admissible test function in (2). Then there exists an m &#x3E; 1
such that the support of 99 is entirely contained in Q~. From (32) we know

has a weakly convergent subsequence in We de-

note this subsequence and its weak limit by w. Then

since uk’ E C2’1 (Qm) for any k’ &#x3E; m there holds

for Hence, taking the limit, y we obtain

for It follows that w = and hence that the entire

sequence converges weakly to in L2(Q).
Now, as the functions Uk are solutions of (1)~ for all k &#x3E; m there holds

However, as k - oo, Uk converges pointwise to u in Qm, uo,k converges uni-
formly to uo in [- m -1, m -~-1 ], and from the above, converges

weakly in L2(Qm) to (A(u))x. Thus letting k - oo in (33) we obtain

Since 99 was an arbitrary test function the proof of the theorem is complete.
We note that clearly the continuity condition on uo in Theorem 4 is

minimal.

We now turn to the question of existence for the Problem II.

THEOREM 5. Suppose that a’ and b’ exist and are locally Holder continuous
on (0, oo) and that (5) is satis f ied. Then if is locally Lipschitz continuous
on (-1, 1), and, and A(W+) are absolutely continuous on [0, T]
Problem II has at least one weak solution.

PROOF. Because of the conditions on uo , P- and IF+, we can choose positive
constants M and K’ sequences of positive constants and
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sequences of function such that:

By Lemma 3, there exists a unique function Uk(X, t) E C2~1(..R) such that
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In view of the monotonicity conditions on (Wg) by the
standard maximum principle for uniformly parabolic equations U,+,(x, t) ~
~ t ) for all (x, t ) and all k. Hence we can define a real nonnegative
bounded function on R by

Lemma 4 implies that given any ð e (0, 2 ), there exists a constant K
which depends on .lVl, and ð such that

for all (X2’ t2) E [-1-~- 2~, 1 - 26] X [0, T] and all k. Taking the limit,
we see that for any 6 E (0, 2), there exists a constant K = K(M, ð, Ko(b))
such that

for all (x,, t,), (X2, t2) E [-1-E- 26, 1 - 26] x [0, T]. It follows that u is con-

tinuous in (-1,1 ) X [o, T ] and that A (u) has a generalized derivative with
respect to x in .R.

By Lemma 5 there exists a constant I~ which depends only on 

.go, .lVl and T such that for all k there holds

Moreover, by (34) there exists a constant Ci which depends only on 
and if such that for all 1~:

for all

This means has a weakly convergent subsequence in..L2(.R).
By an argument similar to that used in the proof of Theorem 4 its weak
limit can only be (A(u)),,. So 

Proceeding as in the proof of Theorem 5, it is not difficult to show that
u satisfies the integral identity (3). Furthermore by definition u(-1, t) =

_ ~- (t), t) = for all T]. Thus in order to show that u is
a weak solution of Problem II it remains to show that u is continuous in R.
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We make the observation that if t) were a weak solution of Problem II,
then v(x, t) = u(- x, t) would be a weak solution of the equation

with data

Thus, because of this symmetry, y to show that u is a weak solution of

Problem II it becomes sufficient to show that u is continuous in [-1, 1 ) x
X [0, T]. However we already know that u is continuous in (-1,1 ) X [0, T]
and that u(x, 0) = uo(x) is continuous on [-1, 1]. Thus to show that u is

a weak solution of Problem II it is enough to prove that for any fixed
to E [0, ~’] :

and

We will demonstrate that this is true below and thereby complete the proof
of the theorem.

For any k :

Hence

Letting k 2013~ oo in the latter inequality yields (35).
If P-(to) = 0 then trivially (36) is true. When, however, P-(to) &#x3E; 0 we

must use a comparison function argument to show that (36) holds. We shall
show that given any 8 E (0, P-(to)) we can define a function w(x, t) on R
such that
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and such that, for all sufficiently large k, there holds

Clearly this suffices to show that (36) also holds when P-(to) &#x3E; 0.

Suppose therefore that &#x3E; 0 and let s E (0, P-(to)) be a fixed ar-
bitrary constant. Set

Then the following functions are well defined on (0, oo) :

and

We observe that

If to &#x3E; 0, we choose and fix c so large that

and set

On the other hand if to = 0, we choose and fix c so large that

and set
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Next we define an increasing function y: [0, e(c)] - [0, .M~] by

By the definition of is well-defined and moreover it is a bijection
from [0, 9(c)] to [0, M]. Also, it is not difficult to check that y E C2(o, Q(0)11
with

and

Note that by the definition of Â(c):

Now if to C T, by (39a, b) and (41), we can pick t2 such that

If to = T we set

Let m be chosen so large that 8k C ~ (to) - E for all k &#x3E; m and for each

k &#x3E; m define the point ?7k by

We set

and
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Let Noting that q,, --~ 0 as Ek -~ 0 we see that

and -

Plainly, y since by definition c~t2 - ~,(c)~ C 2, QÇR.
We are now in a position to define the function w. We set

To check that w satisfies (37) we utilize the choice of t1 and t2, and (41).
We find that

We therefore now have to check that (38) holds.
Fix k &#x3E; m. Then if t E [t1, t2] :

Whereas if 

We also note that if i==0y 7 i.e. if to = 0, for x E [-1, -1- 

Thus, by (42)-(44), there holds

We now apply the maximum principle. Using (40) we observe that w is

a classical solution of (1) in Q,. Furthermore w is bounded away from

zero in lJk by eke Thus,

for all
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However,

for all

for all i

Plainly then

We have therefore shown that the function w satisfies (37) and (38).
Since this was the last step in the verification of (35) and (36), the proof
of the theorem is com lete.

To prove the existence of weak solutions of Problem III we combine
the techniques used in the proofs of Theorems 4 and 5. We omit the details.

THEOREM 6. Suppose that a’ and b’ exist and are locally Hölder continuous
on (0, oo) and that (5) is satisfied. Then if A(uo) satisfies a Lipschitz condi-
tion on any set of the form (6, co), 6 &#x3E; 0, and A(P) is absolutely continuous

on [0, T] Problem III has at least one weak solution.

To conclude this section we shall prove a result concerning the local
differentiability of the weak solution of the Problem I which we have con-
structed.

PROPOSITION 1. Let the assumptions of Theorem 4 hold and let u(x, t)
be the weak solution of Problem I exhibited in Theorem 4. Then u is a classical
solution of equation (1) in a neighbourhood of any point (xo, to) e S where
u (xo ~ to ) &#x3E; 0.

PROOF. Let (xo, to ) be a fixed point in ~S where u (xo , to ) &#x3E; 0. We shall

denote by the open ball in R2 with centre at (xo, to) and radius y. Other-
wise throughout the proof of this theorem we shall adopt the notation used
in the proof of Theorem 4.

Since u (xo , to ) &#x3E; 0 there exists a yo &#x3E; 0 and a /-l &#x3E; 0 such that

Hence we can choose m so large that Qm and

Fix y, E (0, yo). Then by a generalization of Nash’s theorem [13, p. 204] we
can find a constant fJ E (0, 1] and a positive constant x such that
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for all (tci , t,), (X2’ t2) E -%(,y,) n S and all k &#x3E; m. Here the constants f3
and X may depend only on It, yo - Y1 and M. It follows that for all k &#x3E; m,

a(uk) and b(uk) are Holder continuous in r1 S with exponent fl.
We set vk = A(uk) and note that

Thus by the standard theory of linear parabolic equations [7, p. 72]
Vk E r1 S) for all k &#x3E; m. This means, by a second application of
this theory [7, p. 64] that there exists a Y2 E (0, for which 

may be estimated independently of k. So A (u) E C2 +~ (~ (y2 ) r1 S), and

therefore u E n S).
To show that u is a classical solution of (1) in a neighbourhood of (xo,to)

we now only have to show that u satisfies (1) in m S, but this follows
immediately from the identity (2).

Similarly, we can prove the following results.

PROPOSITION 2. Let the assumptions of Theorem 5 hold and let u(x, t) be
the weak solution of Problem II exhibited in Theorem 5. Then u is a classical

solution of equation (1) in a neighbourhood of any point (xo, to) E .R where

PROPOSITION 3. Let the assumptions of Theorem 6 hold and let u(x, t) be
the weak solution of Problem III exhibited in Theorem 6. Then u is a classical
solution of equation (1) in a neighbourhood of any point (xo , to) E H where
u (xo ~ to ) &#x3E; 0. 

1

6. - Maximum principles for weak solutions.

We have proved our existence theorems following the method which
Oleinik, Kalashnikov and Yui-Lin [15] used to prove the existence of weak
solutions of the Problems I’-III’. Thus, subject to the constraints of our
existence and uniqueness theorems we may prove weak maximum principles
for the Problems I-III in exactly the same way as Oleinik, Kalashnikov
and Yui-Lin [15] have for the Problems I’-III’.

PROPOSITION 4. Suppose that a’ and b’ exist and are locally Hblder con-
tinuous on (0, oo) and that (4) and (5) are satisfied. Let U1 and U2 denote two

weak solutions of Problem I with respective initial data U01, u02. Suppose that
A(u,,,) and A(u02) satisfy Lipschitz conditions on (- 00, oo) and that
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Then

for all

PROPOSITION 5. Suppose that a’ and b’ exist and are locally Hölder con-
tinuous on (0, oo) and that (4) and (5) are satisfied. Let U1 and U2 denote two

weak solutions of Problem II with respective 1 n , Pi and U021 Pi .
Suppose that A (uol ) and are locally Lipschitz continuous on (-1, 1 ) ;
that A. (~~ ), A(P2) and A(W2+) are absolutely continuous on [0, T];
and that

and

Then

PROPOSITION 6. Suppose that a’ and b’ exist and are locally Hblder con-
tinuous on (0, oo) and that (4) and (5) are satisfied. Let U1 and U2 denote two

weak solutions of Problem III with respective data u01, Pl and u02, P2.
Suppose that A(U01) and A(u02) satisfy Lipschitz conditions on any set of the
f orm (6, 00), ð&#x3E; 0, that A(P1) and A(P2) are absolutely continuous on [O,T ] ;
and that

and

Then

A detailed proof of Proposition 4 for equation (6) is given in [9].

7. - Compact support of weak solutions.

Consider Problem I’ and suppose that uo is nontrivial and has compact
support. Then for the weak solution u(x, t) of Problem I’ to have compact
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support it is necessary and sufficient that

[15,17]. Similarly if we let t) be a weak solution of Problem III’ for
which P is positive and uo has compact support, then for t) to have com-

pact support (45) is also necessary and sufficient [15, 161. In this section we
shall extend these results to the Problems I and III and give a comparable
result for the Problem II. However we shall be limited by our existence and
uniqueness theorems. Thus we must suppose that a’ and b’ exist and are

locally Holder continuous on (0, oo) and that (4) and (5) are satisfied.
We make the preliminary observation that if t) is a weak solution

of Problem I with initial data uo, then

is the weak solution of Problem I for the equation

with the initial data

Thus, if we suppose that uo has compact support, to prove that the
weak solution u(x, t) of Problem I has compact support if (45) holds, it is
enough to prove the following result.

LEMMA 6. Let u(x, t) be a weak solution of Problem I with initial data uo
and suppose that

for all

for some Xo E (- 00, 00). Then if (45) holds there exists a point Xl E [xo, oo)
such that

PROOF. Set

28 della Scuola Norm. Sup. di Pisa
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Assume-for the moment-that there exists a weak solution U(x, t)
of Problem III with the properties:

(a) there exists a point such that

U(x, t) = 0 for all (x, t) E H satisfying 

(b) t) &#x3E; Mo for all e[0, T].

Then we may invoke an argument of Oleinik, Kalashnikov and Yui-Lin [15]
and conclude that

for all i

which proves the lemma.

It remains to find a weak solution t) of Problem III with the required
properties. However, y for technical reasons-as we shall see-for arbitrary
functions a and b in equation (1) this is not straightforward. We shall
overcome this technicality by choosing a function a E C[0, oo) r1 CI(O, oo)
such that a’ is locally Holder continuous on (0, oo) and

and such that we can find a weak solution 17(x, t) of Problem III for the
equation

with properties (a) and (b). This suffices. For, since u  Mo in ~’ it is a
weak solution of Problem I for equation (46), and so by the above argument
applied to equation (46) there holds

for all

We show that if (45) holds we can choose a suitable function d such
that there is a weak solution t) of Problem III for equation (46) with
the required properties.

Since (4) holds, b(0) = 0 and therefore for every c&#x3E;0 we may define

~=~(c), 0~oo, by
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Choose and fix c so large that

Because (45) holds we may then set

The function oo) r1 Cl(o, oo) with a’ locally Holder continuous on
(0, oo) and such that

for ~,.

is now chosen in such a way that if we set

then there holds

Plainly this is feasible. We now determine U from defining the function

and for some real constant y setting

The function 0 is defined on H if f (y + cT) is defined, i.e. if

Subject to this constraint it is not hard to verify that 0 is a weak solution
of Problem III for equation (46). Olearly 0 has property (a). Moreover,
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U has property (b) if i.e. if

By our choice of d it follows from (48) that we can pick y so that both (49)
and (50) are satisfied. Thus U is the weak solution of Problem III for equa-
tion (46) which we require.

If we replace the function d in (47) by a we cannot be certain, in general,
that (48) holds for any c &#x3E; 0 such that &#x3E; Hence it may be im-

possible to find a pair of positive constants c and y satisfying (49) and (50).
We circumvent this technical obstacle by introducing the function a.

We remark that the function U(x, t) is differentiable at points (x, t) E H
where x =A y + ct. Specifically,

and

Thus if

the derivative 0z is discontinuous in H and L7 is not a classical solution of
Problem III for equation (46).

We now turn to showing that if u(x, t) is a nontrivial weak solution of
Problem I then (45) is necessary for u to have compact support in ~S.
We shalr do this in two steps. This is the first.

LEMMA 7. Suppose that (45) does not hold, and let u(x, t) be a weak solu-
tion of Problem I. Then, given any t E (o, T ] either:

or;

PROOF. Suppose that the lemma is false. Thus, suppose that there
exists t1 E (0, T] and points xo, X1E (- 00,00) such that

and

Then, in view of the continuity of u imS’ there exists a to E [0, tl] and a
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positive constant It such that

for all

Without any loss of generality we shall take xo = 0, to = = T, and,
recalling our preliminary observation, xl &#x3E; 0. We seek a contradiction by
using a modification of a technique due to Peletier [16].

Let denote the sequence of classical solutions of equation (1)
from which u was constructed in Theorem 4 as a pointwise limit. We recall
that each C2’1 (Qk), I where Qk = (- k -1, k + 1) X (0, T], and that there
exists a sequence of positive constants and a fixed positive con-
stant ltl such that

and

We also note that since is decreasing:

and for all k.

Now, since a(s)ls 0 Z1(o, 1), the problem

has a unique positive solution on [0, oo) [1]. Let us denote this function

by /(7y). Then, f(i7)  0 for all q E [0, oo) [1], and for each k &#x3E; 1 we can

choose a constant í k E (0, oo) such that

Choose

Next set
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Observe that since f is strictly decreasing on [0, oo),

and also

Thus, by computation using (53), we find that

It follows that Wk is a positive subsolution of (1) in H. Therefore, in view
of (51), (52), (54) and (55), by the maximum principle

Thus for all k a 1 there holds

Letting k - oo, and using the monotonicity of f, we obtain

Particularly this means that

Hence we have a contradiction.

From Lemma 8 it follows that to show that (45) is necessary for a weak
solution u(x, t) with nontrivial initial data uo to have compact support it
is enough to show that u(x, t) ~ 0 for any t E (0, T]. This follows from the

following lemma. The lemma has already been proved for the special case
of equation (6) [9] and extends to equation (1) without involving any extra
difficulties. We shall therefore omit the proof.

LEMMA 8. Let t) be a weak solution of Problem I. Then for all t E (0, T] :

Thus, combining Lemmas 6-8 we have proved the following proposition.
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PROPOSITION 4. Suppose that a’ and b’ exist and are locally Holder con-
tinuous on (0, oo) and that (4) and (5) are satisfied. Let u denote a weak solu-

tion of Problem I with nontrivial initial data uo, and suppose that A(uo) satisfies
a Lipschitz condition on (- 00, oo) and that uo has compact support. Then u

has compact support in 8 if and only if (45 ) is satisfied.

Similarly we can prove the following results.

PROPOSITION 5. Suppose that a’ and b’ exist and are locally Holder con-
tinuous on (0, oo) and that (4) and (5) are satisfied. Let u denote a weak solu-
tion of Problem II with data uo, IF-, p+ and suppose that A(uo) is locally
Lipschitz continuous on (-1, 1 ) and and are absolutely con-

tinuous on [0, T], and that there exist points O2 E (-1,1), O1 C (12’ such that

and

Then there exists an open subset of .R in which u vanishes if and only if (45)
is satisfied.

PROPOSITION 6. Suppose that a’ and b’ exist and are locally Hölder continuous
on (0, oo) and that (4) and (5) are satisfied. Let u denote a weak solution of
Problem III with data uo, P and suppose that A(uo) satisfies a Lipschitz con-
dition on any set of the f orm (6, 00), ð&#x3E; 0, and A(P) is absolutely continuous
on [0, T], and that uo has compact support and

T hen u has compact support in H if and only if (45) is satisfied.

Acknowledgements. The author wishes to thank Professor L. A. Peletier

for many stimulating discussions concerning this paper. The work was spon-
sored by the United Kingdom Science Research Council.

REFERENCES

[1] F. V. ATKINSON - L. A. PELETIER, Similarity solutions of the nonlinear dif-
fusion equation, Arch. Rational Mech. Anal., 54 (1974), pp. 373-392.

[2] J. BEAR, Dynamics of fluids in porous media, American Elsevier, New York (1972).
[3] H. BREZIS, On some degenerate nonlinear parabolic equations, Nonlinear Func-

tional Analysis, Proceedings of Symposia in Pure Mathematics, vol. 18, part 1,
American Mathematical Society, Providence, R. I. (1970), pp. 28-38.



432

[4] H. BREZIS, Monotonicity methods in Hilbert spaces and some applications to

nonlinear partial differential equations, Contributions to Nonlinear Functional
Analysis, edited by E. H. Zarantonello, Academic Press, New York (1971),
pp. 101-156.

[5] JU. A. DUBINSKII, Weak convergence in nonlinear elliptic and parabolic equa-
tions, Mat. Sb., 67 (1965), pp. 609-642; Amer. Math. Soc. Transl., 67 (1968),
pp. 226-258.

[6] M. I. FREIDLIN, Existence « in the large » of smooth solutions of degenerate quasi-
linear equations, Mat. Sb., 78 (1969), pp. 332-348; Math. USSR-Sb., 7 (1969),
pp. 323-339.

[7] A. FRIEDMAN, Partial differential equations of parabolic type, Prentice-Hall,
Englewood Cliffs, N. J. (1964).

[8] B. H. GILDING, Hölder continuity of solutions of parabolic equations, J. London
Math. Soc., 13 (1976), pp. 103-106.

[9] B. H. GILDING, Properties of solutions of an equation in the theory of infiltration,
Arch. Rational Mech. Anal. (to appear).

[10] B. H. GILDING - L. A. PELETIER, The Cauchy problem for an equation in the
theory of infiltration, Arch. Rational Mech. Anal. , 61 (1976), pp. 127-140.

[11] A. S. KALASHNIKOV, The Cauchy problem in a class of growing functions for
equations of unsteady filtration type, Vestnik Moscov. Univ. Ser. I Mat. Meh.,
18 (1963), pp. 17-27.

[12] A. S. KALASHNIKOV, On the character of the propagation of perturbations in pro-
cesses described by quasilinear degenerate parabolic equations, Proceedings of

Seminars dedicated to I. G. Petrovskogo, Otdel’nyi ottisk, Moscow (1975),
pp. 135-144.

[13] O. A. LADYZHENSKAJA - V. A. SOLONNIKOV - N. N. URAL’CEVA, Linear and

quasilinear equations of parabolic type, Translations of Mathematical Monog-
raphs, vol. 23, American Mathematical Society, Providence, R. I. (1968).

[14] J. L. LIONS, Quelques méthodes de résolution des problèmes aux limites non linéai-
res, Dunod, Gauthier-Yillars (1969).

[15] O. A. OLEINIK - A. S. KALASHNIKOV - CHZHOU YUI-LIN, The Cauchy problem
and boundary problems for equations of the type of unsteady filtration, Izv. Akad.
Nauk SSSR Ser. Mat., 22 (1958), pp. 667-704.

[16] L. A. PELETIER, A necessary and sufficient condition for the existence of an
interface in flows through porous media, Arch. Rational Mech. Anal., 56 (1974),
pp. 183-190.

[17] L. A. PELETIER, On the existence of an interface in nonlinear diffusion processes,
Ordinary and Partial Differential Equations, Lecture Notes in Mathematics 415,
Springer-Verlag, Berlin (1974), pp. 412-416.

[18] P. A. RAVIART, Sur la résolution et l’approximation de certaines équations para-
boliques non linéaires dégénérées, Arch. Rational Mech. Anal., 25 (1967), pp. 64-80.

[19] E. S. SABININA, On the Cauchy problem for the equation of nonstationary gas
filtration in several space variables, Dokl. Akad. Nauk SSSR, 136 (1961),
pp. 1034-1037; Soviet Math. Dokl., 2 (1961), pp. 166-169.

[20] A. I. VOL’PERT - S. I. HUDJAEV, Cauchy’s problem for degenerate second order
quasilinear parabolic equations, Mat. Sb., 78 (1969), pp.374-396; Math. USSR-Sb.,
7 (1969), pp. 365-387.


