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A Class of Second-Order Evolution Equations
with Double Characteristics.

ANTONIO GILIOLI (*)

Introduction.

Given an abstract Hilbert space H and an unbounded, selfadjoint positive
definite operator A on H, which has a bounded inverse we study in this
paper evolution operators of the form

where a, means 8f8t and where the coefficients a(t, A), b(t, A) and c(t, A)
are power series with respect to .d-1, with coefficients in C’(J), for some open
set J on the real line. These power series are assumed to be convergent in

L(H; H), as well as each of their t-derivatives, uniformly with respect to t
on compact subsets of J. When the leading coefficients ao(t) and bo(t) of the
power series a(t, A) and b(t, A) vanish simultaneously (we always assume
that this happens for t = 0), we are in the case of double characteristics.

The study of local solvability and hypoellipticity of such operators was
completely made by F. Tr6ves, in this same abstract set up, under the
further condition

where denotes the first derivative of f (t).
The best possible hypoelliptic property of these operators, now in the

pseudodifferential form, was studied by F. Treves and B. de Monvel. For
this, they associated to every operator P satisfying (1) and (2) the number

(*) The author was supported by »EAPESP » and by )}IME-USP)} (Brazil),
while doing his Ph. D. thesis, under the direction of Prof. F. TRihvEs, at Rutgers
University.

Pervenuto alla Redazione il 2 Gennaio 1974.
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and it turned out that P only loses one derivative if and only if lp is not an
integer &#x3E;0.

Here we again study operators in the abstract set up, constructing a
scale of Sobolev spaces but considering the following condition, more
general than (2), as well as the corresponding definition of lp and hypoelliptic
property:

(4) for some odd positive integer k, Re Re  0, Re =

for all and for all pk - 2.

(6) there is an open set J containing 0 such that, given any real number s,
any open subset J’ of J and any distribution u in J’,

The main result of this article is the following

THEOREM. Let P satisfy (1), (4) and (5), and let P* be the adjoint of P.
The following conditions are equivalent:

(7) P satisfies ( 6 ) ;

(8) P* satisfies ( 6 ) ;

(9) whatever the integer

A more precise statement is given in chapter 7, using the spaces 
constructed in chapter 4

The novelty in this article is the kind of simple concatenations that we

use, which incidentally precludes the use of Hermite operators, employed
by Monvel-Tr6ves in their work

0. - Notations.

Throughout this article, we will closely follow the notations of [3]
Like there, A will denote a linear operator, densely defined in a Hilbert

space H, which is unbounded, but is selfadjoint, positive definite and has
a bounded inverse A-1. (We may think of .A. as being, for instance,
(12013JJ~ on or a selfadjoint extension of 



189

We will consider differential operators on the real line (where the variable
is denoted by t and is usually referred to as the time), of the following kind:

where the r’s are real numbers &#x3E;0, the j’s are integers &#x3E;0, and the sum
is a finite one. The coefficients e,.,(t, A) belong to the ring (2A(J) defined

as follows: J is a given open subset of the real line; the elements of 
are the series in the nonnegative powers of A-1, with coefficients in C°°(J),
which converge in L(H; H) (the Banach space of bounded linear operators
on H), as well as each one of their t-derivatives, uniformly with respect to t
on compact subsets of J.

The operators of the kind (0.1) form a ring which we denote 
The operator given in (0.1) is said to be of order less than or equal to the
nonnegative real number m.

We will use the scale of « Sobolev spaces » s e -R) « on the va-

riables x », defined by . : if s 0, Hs is the space of elements u of H such
that equipped with the norm where denotes

the norm in if s C 0, B"$ is the completion of H for the norm

Ilulls s = IlAsullo. The inner product in .H$ will be denoted by ( , )s. Whatever
m c B2 Am is an isomorphism (for the Hilbert space structures) of hL’a

onto .Hs-m.

By Hoo we denote the intersection of the spaces Hg, equipped with the

projective limit topology, and by H- ’ their union, with the inductive limit
topology. Since, for each 8 E .R, .H’g and can be regarded as the dual of
each other, so can Hoo and H- ~° : with their topologies, they are the strong
dual of each other.

Let J be an open subset of the real line. We denote by C°°(J; Hoo) the
space of 000 functions in J valued in It is the intersection of the spaces

CJ(J; Hk) (of the j-continuously differentiable functions defined in J and
valued in Hk) as the nonnegative integers j, k tend to + oo - We equip
C°°(J; HOO) with its natural 000 topology. If K is any compact subset of J,
we denote by C§fi(K; HOO) the subspace of C°°(J; .H’~°°) consisting of the func-
tions which vanish identically outside K. It is a closed linear subspace of

hence a Fréchet space, and we denote by C~(J; HOO) the induc-
tive limit of as X ranges over all compact subsets of J.

We will denote by 0’(J; H-’) the dual of 0’(J; H’), and refer to it as
the space of distributions in J valued in H- 00. The « local structure theorem))

is valid in ~’ (J; H- °° ) : if u is any distribution in J valued in H- °° and if J’
is any relatively compact open subset of J, we can find a finite 
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( j of continuous functions in J, valued in H, such that

Observe that the differential operators P define continuous linear

mappings of C°°(J; HOO) (resp. 0’ (J; H°°), resp. 9)’(J; H-OO») into itself.
For the sake of completeness, we recall some definitions and results

stated in [3].

DEFINITION 0.1. Let to be any point of the open set J. We say that P
is locally solvable at to if there is an open neighbourhood J’ of to, contained
in J, such that, to every there is satisfying
Put = f in J’. We say that P is locally solvable in a subset S of J if P is
locally solvable at every point of S.

DEFINITION 0.2. We say that P is hypoelliptic in J if given any open
subset J’ of J and any distribution u E 0’(J; H-°°), the following condition
is verified:

DEFINITION 0.3. We denote by P* the formal adjoint of j’
i.e., the operator defined by

PROPOSITION 0.1. If P is hypoelliptic in the open subset J,,, of J, then P*
is locally solvable in J 0 .

PROPOSITION 0.2. Let X be the differential operator a - a(t, A) A, where

a(t, .~.) E (2A(J) thug 7 we may write a(t, A) = m 1 a, (t) A -i), and suppose that
there is an integer p &#x3E; 0 such that 

Then, X is hypoelliptic at

satis f ied :
znd only if the following condition is

either p is even or,



191

PROPOSITION 0.3. Let X be as in Prop. 0.2, satisfying also (0.5). Then,
X is locally solvable at t = 0 if and only if the following condition is satisfied :

(0.7) either p is even or, if p is odd,  0.

Propositions 0.1, 0.2, and 0.3 are respectively Corollaries 1.1.2, 1.3.1

and 1.2.1 of [3].

1. - The « Sobolev » spaces 

We will denote by the space of all functions 

such that, for all pairs of polynomials P and Q in the variable t, and with
complex coefficients, P(t)Q(at)u(t) remains in a bounded subset of Hoo as t

varies over .R, i.e., such that

We equip 8(R; HaJ) with its natural topology (i.e., we take as a basis
of continuous seminorms the expressions in (1.1)).

We define the integral of a continuous function valued in a locally convex
vector space as the limit of Riemann sums. Then, if u E ~(I~; .H°°), we may
form its Fourier transform u by

It can be checked at once that for every ieR; and that
4l E 8(B; Moreover, the Fourier transform is a continuous linear map
from 8(R; into itself, and it can be verified that its inverse is given by
the usual formula:

which shows that the Fourier transform is an isomorphism from 8(R; H°°)
onto itself.

As usually, y except for a multiplicative constant, the Fourier transform
can be extended as an isometry of L2(.1~; H) onto itself. We have precisely:
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We denote by 8’(R ; H-°°) the dual of Hoo), and we refer to it as the
space of tempered distributions on R, Since 0’(R; is dense

in S(R; .H°°), we can identify 8’(R; g-°°) (as a set) with a subspace of
~’ (_R; The transposition of the Fourier transform gives an iso-

morphism from 8’(R; ~’-°°) onto itself, which extends the initial one, and
will be also called Fourier transform.

The operator 1-f- -r2 +A2 , defined in a subspace of L2(R; H) with values
in L2(.R; H), which assigns to each v in its domain of definition the element w
in L2(R ; H) given by w(-r) = v(-r) -E- z2v(z) + A2 (V(T)), is obviously densely
defined in H), selfadjoint and positive definite, and its inverse is con-
tinuous with norm 1. Hence, we may consider its powers 
for any 

We should remark that sometimes A is considered as a function from a

subspace of H into H, sometimes as a function from a subspace of L2(.R; H)
into itself, as in the expression 1-~- z2 -~- A2. This will never produce any
confusion, since it will be clear from the context what is meant by A.

Let us consider a spectral resolution of the operator A (considered in H) :

Then, I for every VEL2(R;H), we have both

We will use the scale of « Sobolev » spaces not to be confused with .Hs,
for  on all the variables t and x », defined by (1- 0; --E- ~2)~ (or, in

the Fourier transform side, by (1-j-T~-)-~)~): if Jes is the space of

elements such that ( 1 + i~+ A~)~’~ 4i e L~(R ; H) , equipped with
the norm IIlulll;= (2n)-1 )) (1 -E- z2 Remark that due to (1.6),
we with I11 Illo = ~~ ~~L~(R;~). If the comple-
tion of for the norm The

inner product in Jes will be denoted by (( , ))~ , in order to distinguish it from
the inner product in .Hs. Whatever s, m E .R, (1- ô; an isomor-

phism (for the Hilbert space structures) of ~$ onto 
As in section 0, we may define the spaces and and since, for

each S E R, Jes and can be regarded as the dual of each other, so can Jeco
and 
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REMARK 1.1. An equivalent definition of the spaces JC8, is the

following: Jes is the space of tempered distributions u on .By valued in 
such that its Fourier transform g is a measurable function and

J 
.. -

DEFINITION 1.1. Let K be a compact subset of I. Then we call

R§(K) = (u E Jes Isupp u is a subset of with the topology induced by Jes.

By supp u we will always mean the support of u.

DEFINITION 1.2. Let J be an open subset of .R. Then we call 

the inductive limit of the spaces as I~ ranges over all compact sub-
sets of J.

DEFINITION 1.3. Let J be an open subset of ~. Then we call 

we have with the coarsest locally
convex topology which renders all the from into ~$

continuous.

We remark that C~ (J; is dense in and and that Je;oc(J)
is a Fréchet space which is the dual of 

These spaces have the usual properties of the Sobolev spaces. The norm
of Je’is equivalent to the following one: Illullls = II (T 2 which

it is easy to check, for s ~ 0, to be also equivalent to

Another fact is:

from which it follows immediately:

Moreover, y due to the way the spaces Hs were defined, we have:

This in connection with (1.8) gives:

13 - Annali della Scuola Norm. Suw. di Pisa
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We give below a list of important properties of these spaces and operators,
leaving their proofs to the reader. We just mention that (1.12) should be
first verified for R8 and then apply (1.9) and (1.8’).

we have continuous injections

is a continuous operator from into

Moreover, the norm of Je8 is equivalent to

(1.13) b’s E .R, Vm E Z+, ~c E Jes iff there are v, w in JeB+m such that u = a,4v +
-I- gmw. Moreover, there is C &#x3E; 0 (independent of u) such that v
and w may be chosen satisfying lllvllls+m -I- Olllull/s.

(1.14) VmEZ+, uEJe/(J) iff there are v, w in such that

u = Moreover, if K = supp u and J’ is any open sub-
set of J containing K, we may choose v and w so that both supp v
and supp w are contained in J’.

We end this section with a proposition which is essential for sec-

tions 4 and 5.

PROPOSITION 1.1. Let ac and r be real numbers, a &#x3E; 0 and r&#x3E; 0, and let k
be a positive integer. Then:

a) I f OtU and both belong to L2(1~; HB), then for every real

number b such that 0 ~ b ~ a, we have Moreover,
there is a constant C &#x3E; 0 (depending only on a, band r) such that

+ where )) means here the norm of
H-1).
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Although these are well known facts, we give the proof of this proposi-
tion in the Appendix.

2. - Statement of the main theorem.

Let J be an open subset of the real line, containing the origin. We will
study a second order evolution operator of the form

where a(t, A), b(t, A) and c(t, A) are elements of 
As remarked in [3], there is no gain of generality in considering operators

of the form P+ d(t, A) a, instead of P.
We will systematically use the notation

We will further restrict the class of operators of the kind (2.1) which
we propose to study. The restricting conditions will bear on the leading coef-
ficients ao(t), bo(t) and co(t) of the power series (in A -1) a(t, A), b(t, A) and
c(t, A). Let us assume that ao(t) and do not vanish of infinite order at

t = 0. Then we can write ao(t) = atm + tm+1 f (t), bo(t) = btn + tn+lg(t), with
0. We will further assume that m = n, which will be denoted by k,

and that 0. We will also assume that co(t) = ctk-l + tk h(t),
without restrictions on the complex number c.

If we assume that k is even, then it can be proved that the operator P
is both locally solvable and hypoelliptic at t = 0.

Let us assume that k is odd, and (Re a)(Re b) &#x3E; 0: if Re a &#x3E; 0 and

Re b &#x3E; 0, then both X and Y are hypoelliptic but not locally solvable at
t = 0, and it can be proved that the same happens to P. If Re a  0 and

Re b  0, then both X and Y are locally solvable but not hypoelliptic at
t = 0, and it can be proved that the same happens to P.
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Moreover, in all the cases above, the degree of regularity of P can be
studied, whenever P is hypoelliptic.
We are then left with the case: k odd, We may

even assume that Re a &#x3E; 0, Be&#x26;0, since there is no gain by also con-
sidering the case Re a  0, Re b &#x3E; 0, which can be reduced to the previous
one by commutation of X and Y and a convenient change of c(t, A).

We will then assume that the operator P given by (2.1) satisfies the

following conditions:

(2.4) ao(t) = atk + tk+1 f (t), bo(t) = btk + tk+lg(t), co(t) = etk-1 + tkh(t), where

f, g, h E C°°(J) and a, b, c are complex numbers.

(2.5) Re a &#x3E; 0, Re b  0, and k is an odd integer.

Case (2.5) corresponds to the case when X and Y have « conflicting
influences », when (cf. Prop. 0.2 and 0.3):

(2.6) X is not locally solvable but is hypoelliptic at t = 0, Y is locally
solvable but not hypoelliptic at t = 0.

It is then immediate that

(2.7) If P = then P is neither locally solvable nor hypoelliptic at t = 0.

We will also use the following notations (the one on lp, by analogy
with [2]) :

From now on Ji will be the greatest open interval containing the origin
and contained in J, such that Re and never vanish

in Ji .
We are interested in the validity of the following hypoellipticity property:

(2.10) Given any real number s, any open subset J’ of Ji and any distri-
bution u in J’,

The following is the main theorem of this paper:
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THEOREM 2.1. Let P be an operator in J satisfying (2.1), (2.4) and (2.5).
The following are then equivalent:

( 2.11 ) P satisfies ( 2 .10 ) ,

(2.12) P* satisfies (2.10),

(2.13) whatever the integer +1) and -E-1 ) -~-1.

It is well known that property (2.10) has various implications, among
them, that P is hypoelliptic and P* is locally solvable in J,.

REMARK 2.1. There is an easy generalization of Th. 2.1, obtained replacing
in its statement condition (2.4) by

(2.4’) there are real numbers oto 7 oel 7 7 ak- 1 such that co(t) = -f- tkh(t) ;
k-1 k-1

ao(t) = i + atk + f (t) ; i where
i=o ;=o

f, g, h E C°°(J) and a, b, c are complex numbers.

Let P satisfy (2.1), (2.4’) and (2.5) and set

It is immediately checked that defines an automorphism of
0’(J; I~-°°), (resp. of C°°(J; H°’); resp. of C~°(J; H°’)). This is, in fact, an
isometric automorphism of L2(R; H), and it can be checked that it is an
automorphism of Je:oc(J), whatever the real number s and the open subset J
of the real line.

Since we have, with the obvious notation, P U = UP, where atk +
9.(t) 6,(t) = co(t), it is evident that, the theorem

being true for must be also true for the more general operator P.

3. - A sub elliptic estimate.

We keep the notations of section 2.

THEOREM 3.1. Let P be a differential operator defined on J, satisfying (2.1)7
(2.4) and (2.5). Assume also that P satisfies the following condition:
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Then, for suitable constant

provided only that J be bounded.

PROOF. Throughout the proof, we will omit the subscript 0 in the nota-
tion for the norm and the inner product of H. We will set:

with the constants a, b, c given by (2.4). Observe that we have

where and h(t, A) all belong to Therefore:

where s is a positive number which we are soon going to choose. We note that

whence

hence, if J is bounded



199

If we take (3.7) into account, (3.4) yields:

which has the following implication: it suffices to prove (3.2) with 1’ sub-
stituted for P and then choose s = (200)-1. This yields at once (3.2) for
P itself, y after some increasing of Co and Cl. In other words, we may
assume that

remembering that, by hence Re 6 &#x3E; 0). We will set:

Note that the adjoint of X. We have:

whence:

If we combine this with (3.11), we get:
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Since Reð&#x3E; 0 and, as it was easily proved in [3], we have:

it follows that, for some constant C &#x3E; 0, we have:

Recalling that P satisfies (3.1 ), i.e., that

which finally gives us (3.2).

COROLLARY 3.1. Same hypothesis as in Th. 3.1, in particular (3.1). Let

us choose Tl &#x3E; 0 such that J’= )- T1, T 1 ( is contained in J, and such that

(2 Cl)-1, where 01 is the constant in (3.2). Then, for every 99 E C~ (J’ ; II °° ),
we have:

where 00 is the same constant acs in (3.2).

COROLLARY 3.2. Same hypothesis as in Cor. 3.1. There is ac constacnt

0 &#x3E; 0 such that, for every 99 E C~ (J’ ; we have:

PROOF. Apply Prop. 1.1,a).
Let X = as before, with ao(t) = atk -E-tk+1 f (t), and Re a &#x3E; 0,

and consider the operator X+X. If we call Y = X+ = a, .A.) A, we
have X+X=YX=XY+c(t,A)A, where c(t, A.) _ - at(t, A.) - at(t, A.),
hence c = - k(a + d). In the present situation, 6 = a + ii, therefore con-

dition (3.1 ) is automatically verified, and we derive from Corollary 3.2 :

COROLLARY 3.3. Let X = a, - a(t, A) A be defined on J and Suppose that

(3.19) ao(t) = atk + tk+1 f(t), where f E C°°(J), k is an odd integer, and Re a &#x3E; 0.



201

Then, there is an open interval J’ containing 0 and contained in J, and a con-
stant 00 &#x3E; 0 such that, for every g~ E C~ (J’ ; g °° ), we have :

REMARK 3.1. In the case of the operator P (as in (3.3)) which is defined
on the whole real line, we proved (3.16) under the only restriction that J
be bounded. Hence, (3.17) and therefore also (3.18) is automatically verified,
for every bounded open set J. A similar remark applies to X: (3.20) holds
for every bounded open set J.

4. - The spaces 

The spaces will be defined in such a way as to have =

= Je:oc(J), and if m is a nonnegative integer, u belongs to if and

only if both atu and tkAu belong to k~io~1’’~ 1(J). Thanks to Prop. 1.1,
we can give another definition, easier to handle. We begin by defining the
class of operators kXd.v. By Z+ we will always denote the set of non-
negative integers.

DEFINITION 4.1. Let d, p E R, with kPEZ+. We will denote by 
(or if J need to be specified), the linear space of differential oper-
ators B of the form

where Brx.fJ is a differential operator of order less than or equal to

d - + 1) on J. (Here and in what follows, is understood

as being of the form (0.1), which greatly simplifies the exposition. Never-

theless, we will need the results of Prop. 4.1 also in the case is a more

general kind of operator, as for instance (1- 8/ -p with q belonging to
.R. This, however, will be only needed in the proof of Th. 5.1, parts 3) and 4). )

We give below some of the trivial properties of these spaces:

(4.2) B is a differential operator of order c d iff 

(4.3) If then the order of B is  d.

(4.4) is contained in if is contained in 

if p ~ Z+; is contained in if 

(4.5) is contained in k~’d+~/(k+1),2~+(alk)’ 

(4.6) 
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Let B = with order of BrxfJ less than or equal to

d - (kp - oc + 1), and suppose B = where E is independent of at,
m

i.e., E is a finite sum of terms like CPr(t, A)Ar. Then, B 
i=O

(where we make the convention that trx-m+i is identically zero if a - m + i  0,
and c, is some constant). If we call F; = Be, , then F, E kJfd.v+i, ,
and with independent of at. In general, given any
BEkJfd.V, we can find an integer m &#x3E; 0 and i = 0, 1, ..., m, such
that B = .I’o + Fi +... + Fm, and each .F’z can be written in the form (4.1),
with independent of at. This remark simplifies the proof of the next

proposition.
We will denote by [B, C] the difference BC - CB; by Zlk the set of

real numbers of the form where m e Z ; and by the set of non-

negative numbers belonging to Zlk.
Since the following proposition is not difficult to prove, we will only give

a sketch of the proof.

PROPOSITION 4.1.

SKETCH OF THE PROOF OF (4.8). One should first prove that [99(t, 
1p(t, is : a) 0 if /3 = 6 = 0 ; b) an element of 
if oc = y = 0 (or if or if a = ~8 = 0) c) an element
of if a (and P + b &#x3E; 1).
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DEFINITION 4.2. Let and We will denote by (or
if the open set J must be specified) the space of distributions

having the following property:

We give below some of the properties of the spaces (with m&#x3E; 0),
and the proof of (4.12), which is not so easy to verify.

We will prove (4.14) by induction on a. Let first a = 0, so that

(jlk) If j = 0, there is nothing to prove. 0, then we must
hence by hypothesis both and belong to

Then, by Prop. 1.1c), (4.14) is satisfied when a = 0, 0 ~ j ~ k
and with a + 

Suppose that (4.14) has already been proved for all 

and fJ E Z +, with a + (jfk) and let us prove the same when a = n

(if n c m). Let then If j = 0, instead of a = n, j = 0
(and that fixed we may take a = n - 1 and j = k: this case was already
inductively proved. 0, then we must have n -~--1 + p  m. We have
already inductively proved (cases (n, k, ~ -~-1 ) and (n -1, 1~ -1, ~8) ) that
both and belong to hencet t loo ,

Consider now the property
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If (4.16) is true when r = n, then by (4.15) and Prop. 1.lc), we will
have proved (4.14) for 0y~ with --~- ~ c m, and

the proof of (4.12) will be ended. The proof of (4.16) is by induction on r.
We know by hypothesis that it is true for r = 0. Suppose it is true for

r = p, i.e., that and let us prove
it for r = p -)-1 (if p -~-1 c n). By (4.15) we get

hence, by Prop. 1.1c), we must have (4.16) for r = p -f-1. Thus (4.12) is

proved.
The space carries a natural topology : the coarsest locally convex

one which renders all the mappings u - Bu into with B

as in (4.9), continuous. It coincides with the coarsest locally convex one
which renders all the mappings into con-

tinuous.

With this topology, is a Fréchet space. If then X is an arbitrary
compact subset of J, we denote by the closed linear subspace of

consisting of the distributions vanishing outside X, and by 
the inductive limit of the Fréchet spaces as X ranges over all com-

pact subsets of J. Remark that O:(J; is dense in both and 

the inclusion map being continuous. This enables us to identify (as sets)
their respective duals with subspaces of 

DEFINITION 4.3. Let s and m be as in Def. 4.2. We denote by
the dual of 

We can of course construct as before and All the

spaces and contain as a dense subset and they are
all reflexive, for all real s and all 

PROPOSITION 4.2. Let Then: a) For every real s, B 

continuous linear map f rom into provided that either : i ) m 2013p &#x3E; 0
or ii) iii) b) For every real sand (and the

operator « multiplication defines a continuous linear map f rom 
into 

PROOF: The proof of a)i) is easy, applying (4.7) and the definition of
the spaces The case a)ii) is got by duality of a)i) (which is true also
for Remark that a) i) and a)ii) is all that we need to prove Prop. 4.3,
hence we may now assume that Prop. 4.3 was already proved.
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b) Is a consequence of a)i) and a)ii) if either m - (a/k) ~ 0 or *a0.
Suppose that m &#x3E; 0 and m - (oclk)  0, and call ~8 = lcm : 
0  fl  oc, hence the operator f is the composition of with Since

tfl : and kjes.0 - are continuous so also is their. loc loc . loc loc ,

composition.
Let us go back to a)iii). By ii), we may assume and The

easy proof is by induction on m. Since we proved already a)iii) to be true
when m = 0, only the inductive step must be proved. Suppose a)iii) is true
for m = n -1, and let us prove it for m = n (where n E Z+, n &#x3E; 1). We apply
a decomposition similar to the case b), remarking that, if B E with

p &#x3E; 1 (in the case p  1 we have n - p &#x3E; 0, which case is covered by 
k-1

then we may write B - B 0 + z where B1 E B2 E 
3=0

E. E By the inductive hypothesis, 1 . loc loc

and - kies- d.n- p are continuous and so are and 2 loc loc are continuous, and so are t loc loc

and tk: Hence, and are both continuous maps
from loc into Finally, ti loc -+ loc and E.. kJes.n-(j/k) loc loc. ,. ’ loc loc , . loc

are continuous, as well as (by Prop. 4.3) the in-

clusion maps from into kJes-d.n-v. hence for eachloc loc " &#x3E; ,

E ti. is continuous.

PROPOSITION 4.3. Let satisfy

Then, we have a continuous injection

PROOF. One should first prove that 

if and that always The first two facts are

easily checked. As for the last one, it is enough to remark that I E 
which is contained in (cf. (4.5)), and apply Prop. 4.2, cases a)i)
and a)ii), which cover all possible values of m. An iteration of these three
facts gives the whole result.

COROLLARY 4.1.

Let .g be a compact subset of J: the spaces c are nor-
mable (in fact, they can be equipped with a Hilbert space structure). Let

us select in each of them a and (from now on, we will always
denote the norm of Je8 by since that of gs will not appear in the sequel),
submitted to the sole requirement that they define the topologies of the
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spaces. For instance, when m ~ 0, we may take

If &#x3E; we may take I

and an easy application of

the open mapping theorem shows.

PROPOSITION 4.3’. Suppose that

Then, the injection c I is compact and, given any real

number s, (arbitrary close to - oo), and any s &#x3E; 0, there is C &#x3E; 0 such that,
for all U E we have

The easiest way to prove the above proposition is by using the analogous
properties of the spaces Jes and the description of kJes.m. We give below
other properties of the spaces (4.20), (4.21) and (4.24) are got by
duality respectively of (4.11), (4.12) and (4.22); moreover, (4.23) can be

easily got from (4.22). We will therefore prove only (4.22).
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PROOF OF (4.22). The «only if» part is true by Props. 4.2 and 4.3.

By (4.11 ), in order to prove that it is enough to show that

(4.25) for all ex,f3EZ+ such that -f-~8 c m 

Since (4.11) implies that (4.25) is true when +
+ ( j 20131)/~ so it remains to show that (4.25) is true when ocjk --~-~ _

= m If this last relation holds, we must have (since l~~~2013l
and f3 E Z+). Since we have by (4.11) :

because (a - 1 ) /k + fl = m + (j - 1 ) fk. 
and since we already know that it follows

that (4.25) is satisfied also in the case + fl = m 

PROPOSITION 4.4.

Moreover, the « if » part of i) is true without restrictions on m.
The complete proof of Prop. 4.4 will be only given in the next section.

Here we will limit ourselves to the case m ~ 1, which will be needed in the
proof of the general case, and also in some proofs of the next section.

PROOF (for m ~ 1) : We will limit ourselves to the proof of i), since ii)
follows by duality. The «only if » part of i) is true by Prop. 4.2 (if m&#x3E;l
or m  0). We have to prove that, if tk Au and a t u are both in 9

then if m &#x3E; 1. We do that first in the case m E Z+, m &#x3E; 1: availing
ourselves of (4.12), we see that we need to show that

Since we get (4.26) when f3&#x3E;1 by (4.12). Since tkAu E

we get (4.2 6 ) when ~~0 and a ~ 1, by (4.12 ). Hence, it only
remains to show that (4.26) holds when Now, since both tkAu
and are in it follows by Prop. 1.lc) that (4.26) is satis-
fied when oc = 0.

In order to finish the proof, we have to show that the « if » part of i)
is true when with O~~~2013l. The proof is
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by induction on j. When j = 0, it was just proved. Suppose proved for
j=p and let us prove it (if~-)-l~A’2013l). By (4.22), in
order to show that it is enough to prove that : a) 
and b ) Since tk Au and are both in 

we have: c) and are both in d) tk Au and at u
are both in By d) and the inductive hypothesis we get b),
which implies by Prop. 4.3 that From this, from c) and
the inductive hypothesis, we get a). Q.E.D.

In the light of this section, we may rewrite (3.18) as 
from which we derive:

The expression (3.20) can be rewritten as:

Hence, we may state the following

REMARK 4.1. Corollaries 3.2 and 3.3, and Remark 3.1 remain true if we
substitute everywhere (4.27) for (3.18) and (4.28) for (3.20).

5. - A class of stable estimates.

Property (2.10) will be obtained via an estimate involving the kJes.m norms.
In the present section, we wish to investigate the interrelation between the
estimate in question and local existence and regularity results, and also the
dependence of such results on the indices s and m.

Throughout the section, S~ will be an open set of .I~, containing the origin;
J will denote an open bounded subset of .R, containing the origin and with
its closure J contained in D, and k will be a fixed odd integer.

Let us list the three types of properties we are interested in. They will

apply to an operator where 9 p ~ 1 and P is of the
form (0.1), i.e., it is not of the more general kind mentioned after Def. 4.1
(in sections 2 and 3 we had p = 2, but for our present purposes this limita-
tion is unnecessary).

We begin by the property which is closest to (2.10):
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Here s is any real number, m any belonging to Note that if (5.1)~~
holds for a family of open sets Ji contained in J, which covers J (i.e., with
the union of all the Ji equal to J), then it holds for J itself. The converse
(that if it holds for J it then holds for all open sets J’ contained in J) is not
immediately apparent but will result from the forthcoming argument (at
least for most of the values of m).

The next property is the estimate we have alluded to:

and to every compact subset
such that, for all

In applying (5.2’) one usually chooses s’ close to - oo. It is clear that,
if (~.2)s.m holds, it also holds when we replace J by anyone of its open sub-
sets. The converse is not so evident.

We come now to the third property, which is relative to the (local) ex-
istence of solutions to the inhomogeneous adjoint equation (solutions modulo
arbitrarily regular functions):

Remark that such property is equivalent to the one we get by giving
g instead of 

It will be shown that (5.3)s.m holds for J only if it holds for every open
subset of J and that, if there is a family Ji of open subsets of J which covers J,
and (5.3)s.m holds for each Ji, then it also holds for J. This will be a con-

sequence of the first part of Th. 5.1.

We will denote by S the set of m such that either m ~ 0 or

m or m E Z. We remember that where p is a positive in-
teger.

THEOREM 5.1. a) If (5.j)s.m is true for some j E {1, 2, 3} and for some
(so, mo) E .R X S, it is true for all such j’s and all (s, mo) with 8 E R. b) If
mo E Z and hypothesis of a) is verified, then (5.j)s.m is true for all such j’s and
all (s, m) E R x S. c) Moreover, if hypothesis of b) is verified, (5.1 )$,~ is true
for all (s, m) E .R such that or m-p + 1. In the case p = 2,
this covers all the possible values of m.

14 - Annali delta Scuola Norm. Sup. di Pisa
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PROOF. 1) For a fixed pair (5.1)s.m implies (5.2)s.m.
Let us denote momentarily by E the intersection of the spaces 

and It is clear that E can be equipped with a natural Frechet
space topology: the coarsest locally convex one which renders continuous
the injection in 3C~(.K) and also all the mappings f -0f from .E into

as 0 ranges over O:(J). We equip now .E with a second topology
(which we denote by zP). Since we know by Prop. 4.2a) that

is contained in so we may talk about the coarsest

topology on E which renders continuous the injection in K~ (IT) and also all
the mappings from E into as 0 ranges over C~° (J). The

topology ip is metrizable and (5.1)s.m implies that it is complete. Since it

is obviously coarser than the natural topology on .E, it is identical to it, by
the open mapping theorem. We derive at once from this that, to every

there is and a constant C’ &#x3E; 0 such that, for all f E E,

Let us take f = 6q, q E (X; Hro), 0 E 0: (J), and choose 01 identically 1
in a neighborhood of supp 6: (5.2’) follows at once.

2) For a fixed pair (s, m) ER (5.2)s.m is equivalent to (5.3),,,.,,,.
Here there is no restriction at all on m.

First we show that (5.2)s,m implies (5.3)~.
Let 6, s" and g be given as in (5.3). Let 81 E C~°(J) be real and

equal to 1 in a neighborhood of supp6. We apply (5.2’) with 

(and where (, ) is the inner product on 

which shows that the antilinear functional q - (0g, g~) is continuous (say
on C~(J; -H~)) for the seminorm in the last member of (5.5), and therefore,
by the Hahn-Banach theorem, it is equal to an antilinear functional

q - q;) + (Oh, q;), where f 1 and h c If we set

we get (5.3’).
Next we show that (5.3) implies (5.2) for each (s, m).
Let K be an arbitrary compact subset of S, .K’ another compact subset

of S, containing the union of K with J. Let us denote by F the space
HCO) equipped with the single seminorm q - + 

where 6 e C~ (J) is given. Consider then the sesquilinear functional, defined
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on x F, which sends the pair (g, 99) in the complex number
given by the inner product It follows at once from (5.3)sm that it
is separately continuous; but on the product of a Fréchet space with a
metrizable space, any separately continuous sesquilinear functional is con-

tinuous, hence, for a suitable constant C &#x3E; 0,

Taking 8’= - s", we get at once (5.2’).
Before continuing the proof of the theorem, we need the following

PROPOSITION 5.1. If true, it remains true we have replaced P

by where R is an arbitrary element of k xd-1.V- B provided that either :

i) m&#x3E;0 or ii) m -E-p -1 c 0 or iii) In particular, this happens if
A similar statement holds if .1~ E xJ~(’a-~.~~ with s &#x3E; 0.

PROOF. Use Propositions 4.2 and 4.3’.

3) If holds for some (so, (5.2)s,mo holds for all 
Let t be an arbitrary real number and Q an elliptic operator of order t in Q

(for example, Q=(l-3~+~)~). Setting (4.8)c) im-

plies that R e k~(’d~ 1.~-1’ hence we may apply Prop. 5.1. It suffices then

to observe that for Q-1PQ is equivalent to for P.

4) For a fixed mo E S, if (5.2)$,mo holds for all s, so does (5.1)s.mo
Let r~, 61 and 6 belong to C~° (J), with 61 equal to 1 in a neighbourhood J’

of supp 1), 6 equal to 1 in a neighbourhood J" of supp 9i, and let J"’ be an
open neighbourhood of supp 6y whose closure is compact and contained in J.
Let u E ~’(J;13’- °°) be such that If the real number a is suf-

ficiently close to - we have (easy consequence of (0.2)
and Corollary 4.1 ). Consider now, for ~&#x3E;0y the operator

When 8 &#x3E; 0 whatever we also have Bo 
and if then Bev converges to qv in We will say then

that  B~ converges to qI » in kXO.O. Now,

By the choice of 61 and 0, we have [0, BE] = 0 and = 

and since we know that Pu E it follows that BeP(Ou) converges
to qPu = r¡P(8u) in for [Be, P](0u), we observe (cf. (4.8)c)
that « [B~, P] converges to [Bo, P] in and therefore, by Prop. 4.2
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(and since mo e S), [Be, converges to in which

is contained in .

Hence, we see that converges to in where

u’= inf (s, u -+-1) ). We apply (5.2’) to cp = Beu, with X = J"’, and or’
substituted for s (and with s’ sufficiently close to - c&#x3E;J). We conclude,
taking the limit as that r¡u belongs to By iterating
this reasoning, we eventually reach the stage where u’= s.

REMARK 5.1. This ends the proof of part a) of the theorem. Remark
that this implies, in particular, that if (5.j)so.mo (with holds for J,
then it holds for every open subset of J, and conversely, if it holds for a
family J, of open subsets of J’ which covers J, then it also holds for J.

Let H-OO) be such that then, 
and Pu E From this last fact we derive, by (5.1)s_1~(x+1&#x3E;.~°~
that u On the other hand, by (4.8)d), [P, t] E 
hence [P, t]u E kje, + 11(k + 1).M,, + 1( J)’ which is contained in kJes.mo(J) if mo + 1 &#x3E; 0Joe Joe , 0 

or mo +p  0 or mo E Z. Then, P(tu) = tPu + [P, t] u E which yields,
by means of (5.1 )s.m°, tu 

We have shown that, if mo + 1 &#x3E; 0 or mo E Z, then , 0 0’ Joe

and If we assume that and 

then by (4.22) we get which ends the proof of 5).

holds for all 8, then so does

First, we restrict ourselves to the case mo&#x3E; - p.
Let ~e~(J;~-") be such that Since 

is contained in ~ we derive by (5 1) that

Since we have 

ifmo&#x3E;0 or mo c -1. On the other hand, by (4.8 )d),
which yields [P, if Hence, -+- [P, 

which gives by (~.1)s-1.m°: if m E S We
can similarly prove that if 

If we also assume that mo ~ - p, then by Prop. 4.4 (the case already
proved) we have 

In order to remove the restriction mo ~ - p, we must settle a certain

number of particular cases of the general result we are seeking. We state
the first of them:

(5.7) If P = P* and mo E S, then (5.1),.mo holds for all 8 if and only if

(5.1)~_~_p holds for all 8.
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PROOF OF (5.7). Let us call Remarking that, if mo E S
then ml E S and mo = - ml - p, we see that it is enough to prove (5.7)
in one direction: if (5.1)s.mo holds for all s, then (5.1)s.ml holds for all 8.

We already know that, for (5.1)s.m and (5.3)s.m are equivalent.
In particular, we see that (5.3)s.mo holds for all s, and that it is enough to
prove that (5.3)s.ml holds for all s.

Let o E C~° (J), g E and s’c .R be given arbitrarily, with s"
sufficiently close to + oo, and let us take o1, 82 E C~(J), with 61 equal to 1
in neighbourhood J’ of supp 8, (J2 equal to 1 in a neighbourhood J" of supp 61.
If we take a real number v such that v c 0 and v ~ mo)/(k + 1), we
have contained hence, applying (5.3)s-11.mo
with (J2 substituted for 6, we see that there is f 1 such that

g) (which implies 8(P f 1- g) E JC’ 11 (J)). Since s" is sufficiently near
to -~- oo, and g E we get E = kX-8-d.mo
(J), hence Since (5.1)-s-d.mo holds for J, hence for J"
(cf. Remark 5.1), we have f 1 = (J"). Setting f = 
we have then fEkJe;s.-ml(J), and remarking that = = oP f, we
finally get 0 (Pf - g) c- JC’ (J), which proves (5.3)s.ml.

We will apply (5.7) to the operator T defined as follows: if we call

X = at - tkA and X+ = - X* = at It is clear that

T T* E Moreover, by the choice of X and S and Remark 4.1, (4.27) is
satisfied for any bounded open set J, i.e., (5.2)_1,_1 holds for T on these
same sets.

LEMMA 5.1. When P = ~’, (5.j)s.m is true for ~M ~e{l,2,3} and all
(s, m) Moreover, (5.1 )$,m is true for all (s, m) 

PROOF. As we already saw, (~.2 ) _ 1._ 1 holds for ~’. Hence, by part a),
(5.1)8.-1 holds for all s. Since in this case p = 2,-1 E S and -1 ~ -p, an iterative
application of 6) (in the case already proved) shows that (5.1)8.m holds for
all s and all integers greater or equal to -1. Applying successively 5), we

get (5.1)8.m for all g and all with m&#x3E;2013l. When m &#x3E; 0, then 
and the corresponding m, = - m - 2 runs over all with m  - 2,
hence by (5.7) we get (~.1)s,~ for all s and all m  - 2. All m such that

- 3  m  - 2 are in S, hence 6) gives (~.1 )s,m for - 2 c m c -1 and all s.

Then, (5.1)s.m holds for all real s and all mE Zjk. When m E S, then by
part a), (5.2)s.m and (5.3)~~ also hold.

END OF PROOF OF PROPOSITION 4.4. Let be arbitrary and

suppose that atu and belong to k~io~l’’~ 1(J). Then Xu E 0.
hence Su = X+Xu if m - 2 &#x3E; 0 or m 2013 1  0, so by lemma 5.1



214

we Hence, 81u and tkAu in imply loo , t Joe 10e (j)
if m 2 or ml. But for it was already proved in section 4, so this
happens for all 

But now that we know that Prop. 4.4 is true without restrictions on m,
the same reasoning of the beginning of 6) gives 6) without the restriction

(but only the restriction m E S). This completes the proof of 6).
We come now to the last stage of the proof of Th. 5.1:

7) If (5.1)s.mo holds for all s and some mo E Z, it holds for all m E S,
and also for or m-p +1.

When P is selfadjoint, the proof is similar to that of Lemma 5.1, and
we leave it to the reader.

For the operator .X used to define S, (4.28) holds, i.e., (5.2)0,o holds.
By part a) and by 6), (5.2)s.m then holds for all s and all An easy
induction then shows that, for every m E Z+, 7 (5.2)8.~o holds for all s and
all for the operator Xm E 

For a general operator P E kXd.v, we may as well assume that (5.2)m,m
holds for some integer m&#x3E;0. Setting M = P*(X+)m.Xmp, and thanks
to (5.2)~~ which holds for Xm, we may rewrite (5.2)m,m (for P) in the form:

which by Cauchy-Schwartz implies at once that (5.2)_~_~ _~_~ holds for .M;
the same is therefore true of (5.1)~,_~_~ for all s. Since If is selfadjoint and

7) is true for M, i.e., (5.1 )8.n is true for nESM or or

n ~ - 2p - 2m -~--1. Remark that hence if and

only if or n ~ - 2p - 2m or 
Let now U e 5)’(J; H-OO) be such that Pu e We derive from this

(remarking that that 
if or or m1EZ.

Then, applying (5.1) ~_~_~ when 
if besides the earlier restrictions for m1 we also have: either -+- 2m -1
or or 

Hence, we have proved (5.1),,, for P if either +2m or -{-1
or Application of 5) now gives (5.1),,, for all 

The proof of Theorem 5.1 is complete.

REMARK 5.2. Suppose that both P and P* satisfy anyone of the con-
ditions (5J)~ (j =1, 2, 3) with Then, whatever the
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following stronger version of (5.3)s.m is valid:

(5.9)8,,~ Given any open set J’ whose closure is compact and contained
in J, and any there is such thatI loo loc

P* f - g is 000 in J’.

This follows by exploitation of a priori estimates such as (5.2’) (or (5.4) )
and standard Fréchet space techniques.

REMARK 5.3. If P is an operator of the form (2.1), satisfying (2.4) and (2.5)
and also then (by Remark 4.1 and Th. 5.1) there is some

open neighbourhood J’ of 0 such that (5.j)s.m holds on J’ for all (s, m) E R X S
and Moreover, (5.1 )s.m holds on J’ for all (s, m) 

In the case of the operators considered in Remark 3.1, the same happens
for every bounded open set J.

REMARK 5.4. The anomalies which appeared in sections 4 and 5 are all
due to the fact that is not contained in 0  m  1. If

instead of Def. 4.3 we would define the spaces inductively as the
set of distributions ’U on J that can be written as atv with v and w

in then probably all these anomalies would disappear. This,
however, would require more work, and the results of sections 4 and 5 suf-
fice to our purposes.

6. - Study of the hypoellipticity of a particular class of operators.

In this section, we present a complete study (except for the proof)
of the hypoellipticity of operators of the form (2.1), satisfying (2.4) and (2.5)

00

and also a very restrictive condition. If we write a(t, A) 
oo m i=O

then we will require:
t=0 i=O

(6.1) Whatever the integer there are complex numbers ai , b i , ei

such that ai(t) = ai tk, bi(t) = bi tk, Ci(t) = e,tk-11.

With this notation, ao, bo, co coincide respectively with a, b, c in the

notation (2.4). We call now:
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Since a(t, A), b(t, A) and A) belong to (2A(J)l the same happens to
a(A), b(A) and c(A). Remark that we have:

We keep the notation of section 2, particularly ~ = at - a(t, A) A,
Y = at - b(t, A)A, A) = a(t, A) - b(t, A). Then, 6 (or ~o) is ao - bo and
lp = co/bo - In the case (6.1) holds, we also call b(A) = a(A) - b(A), hence
b(ty A) = 

The main result of this section is then the following:

THEOREM 6.1. Let P be an operator of the form (2.1), satisfying (2.4),
(2.5) and (6.1). Then, the following two properties are equivalent:

(6.2) P is hypoelliptic at t = 0 ;

(6.3) whatever the integer none of the power series c(A) - m(k -~-1 ) ~ (A )
and c(A) - (m(k + 1) -~-1 ) ~ (A) are identically zero.

COROLLARY 6.1. Let P satisfy the hypothesis of Th. 6.1 and assume also
that at = ca = 0 for If for some integer m &#x3E; 0 we have t p = m(k +1)
or lp = m(k -(-1 ) + 1, then P is not hypoelliptic at t = 0.

It should be remarked that, when (6.1) holds, then (6.2) and (6.3) are
also equivalent to the property of P being locally solvable at t = 0. Although
the proof of this fact is very easy (at least in what we will soon call the
convergent case), we wish to concentrate the attention on hypoellipticity.

As a matter of fact, only Corollary 6.1 will be used in the proof of Th. 2.1
and in the sequel. There are two reasons why we give the more general result
which is embodied in Th. 6.1. The first one is to show that when t p assumes
one of the critical values m(k +1) or m(k + 1) + 1, where m is a non-
negative integer, then P may be either hypoelliptic or not at t = 0, depending
on the lower order terms. The second is to provide a better comparison of
the technique of application of the next Lemma 6.1 (which was already
used, in a similar context, in [3]) in the proof of Th. 6.1, and the method
of proof of Th. 7.1 (which is a stronger version of Th. 2.1).

Since we may consider as a formal power
series. We will prove Th. 6.1 only when d(A) is a convergent power series.
This case is enough to get Corollary 6.1 and to show the existence of hypo-
elliptic operators whose lp assume some critical value. The complete proof
of Th. 6.1 could be done with the same technique of using approximating
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operators PN, for P, where PN= 
N

where and similarly for and cN(A), as it was done
i=O

in [3], section (11.7).
Let E and F be abelian groups, F being a subgroup of .E. Let P, Q, U, V

be four endomorphisms of E, each one of which maps F into itself. We will
make the hypothesis that:

LEMMA 6.1. Suppose that (6.4) holds and also that

F contains the intersection of

Then, if F contains F must also contain P-1(.F’).
Note that if F contains P-1 (.F’), then F = P-1 (I’) .

PROOF. be such that Pu = Then Q Vu = TIPu = 
and therefore, if F contains Q-’(F), we must have i.e., u belongs
to the intersection of and which is F.

REMARK 6.1. Usually the easiest way to show that (6.5) is verified is
to show (if possible) that there are two other endomorphisms of E, T and 8,
which map F into itself, such that the endomorphism W = TV + SP satis-
fies the condition: « F contains W-I(F) ».

We will always apply Lemma 6.1 taking some bounded open set J con-
taining the origin, and E = ~’ (J; H‘- °° ), .F being the set of functions in
C~°(J; Hoo) which can be extended as a 000 function in a neighborhood of J.
Then, if P is of the form (2.1), defined on Jl, and J is relatively compact
in Jlg P must map .F’ into itself.

As a first application of Lemma 6.1, we give:

PROPOSITION 6.1. Suppose (2.4) and (2.5) hold for a(t, A) and b(t, A),
and assume that b(t, A) is divisible by t (i.e., that = ai(O) - bi(O) = 0

for every integer i&#x3E; 0 ). Then, the operator is not hypo-
elliptic at t = 0. In particular, if ( 6.1 ) also holds, then X Y -+- tk-I b (A. ) A is

not hypo elliptic at t = 0. 
-

PROOF. Calling 
P = Y, Q = .X Y -~- (a (t, A)/t) A, V = t, relation (6.4) holds. Moreover, setting
T = Y, S = - t, we have TV + SP = Yt - t Y = I, which clearly satisfies
the condition:  .I’ contains &#x3E;&#x3E;. Hence, by Remark 6.1, relation (6.5)
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holds. If we assume that, for some open neighbourhood J2 of 0, .F’ contains
then .F should contain by Lemma 6.1. But this is impossible,

since P = Y is not hypoelliptic at t = 0. Since, whatever the neighbour-
hood J2 of 0, F does not contain Q cannot be hypoelliptic at
t = 0. Q.E.D.

In the proof of Th. 6.1, we will call P(c(A)) the operator
f or X and Y fixed.

PROOF oF TH. 6.1. a) (6.2) implies (6.3). (This is the part needed for
Corollary 6.1).

Recalling that XY and are not hypoelliptic at t = 0,
it is enough to prove that, if is hypoelliptic at t = 0, so must be

P(c(A) - (k -~-1)~(.,A.)). We assume that d(A) = is a convergent
series and apply Lemma 6.1, as in the proof of Prop. 6.1. We start remarking
that the following identity holds, as can be easily verified by direct compu-
tation :

In order to verify (6.5), we use Remark 6.1. In this case, V = tX +
A simple computation

shows that YV- tP = d(A) X and hence:

Let us call e(A) the second member of (6.7): e(A) is identically zero
if and only if either d(.A ) _--_ 0 or d (A ) = I ( i. e., e(A. ) = 0 or c(A) « b(A)).
Therefore, if e(A) ~ 0 and e(A.) ~ ~(.A), we may write e(A) in the form
e(A) = + A-ig(A)), where a is a complex number different from
zero and g(A) EtlA(J) is independent of t. Then, (6.7) gives :

If we now take a real number r sufficiently close to - oo, the oper-
ator will be such that lR c - k/2, hence by
Remark 5.3, .R is hypoelliptic at t = 0. Since

Remark 6.1 gives (6.5).
This proves that, if and P(c(A)) is hypoelliptic

at so must be P(,e(A) - (k + 1) b(A)). Since P(O) and P(8(~)) are
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not hypoelliptic at t = 0, as it was already seen, we have in fact proved
the following:  if is hypoelliptic at t = 0, then so must be

P(c(A) - (k -f-1)~(.~.)) ».
b) (6.3) implies (6.2).

Let us consider the following assertion:

We will prove b ) by proving (6.8) j for every integer J&#x3E;0. When J = 0
we have Re lp - (k + 1)  - k/2, hence, by Remark 5.3, (6.8)0 holds. In

order to prove that (6.8)j implies (6.8)j+,, it is enough to prove (remarking
that with Po and P, as in (6.9)) that:

We again apply Lemma 6.1, this time using the following identity:

hence

Continuing as in the proof of a), we see that (6.5) is verified, provided
that 0 and I, i.e., that c(A) w 0 and b(A). Hence,
by Lemma 6.1, (6.9) holds. Q.E.D.

7. - Proof of the main theorem.

Same notation as in the preceding section. All the operators considered
in this section satisfy (2.1): they all belong to kX2.2 , and therefore the set
introduced on section 5 is the same for all of them: a number m E belongs
to S if and only if either or m-2 or m = -1.

If P is an operator of the form (2.1) defined on J and satisfying (2.4),
it is natural to call the operator J’= A)(at - bo(t) A) A as
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the « k-principal part of P &#x3E;&#x3E;, since P - P E kJf1.I, as it is easy to see, and
there is no term belonging to To every such operator P, we
will also connect (as in section 3) the operator P = (a, - atka) (a, - btk A) +
+ctk-1A, which we will call the « strong k-principal part of P ». We recall
(cf. section 3), that

where fi(t, A), gi(t, A), for i = 1, 2, and h(t, A) all belong to Let us call

+h(t, A)
Then, .R3 E kxl.l , but the same does not happen to RI or R2. In fact, for
no s &#x3E; 0 is it true that or 1~2 belong to kX2-e.2. Nevertheless, Ri and .I~2
both belong to which is a proper subspace of kJW2.2. Remark

that, unlike P, P is defined on the whole real line.
Throughout this section, it will be always assumed that P satisfies (2.1),

(2.4), and that (Re a) (Re b) =A 0 (and k is a nonnegative integer), and JI will
always denote the greatest open interval (containing 0 and contained in the
domain of definition Jo of P) such that Re (ao(t)/tk) and Re (bo(t)/tk) never
vanish on Jl.

We consider the following properties, that may hold or not in some open
set J contained in JI (they are all related to (2.10) and (5.j) for j = 1, 2, 3):

(7.2)s,~.~.~ (~.j)$.~ holds for P on J.

(7.3) There is an open neighbourhood J of 0, contained in Ji, and
there is s E R such that (7.1)s.J holds for P.

(7.4) For every open set J contained in JI and every (7.1),.j
holds for P.

(7.5) There is an open neighbourhood J of 0, contained in J1, there is
and there is j E {1, 2, 3} such that (7.2)s.m.i.J holds

for P.

(7.6) For every open set J relatively compact in Ji, for every

(s, m) E.R X S, and every j E {1, 2, 31, (7.2)8,m,~,J holds for P. Also,
for every (s, m) E.R XZIk and every open set J contained in J1,
( 7.2 )$,~,1, J holds for P.

Of course, (7.6) implies (7.5), and (7.4) implies (7.3). Next we present
two easy propositions. The first one shows that (7.5) and (7.6) for P are
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equivalent to (7.5) and (7.6) for its strong k-principal part P. The second
shows that (7.3) and (7.4) are equivalent to (7.5) and (7.6).

PROPOSITION 7.1..Let P be an operator satisfying (2.1) and (2.4) (but
not necessarily (2.5) ), and let P be its strong k-principal part. Then, the fol-
lowing conditions are equivalent:

a) (7.5) holds for P;

b) (7.6) holds for P;

c) (7.5) hotds f or P;

d) (7.6) holds for P (remarks that, for P, J1 = B).

PROOF. Of course b) implies a), and d) implies c). If a) holds, then by
Th. 5.1 we may as well assume that j = 1. Let K be a compact neigh-
bourhood of 0, contained in J. Then on the open set J1- K the operator P
is elliptic (with the obvious meaning), so holds for P. This

together with (7.2)s.m,l.J implies (7.2)s,m.l.Jl. Applying Th. 5.1 with

Remark 5.1, we get b). Similarly, c) implies d). It is enough now to show
that b) implies c), since the same argument also shows that d) implies a).

The idea is to apply Prop. 5.1. This could be done if we had the

k-principal part of P instead of P in condition c). We have trivially:
b ) implies that (7.5) holds for P for the same sets J contained in J1.

However, the terms I~1 and .R2 of the difference P - P are not in kNI.1
or in for 8 &#x3E; 0, so Prop. 5.1 cannot be applied. In fact, we should
not expect to be able to apply it: if P satisfies (7.6) (with J1= R) we should
not expect P to be also hypoelliptic on the whole real line, even if it were
everywhere defined, but any application of Prop. 5.1 would yield hypoel-
lipticity on the same sets. What we may hope to achieve is a result similar
to Prop. 5.1, provided that we allow J to be shrinked.

Let R = t U, where We will prove that :

(7.7) If (5.2)o,o holds for P and the open neighbourhood J of 0, then (5.2)o,o
also holds for P - R, on a possibly smaller neighborhood J’ of 0.

Of course, if (7.7) is true, this finishes the proof that b) implies c). To

prove (7.7) it is clearly enough to prove:

(7.8) Given any e &#x3E; 0, there is an s’&#x3E; 0 such that, for all 99 E 0;( (- s’, 
we have:
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Now, we trivially have:

Since the operator is continuous, taking a fixed

open set J" relatively compact in J, such that 0 E J", there is a constant
C &#x3E; 0 such that f for 

Hence, denoting by J"’ the intersection of J" and we have

for every q e C(J; 

as desired. Q.E.D.

PROPOSITION 7.2. Let P be an operator of the form (2.1), satisfying (2.4)
and (2.5). Then, conditions (7.3), ( 7. 4 ) , (7.5) and (7.6) are all equivalent.
Moreover, we also have :

(7.10) If u E ~’(J; ~- °°) is then

,u ~ k~1~2-~.rn+2-~(k+1)/k( J)’ whatever the 

PROOF. By Prop. 7.1, we know that (7.5) is equivalent to (7.6), and
it is evident that (7.4) implies (7.3). A trivial consequence of the inclusion

k~1~2.2( J) is that (7.6) implies (7.4). It remains to prove (7.10)
and that (7.3) implies (7.5).

From (7.10) we easily derive that (7.3) implies (7.5) : by hypothesis (7.1)~j
holds for some s and some J, with 0 E J; in order to prove (7.5) it suffices
to prove (7.2)u with the same s and same J. Suppose that (7.1),j holds
but not (7.2)~u: then, there would be some .H~- °° ), such that

but By (7.10) we would derive

(with =2 and m = 0 ) that But ~i~ 2~(k+ i)( J) ~. k~ioo 2~k(J)
(cf. Corollary 4.1) so we should have which gives a con-
tradiction.

This shows that it suffices to prove (7.10). We begin by claiming:

( 7.11 ) If is such that and 

then 

In fact, if a is a real number sufficiently close to + 00, the operator
is such that hence by Remark 5.3, PI sat-

isfies (5.1)~. Since the hypothesis of (7.11) implies that it

also implies that and (7.11) is proved.
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If then I so (7.11) may be rewrit-
ten as:

Remark that (7.12) is (7.10) for 1 = 1, and that (7.10) is trivial for

j = 0. From (7.12) we get inductively (7.10): suppose (7.10) proved f or j
and let us prove it for j + 1. Assume that Pu E but 

then, by the inductive hypothesis, Since Pu E

which is contained in if we apply (7.12)
with substituted for sand substituted for m, we

get (7.10) for j + 1.

REMARK 7.1. We only used (2.5) to prove (7.11) and thereby (7.12).
Of course such requirement can be weakened: we only need that, given
a(t, A) and b(t, A), there exists at least one c(t, A) such that P( c(t, A))
satisfies (5.1). Then, an assertion similar to (7.11) can be proved, hence (7.12).
For instance, if Re b &#x3E; 0 and k is an odd integer, then XY tri-
vially satisfies (5.1). Hence, Prop. 7.2 is also true when Re a &#x3E; 0, Reb &#x3E; 0
and k is an odd integer.

COROLLARY 7.1. Same hypothesis of Prop. 7.2. If we denote by a), b), c),
and d) respectively the conditions (7.3), (7.4), (7.5) and (7.6) when P is
substituted for P, then the following eight conditions are all equivalent:
(7.3), (7.4), (7.5), (7.6), a), b), c) and d).
We will prove a more precise version of Th. 2.1, namely:

THEOREM 7.1. Let P be an operator defined on J, satisfying (2.1), (2.4)
and (2.5). Then, the following conditions are equivalent:

c) 2vhatever the integer n

d) whatever (s,m)ERxS, whatever the open set J’ relatively compact in J1,
the operator P defines an isomorphism f rom H°° ) onto

( J’ ; i

e) same as d), but for P*.
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PROOF. Remark first that it is enough to prove that implies c) and c)
implies a4). In fact, since if a2) implies c), then b2) implies c),
and if c) implies a4), then c) implies b4). By Prop. 7.2, conditions ai), ~2)?

and a4 ) are equivalent; conditions b1 ), b2 ), and b4 ) are equivalent;
and it is trivial that d) implies and e) implies b3).
We would then have c) and b g ) equivalent for i = 1, 2, 3, 4.
We also have: « a4) implies e ) ». In fact, it is already known now that

a4) implies b4), and if both a4) and b4) hold, then by Remark 5.2, we get (5.9)~,..
for all (s, m) and all J’ relatively compact in Ji. The open mapping
theorem now gives e). Similarly, we get d).

Let us then prove that a2) implies c) and that c) implies a4).

a2 ) implies c)

From a2 ) and Corollary 7.1, we have (7.4) holding f or P, which implies
that P is hypoelliptic (on the whole real line). By Corollary 6.1, and the
remark that t p = tP, we get c).

c) implies a4)

Since c) for P is the same as c) for P and a4) for P is equivalent to a4)
for P (by Corollary 7.1), it is enough to prove that c) implies a4) f or P.

Let us fix the constants a and b, and consider the operator P(c) =

+ (we call X = at - atkA, Y = at - btk A, as
usually). In order to prove that c) implies a4) for P(c), it is enough to prove
that, for every integer j &#x3E; 0, we have:

c) implies a4)

When j = 0 , we have hence, by Remark 5.3
(and Corollary 7.1), ( 7.13 )o holds. Remarking that = lp(c) - (k -f-1 ),
in order to prove that ( 7.13 )~ implies (7.13)~_i it is enough to show that, if

c # 0, c 0 6 and P(c - (k -E-1) ~ ) satisfies a4), then P(c) also satisfies a4), or,
since a3) is equivalent to ~4), that

satisfies a4 ), then P(e) satis-

We use the following particular case of (6.10):
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We will show that (5.1)s.m holds for P(c), if m&#x3E;5.
Let be such that

Since

(because m &#x3E; 5). Since by hypothesis satisfies

all we get from (7.15):

In our case, (6.12) gives:

Since and (7.16) and ( 7.17 ) yield,
thanks to (7.18): and since we are assuming
c ~ 0 and c ~ ~, we get:

Now we use the trivial remark:

From (7.19) and (7.16) we conclude, thanks to (7.20), that

and since satisfies (5.1), we get:

REMARK 7.2. If we apply the full strength of the proof of Prop. 7.1,
we get in fact a much more general result than Th. 7.1: there is no reason

15 - Annali della Scuola Norm. Sup. di Pisa



226

to restrict ourselves to operators P satisfying (2.1): we may add to it any
operator in k x2-e.2 with s &#x3E; 0 or any operator of the form t U, with U E 

(for instance: td(t, A) a2, with or e (t, A) A", with r  2), that
properties (7.3) and (7.5) remain unchanged, if lp is not any critical value.

REMARK 7.3. Remembering Remark 2.1, we get a further obvious gener-
alization of Th. 7.1.

Appendix

We give here the proof of Proposition 1.1.

a) We prove first the following statement:

(~.1) If at u and Itla Au both belong to L2(R; H8), then so does 
Moreover, there is a constant C &#x3E; 0 such that (if 1111 )) denotes the

norm in i

In fact, for every we have:

and

so that

hence

which yields (A.1).
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By iteration of (A.1 ) we get the following result:

(A.2) If and ItIaAr2G both belong to L2(R;H8), and mo is the first

nonnegative integer such that («-f-1 )~2’n° -1 c 0 (hence then

for all integers m such that belongs to
L2 (.R ; H8). Moreover :

(A.3) There is C &#x3E; 0 (depending on a, m, r and s) such that

where 1111 )) denotes again the norm of L2(.R; H3).
In order to prove a), it is enough to show that (A.3) is true for all real m

satisfying This can be done by an interpolation argument, using
the fact that 99(s) = 8 is a logarithmically convex function, for all u

in H-oo. Let 0 C m  mo and let us take A real such that A -E- (1 - A) =1~2’~.
Then, 0 C ~ C 1 and:

which ends the proof of a).

b) Remark that, since tkAu has compact support, so does Au, hence
by (1.9) so does u. Since we must then have uEJe:(R), as we
easily realize, remarking that u = at ’(atu). Here, at ’v is defined for distri-
butions v which vanish in some halfline t  to, as the integration from - o0
to t, i.e., at lv is the convolution of v with the Heaviside function.

Since u and atu both belong to JC,’(R), we must then have at(t’ u) ==
ti atu + E 

We prove b) first in the case s &#x3E; 0. Then Jes is contained in .L2(R; H’),
so that 8,u and tkAu both belong to L2(R; HS) and therefore, by a),

E L2(R; HS), hence when j = 0,1, ..., k.
This, together with a,(tju) immediately implies that
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Let us now consider any real s, and let p be a positive integer such that
s + p &#x3E; 0. We apply (1.14): since axu there are v and w in 

such that 8j’w Hence, applying a-’ to both members, we get

Remark that, since u and have compact support, so does 
and therefore also Let us call then so

which implies, as we saw in the beginning, that 
and 

From (A.4) we get Since by hypothesis
and so does the above equality yields (remembering

that 

Since (A.5) implies, as it is easy to see, that 

hence, But and we can use

the case s &#x3E; 0 to get: for j = 0,1, ..., k. Going back
to (A.4), we have hence, f or j = 0,1, ... , k, we have :

t’u = 

c) Let and tkAu both belong to Jefoc(J). We start claiming that
for j = 0,1, ... , k. In fact, this is true for j = 0, and if it

is true for some j  k, then Since

and (because the statement is true also

for j -f-1. In particular, we have then which together with

implies that 
We claim now that for j = 0,1, ..., k2. In fact, we

already know this for j = 0. Suppose it is true for some j  k2 (which im-
plies that ~2013~+1+~(~+1) ~); then, if we have 

since But we also have

hence by b), Since is ar-

bitrary, the statement is true for j -f-1. In particular, when j = k2 we get

Finally, we show that for j = 0,1, ... , k. The case

was just proved. Let then 

(using the case j = 0). But we also have hence by b),
Since is arbitrary, that means that

loc ....



229

BIBLIOGRAPHY

[1] A. GILIOLI - F. TRÈVES, An example in the solvability theory of linear partial
differential equations, Amer. J. of Math., 96 (1974), pp. 367-385.

[2] L. B. DE MONVEL - F. TRÈVES, On a class of pseudodifferential operators with
double characteristics, (to appear).

[3] F. TRÈVES, Concatenations of second-order evolution equations applied to local

solvability and hypoellipticity, Comm. Pure Appl. Math., 26 (1973), pp. 201-250.


